УДК 539.3

Ползучесть и длительная прочность компонентов газовых турбин с учетом неоднородного распределения температур

Г. И. Львов, С. В. Лысенко, Е. Н. Гораш

Национальный технический университет "Харьковский политехнический институт", Харьков, Украина

Традиционная модель континуальной механики разрушения Качанова–Работнова–Хейхерста расширена на случай переменной температуры и деформационного упрочнения. Скорости ползучести и повреждаемости полагают зависимыми от температуры. Полученная модель неизотермической ползучести и повреждаемости внедрена в конечноэлементный код универсального комплекса ABAQUS. Тестирование математической модели выполнено на осесимметричной задаче для корпуса газовой турбины.

Ключевые слова: скорость ползучести и повреждаемости, модель неизотермической ползучести и повреждаемости.

Конструкционные элементы газовых турбин функционируют в условиях повышенных температур и сложного напряженного состояния в течение длительного времени. Исследование ползучести конструкций с учетом накопления повреждений необходимо для достоверного анализа их длительной прочности. Многие элементы энергетического оборудования – секции турбин высокого и низкого давления, выхлопные патрубки, а также диффузоры работают в неоднородном тепловом поле, что обусловливает необходимость постановки задачи неизотермической ползучести и повреждаемости. Это особенно важно для толстостенных элементов корпусов турбин, в которых высокое внутреннее давление сочетается с большими градиентами температур.

Металлографические исследования жаропрочных сталей свидетельствуют о значительной сложности и разнообразии физических процессов на разных стадиях ползучести. Можно сделать вывод о преобладании диффузионно-управляемого перемещения дислокаций на второй стадии ползучести. Различные механизмы взаимодействия частиц с дислокациями, а также изменения во времени микроструктуры материала могут действовать в течение третьей стадии ползучести, приводя к уменьшению прочности материала и, как следствие, к разрушению. Энергии активации диффузионных и дислокационных процессов по-разному зависят от температуры, что принималось во внимание при разработке модели ползучести с учетом повреждаемости при переменной температуре.

Таким образом, в основу предложенной в данной работе неизотермической модели ползучести с учетом повреждаемости положены модель Качанова–Работнова–Хейхерста [1–3] и физические механизмы ползучести типичных жаропрочных сталей. Для адекватного описания стадии первичной ползучести вводится функция деформационного упрочнения в виде

$$H(\varepsilon^{cr}) = 1 + C \exp(-\varepsilon^{cr}/k).$$
(1)

© Г. И. ЛЬВОВ, С. В. ЛЫСЕНКО, Е. Н. ГОРАШ, 2008 ISSN 0556-171X. Проблемы прочности, 2008, № 5 Чтобы установить различное влияние температуры на диффузионную ползучесть и поперечное скольжение дислокаций, вводятся две разные функциональные зависимости: первая – в определяющее уравнение для скорости деформации ползучести; вторая – в эволюционное уравнение, определяющее скорость повреждаемости. Для описания этих зависимостей от температуры используется функция Аррениуса [4]:

$$A(T) = A \exp(-Q_{\alpha}/RT); \qquad B(T) = B \exp(-Q_{\beta}/RT).$$
(2)

Для одноосного напряженного состояния уравнения ползучести и повреждаемости с учетом деформационного упрочнения для полей переменной температуры имеют следующий вид:

$$\frac{d\varepsilon^{cr}}{dt} = A(T)H(\varepsilon^{cr}) \left(\frac{\sigma}{1-\omega}\right)^n,\tag{3}$$

$$\frac{d\omega}{dt} = B(T) \frac{\sigma^m}{(1-\omega)^l}.$$
(4)

В уравнениях (1)–(4) введены обозначения: ε^{cr} – деформация ползучести; t – время; σ – одноосное напряжение; Q_{α} и Q_{β} – энергии активации; T – абсолютная температура; A, B, C, n, m, k, l – константы ползучести материала; ω – скалярный параметр повреждаемости, $0 \le \omega \le \omega_*$ (ω_* – критическое значение параметра повреждаемости, соответствующее времени до разрушения t_*).

Количество констант можно сократить, если вместо энергий активации процессов ползучести Q_{α} и повреждаемости Q_{β} , а также универсальной газовой постоянной ввести в рассмотрение следующие две константы ползучести:

$$h = Q_{\alpha}/R; \qquad p = Q_{\beta}/R. \tag{5}$$

Для типичной жаропрочной стали значения температурных энергий активации процессов ползучести Q_{α} и повреждаемости Q_{β} разные. Наряду с другими константами материала они определяются с помощью набора экспериментальных кривых ползучести для широкого диапазона напряжений и температур.

Проинтегрировав по времени эволюционное уравнение повреждаемости (4) в предположении постоянных значений напряжения ($\sigma = \text{const}$) и температуры (T = const), получим функцию $\omega(t)$ в виде

$$\omega(t) = 1 - [1 - (l+1)B\exp(-p/T)\sigma^{m}t]^{1/(l+1)}.$$
(6)

Время до разрушения t_* может быть определено, если в уравнении (6) принять $\omega = 1$:

$$t_* = 1/[(l+1)B\exp(-p/T)\sigma^m].$$
 (7)

ISSN 0556-171Х. Проблемы прочности, 2008, № 5

38

С учетом функции $\omega(t)$ в виде (6) определяющее уравнение (3) интегрируется в предположении постоянного напряжения ($\sigma = \text{const}$):

$$\varepsilon^{C^{p}}(t) = k \ln[(1+C)\exp(\zeta(t)/k) - C],$$

$$\zeta(t) = \frac{A \exp\left(\frac{p-h}{T}\right) \sigma^{n-m}}{B(n-l-1)} \left\{ \left[1 - (l+1)B \exp\left(-\frac{p}{T}\right) \sigma^{m}t\right]^{\frac{l-n+1}{l+1}} - 1 \right\}.$$
(8)

В соответствии с известными механизмами деформации [5] скорость деформации ползучести на первой и второй стадиях ползучести зависит в основном от интенсивности напряжений. На третью стадию ползучести, ускоряемую повреждаемостью, дополнительно влияет вид напряженного состояния.

Для многоосного напряженного состояния классическая изотропная концепция Качанова–Работнова–Хейхерста [6], которая опирается на степенную зависимость для функции напряжений и скалярный параметр повреждаемости, дополнена составляющими от времени и функцией упрочнения:

$$\dot{\varepsilon}^{cr} = \frac{3}{2} \frac{\dot{\varepsilon}^{cr}_{_{\mathfrak{3KB}}}}{\sigma_{_{\nu M}}} s; \qquad \dot{\varepsilon}^{cr}_{_{\mathfrak{3KB}}} = A \exp\left(-\frac{h}{T}\right) \left(1 + C \exp\left(-\frac{\varepsilon^{cr}_{_{\mathfrak{3KB}}}}{k}\right)\right) \left(\frac{\sigma_{_{\nu}}}{1 - \omega}\right)^{n}; \qquad (9)$$

$$\dot{\omega} = B \exp\left(-\frac{p}{T}\right) \frac{\left(\left\langle \sigma_{\scriptscriptstyle 3KB}^{\omega} \right\rangle\right)^{m_{l}}}{\left(1-\omega\right)^{l}}.$$
(10)

Здесь $\dot{\varepsilon}^{cr}$ – тензор скорости деформации ползучести; $\dot{\omega}$ – скорость повреждаемости; $\sigma_v = [3/2 \, s \cdots s]^{1/2}$ – интенсивность напряжений; *s* – девиатор тензора напряжений; $\sigma_{_{3KB}}^{\omega}$ – эквивалентное напряжение, используемое в форме, предложенной в [7],

$$\sigma^{\omega}_{_{\mathbf{3KB}}} = \alpha \sigma_{\mathrm{I}} + (1 - \alpha) \sigma_{v}, \tag{11}$$

где $\sigma_{\rm I}$ – максимальное главное напряжение; α – весовой коэффициент, или коэффициент влияния, определяющий величину влияния главных механизмов повреждаемости на эволюцию повреждаемости (в основном определяется напряжениями $\sigma_{\rm I}$ или σ_v). Коэффициент α принимаем равным 0,3 как усредненное значение для жаропрочных сталей [8], которые используются в производстве элементов газовых турбин.

В модели ползучести с учетом повреждаемости (9), (10) выполняется условие несжимаемости, а накопление повреждений происходит только при положительном эквивалентном напряжении:

$$\langle \sigma^{\omega}_{_{3\mathrm{KB}}} \rangle = \sigma^{\omega}_{_{3\mathrm{KB}}} \forall \sigma^{\omega}_{_{3\mathrm{KB}}} > 0; \quad \langle \sigma^{\omega}_{_{3\mathrm{KB}}} \rangle = 0 \quad \forall \quad \sigma^{\omega}_{_{3\mathrm{KB}}} \le 0.$$
 (12)

Г. И. Львов, С. В. Лысенко, Е. Н. Гораш

Процедура идентификации констант ползучести материала при переменной температуре детально описана в [9–11]. Суть ее состоит в аппроксимации методом наименьших квадратов экспериментальных кривых ползучести, полученных в широком диапазоне температур и напряжений. Для неизотермической модели ползучести, адекватно описывающей все три стадии ползучести, определяются девять констант ползучести. Сначала обрабатываются участки установившейся ползучести. Зависимость между минимальной скоростью ползучести и напряжением, записанная в двойных логарифмических координатах, аппроксимируется методом наименьших квадратов. Это позволяет вычислить независимую от температуры константу *n* и ряд температурно-зависимых констант ползучести A_j $(j = 1, 2, ..., \varphi)$. Последний массив данных довольно точно аппроксимируется методом наименьших квадратов с использованием функции в форме Аррениуса (2) от температуры. В итоге определяются еще две константы А и h для участка установившейся ползучести. На следующем этапе анализируется третий участок – участок ускоренной ползучести, предшествующий разрушению. Здесь прежде всего определяется усредненная константа l, которая регулирует кривизну участков третьей стадии кривых ползучести. Затем устанавливается зависимость между временем до разрушения и напряжением, записанная в двойных логарифмических координатах. С использованием метода наименьших квадратов и функции Аррениуса (2) определяются еще три константы для третьей стадии ползучести: т, В, р. На заключительном этапе вычисляются усредненные константы C, k, которые характеризуют первую стадию ползучести. Методика идентификации констант автоматизирована в программе MO Excel. При исследовании длительной прочности конструкций можно пренебречь деформационным упрочнением на первой стадии ползучести и ограничиться минимальным набором из шести констант ползучести: A, n, h, B, m, p. Для жаропрочной стали 12CrMoWNiVNbN по изложенной методике определены их значения:

$A = 3,95 \cdot 10^{-3} [M\Pi a^{-n}/ 4];$	n = 5,6253;	h = 15950;
$B = 3,74 \cdot 10^{-4} [M\Pi a^{-m}/v];$	m = 8,0438;	<i>p</i> = 18550.

Разработана подпрограмма на языке программирования FORTRAN, в которой используется модель неизотермической ползучести. Она внедрена в конечноэлементный код инженерного программного комплекса ABAQUS 6.6 с использованием его стандартных подпрограмм "USDFLD" и "CREEP". Введены дополнительные переменные состояния для параметра повреждаемости и эквивалентной деформации ползучести. Процесс интегрирования системы дифференциальных уравнений (9), (10) по времени автоматически заканчивается, когда параметр повреждаемости достигает критического значения $\omega_* = 0,9$. При этом формируется текстовый файл, в котором регистрируется полная информация о разрушении конструкции.

Выполнен расчет неизотермической ползучести с учетом повреждаемости корпуса газовой турбины высокого давления, которая функционирует в неоднородном тепловом поле. Построена осесимметричная модель корпуса, нагруженного внутренним давлением P = 5 МПа, с дискретно заданными температурными граничными условиями в диапазоне T = 381... ... 535°С, которые использованы из предварительно решенной задачи нестационарной теплопроводности корпуса газовой турбины.

Конечноэлементная модель корпуса (рис. 1,*a*) содержит 1777 осесимметричных элементов САХ4Т, в которых узловые степени свободы включают перемещения и температуру. Особо выделен конечный элемент (КЭ) под номером 1419 (рис. 1, δ), где прогнозируется максимальное напряженнодеформированное состояние с последующим накоплением повреждений и разрушением конструкции.

Рис. 1. Конечноэлементная модель корпуса газовой турбины: *а* – полная модель; *б* – участок опасного напряженно-деформированного состояния.

На первом этапе решается стационарная задача теплопроводности и задача термоупругости. Неоднородное тепловое поле представлено на рис. 2. Затем решается задача ползучести с повреждаемостью методом шагов по времени с автоматическим выбором шага. Параметр повреждаемости ω достигает критического значения в 1419-м конечном элементе в момент времени разрушения $t_* = 25663$ ч. На рис. 2,6 показано конечное распределение эквивалентного напряжения по Мизесу в этот момент времени. В частности, в 1419-м КЭ происходит перераспределение в процессе ползучести эквивалентного напряжения по Мизесу (рис. 3). Подобным образом изменяется также другое эквивалентное напряжение, связанное с видом напряженного состояния (11). Эквивалентные напряжения снижаются в несколько раз, что аналогично процессам образования шейки при разрыве опытных образцов.

При ползучести также перераспределяются деформации ползучести и повреждаемости. Они возникают на внутренней поверхности корпуса, но с течением времени их максимальные значения смещаются на внешнюю поверхность корпуса и достигают пика именно в 1419-м КЭ.

Рис. 2. Распределение в корпусе турбины температуры, $T^{\circ}C(a)$ и напряжения по Мизесу, МПа (б) в момент разрушения.

Рис. 3. Перераспределение напряжений по Мизесу в 1419-м КЭ.

На рис. 4 представлено конечное распределение основных характеристик неизотермической ползучести с повреждаемостью: эквивалентной деформации ползучести ε_{3KB}^{cr} и скалярного параметра повреждаемости ω в момент разрушения корпуса газовой турбины. В укрупненном масштабе там же показано распределение параметра повреждаемости ω в области, которая охватывает 1419-й КЭ. Историю накопления повреждений в процессе ползучести в одной интеграционной точке 1419-го КЭ иллюстрирует рис. 5.

Применение неизотермической теории длительной прочности позволяет не только более точно оценить ресурс работы газовой турбины, но и изучить процессы перераспределения характеристик напряженно-деформированного состояния, предшествующие разрушению конструкции, на новом качественном уровне.

Ползучесть и длительная прочность компонентов

Рис. 4. Распределение основных переменных состояния при разрушении: a – деформации ползучести ε_{3xB}^{cr} ; δ – параметр повреждаемости ω .

Рис. 5. Накопление параметра повреждаемости ω в 1419-м КЭ.

Резюме

Традиційну модель континуальної механіки руйнування Качанова–Работнова–Хейхерста розширено на випадок змінної температури і деформаційного зміцнення. Швидкості повзучості і пошкоджуваності приймаються залежними від температури. Отриману модель неізотермічної повзучості і пошкоджуваності було упроваджено в скінченноелементний код універсального комплексу ABAQUS. Тестування математичної моделі виконано на осесиметричній задачі для корпусу газової турбіни.

1. *Качанов Л. М.* О времени разрушения в условиях ползучести // Изв. АН СССР. Отд-ние техн. наук. Механика и машиностроение. – 1958. – **8**. – С. 26 – 31.

- 2. *Работнов Ю. Н.* Проблемы прочности материалов и конструкций. М.: Наука, 1959. С. 5 7.
- Hayhurst D. R. Computational continuum damage mechanics: its use in the prediction of creep in structures: past, present, and future // Creep in Structures / Eds. S. Murakami and N. Ohno. – Dordrecht: Kluwer, 2001. – P. 175 – 188.
- Perrin I. J. and Hayhurst D. R. Creep constitutive equations for a 0.5Cr-0.5Mo-0.25V ferritic steel in the temperature range 600-675°C // Strain Analysis. - 1996. - 31, No. 4. - P. 299 - 314.
- 5. *Altenbach H.* Creep and Damage in Materials and Structures // CISM Courses and Lectures. Wein; New York: Springer, 1999. **399**. 348 p.
- 6. Gorash E., Lvov G., Harder J., et. al. Comparative analysis of the creep behaviour in a power plant component using different material models // Creep and Fracture in High Temperature Components Design and Life Assessment Issues, ECCC, ImechE. London, 2005. 12 p.
- 7. Leckie F. A. and Hayhurst D. R. Constitutive equations for creep rupture // Acta Met. 1977. 25. P. 1059 1070.
- Hyde T. H., Sun W., and Williams J. A. Creep analysis of pressurized circumferential pipe weldments – a review // Strain Analysis. – 2003. – 38, No. 1. – P. 1 – 29.
- Kostenko Y., Lvov G., Gorash E., et. al. Power plant component design using creep-damage analysis // Proc. of IMECE2006: ASME Int. Mech. Eng. Cong. and Exposition. – ASME, 2006. – 10 p.
- Гораш Е. Н., Лысенко С. В., Львов Г. И. Неизотермическая ползучесть и повреждаемость элементов паровых турбин // Вісн. НТУ "ХПІ". Динаміка та міцність машин. – 2006. – 21. – С. 75 – 88.
- 11. Львов Г. И., Лысенко С. В., Гораш Е. Н. Применение изотропной модели ползучести с учетом повреждаемости и упрочнения к неизотермическим расчетам длительной прочности: Тез. докл. конф. "Актуальные проблемы прикладной математики и механики" (АППММ'06). – Харьков, 2006. – С. 76.

Поступила 25. 10. 2007