# Устойчивость ортотропных тонкостенных цилиндрических оболочек при кручении. Сообщение 1. Теория

## А. И. Маневич, Е. Ф. Прокопало

Днепропетровский национальный университет, Днепропетровск, Украина

Методом разложения по малому параметру получено аналитическое решение задачи устойчивости ортотропной и конструктивно-ортотропной цилиндрической оболочки при кручении. Известное классическое решение представляет собой первое приближение для данного решения. Выполнен детальный численный анализ для изотропных и ортотропных оболочек. Показано, что для изотропных оболочек относительно малой и средней длины погрешность классического решения составляет 10...20%. Для ортотропных оболочек погрешность классического решения, как правило, больше, чем для изотропных, и может составлять 40%.

*Ключевые слова*: цилиндрическая оболочка, ортотропная и изотропная оболочки, устойчивость, кручение.

Введение. Задачи устойчивости цилиндрической оболочки при кручении, относящиеся к числу классических задач теории устойчивости оболочек, рассматривались в работах Е. Schwerin, L. H. Donnell, X. M. Муштари, В. М. Даревского, П. Е. Товстика и др. Достаточно полный обзор исследований, посвященных этому вопросу, представлен в монографиях, обзорах и статьях [1–8]. Линейная задача устойчивости решалась методом Бубнова– Галеркина с использованием тригонометрических аппроксимаций формы перемещений и различных упрощений полных уравнений, а также методом асимптотического интегрирования.

В расчетной практике нашли применение те решения, которые приводят к достаточно простым конечным формулам. В работе [1] предложены расчетные формулы для шарнирно опертых и защемленных оболочек малой и средней длины. Простое решение для шарнирно опертых оболочек средней длины получено Х. М. Муштари, В. М. Даревским и другими на основе аппроксимации прогиба двумя тригонометрическими функциями вида

$$w = C[\sin(\theta_m \xi + n\varphi) - \sin(\theta_{m+2} \xi + n\varphi)], \tag{1}$$

где

$$\xi = \frac{x}{R}; \qquad \varphi = \frac{y}{R}; \qquad \theta_m = \frac{m\pi R}{L};$$

x, y – продольная и окружная координаты; R – радиус оболочки; n – число окружных волн; m – параметр, определяющий наклон образующихся при выпучивании волн к образующей. Это решение легко обобщается на случай ортотропных и конструктивно-анизотропных оболочек (G. Gerard, B. M. Даревский). Для ортотропной оболочки критическое значение касательного напряжения определяется по формуле [5]

© А. И. МАНЕВИЧ, Е. Ф. ПРОКОПАЛО, 2008 ISSN 0556-171Х. Проблемы прочности, 2008, № 3

$$\tau_{cr} = 0,74 \frac{E_x^{3/8} E_y^{5/8}}{\left(1 - \nu_x \nu_y\right)^{5/8}} \left(\frac{h}{R}\right)^{5/4} \left(\frac{R}{L}\right)^{1/2},\tag{2}$$

где *h*, *L* – толщина и длина оболочки;  $E_x$ ,  $E_y$  – модули упругости соответственно в продольном и кольцевом направлении;  $\nu_x$ ,  $\nu_y$  – коэффициенты Пуассона,  $E_x \nu_y = E_y \nu_x$ .

Для конструктивно-анизотропной оболочки имеем [5]

$$\frac{N_{12}}{h} = 0.74 \frac{E[\lambda_{11}^3 \mu_{22}^5 (1 - \nu_{12} \nu_{21})^3]^{1/8}}{1 - \nu^2} \left(\frac{h}{R}\right)^{5/4} \left(\frac{R}{L}\right)^{1/2},$$
(3)

где  $N_{12}$  – сдвигающее усилие в оболочке;  $\lambda_{11}$ ,  $\mu_{22}$  – параметры, характеризующие мембранную жесткость  $B_{11}$  в продольном направлении и изгибную жесткость  $D_{22}$  в кольцевом.

Решения (2), (3) (далее будем называть их классическими) получены с использованием ряда упрощений, основанных на малости изменяемости прогиба в продольном направлении по сравнению с таковой в окружном. Такие упрощения могут приводить к заметной погрешности для относительно коротких оболочек, особенно для ортотропных и конструктивно-анизотропных. Для конструктивно-анизотропных оболочек из (3) получим, что на их устойчивость влияют не жесткости  $B_{22}$ ,  $B_{12}$ ,  $D_{11}$ ,  $D_{33}$ , а  $B_{11}$  и  $D_{22}$ . Этот вывод, конечно, является следствием принятых упрощений. Представляет интерес уточнение решения, которое позволило бы более точно учитывать влияние относительной длины оболочки и всех мембранных и изгибных жесткостей. В [7] выполнено численное исследование и получены некоторые оценки влияния этих жесткостей на основе решения в рядах в зависимости от значения параметра Батдорфа.

В данной работе методом разложения по малому параметру получено аналитическое решение задачи устойчивости ортотропной и конструктивноортотропной цилиндрической оболочки, уточняющее решения (2), (3). По отношению к этому решению классические формулы представляют решение в первом приближении. Для изотропной оболочки выполнено детальное численное исследование полученного решения. Показано, что для изотропных оболочек относительно малой и средней длины погрешность классического решения составляет 10...20% (в сторону завышения критической нагрузки). Для ортотропных оболочек выполнен общий параметрический анализ. Погрешность классического решения для таких оболочек, как правило, больше, чем для изотропных, и может составлять 40%.

## 1. Основные уравнения и решение для ортотропной оболочки.

1.1. Исходные уравнения. При решении линейной задачи устойчивости цилиндрической оболочки (в общем случае – конструктивно-ортотропной) под действием сдвигающих усилий  $N_{12}$  будем исходить из дифференциального уравнения устойчивости в виде [9] (уравнения, приведенные в [5], равносильны [9], но несколько отличаются по форме):

$$\nabla_2^4 (\nabla_1^4 w + 2N_{12} w_{,xy}) + (\nabla_3^4 - \nabla_R)^2 w = 0, \tag{4}$$

где  $\nabla_1^4$ ,  $\nabla_2^4$ ,  $\nabla_3^4$ ,  $\nabla_R$  – дифференциальные операторы,

$$\nabla_{1}^{4} = D_{1} \frac{\partial^{4}}{\partial x^{4}} + 2D_{3} \frac{\partial^{4}}{\partial x^{2} \partial y^{2}} + D_{2} \frac{\partial^{4}}{\partial y^{4}};$$

$$\nabla_{2}^{4} = \left(1 - \frac{B_{12}^{2}}{B_{1}B_{2}}\right)^{-1} \left(\frac{1}{B_{2}} \frac{\partial^{4}}{\partial x^{4}} + \frac{2}{B_{3}} \frac{\partial^{4}}{\partial x^{2} \partial y^{2}} + \frac{1}{B_{1}} \frac{\partial^{4}}{\partial y^{4}}\right);$$

$$\nabla_{3}^{4} = K_{1} \frac{\partial^{4}}{\partial x^{4}} + K_{3} \frac{\partial^{4}}{\partial x^{2} \partial y^{2}} + K_{2} \frac{\partial^{4}}{\partial y^{4}}; \quad \nabla_{R} = \frac{1}{R} w_{xx}.$$
(5)

Выражения для жесткостных параметров D<sub>i</sub>, B<sub>i</sub>, K<sub>i</sub> в общем случае конструктивно-ортотропной оболочки несимметричного строения (с эксцентричными ребрами) приведены в [9]. Для оболочки симметричного строения имеем  $K_i = 0$  (i = 1, ..., 3). Для ортотропной оболочки запишем

$$D_{1} = \frac{E_{x}h^{3}}{12(1 - v_{x}v_{y})}; \qquad D_{2} = \frac{E_{y}h^{3}}{12(1 - v_{x}v_{y})}; \qquad D_{3} = \frac{h^{3}}{12} \left(\frac{v_{x}E_{y}}{(1 - v_{x}v_{y})} + 2G\right);$$
  

$$B_{1} = \frac{E_{x}h}{1 - v_{x}v_{y}}; \qquad B_{2} = \frac{E_{y}h}{1 - v_{x}v_{y}}; \qquad B_{3} = \frac{2B_{1}B_{2}B_{33}}{B_{1}B_{2} - B_{12}^{2} - 2B_{12}B_{33}}; \qquad (6)$$
  

$$B_{12} = \frac{v_{x}E_{y}h}{1 - v_{x}v_{y}}; \qquad B_{33} = Gh; \qquad 1 - \frac{B_{12}^{2}}{B_{1}B_{2}} = 1 - v_{x}v_{y}.$$

Функцию прогиба w(x, y) принимаем в виде (1), полагая оболочку шарнирно опертой. Подставляя функцию (1) в (4) и приравнивая множители при одинаковых синусах к нулю, получаем выражения для критического усилия ортотропной оболочки:

$$N_{12} = \frac{1}{2\theta_m n R^2} \left[ f_1(\theta_m, n) + \frac{\theta_m^4 R^2 (1 - \nu_1 \nu_2)}{f_2(\theta_m, n)} \right];$$

$$N_{12} = \frac{1}{2\theta_{m+2} n R^2} \left[ f_1(\theta_{m+2}, n) + \frac{\theta_{m+2}^4 R^2 (1 - \nu_1 \nu_2)}{f_2(\theta_{m+2}, n)} \right],$$
(7)

где

$$f_{1}(\theta_{m}, n) = D_{1}\theta_{m}^{4} + 2D_{3}\theta_{m}^{2}n^{2} + D_{2}n^{4};$$
  
$$f_{2}(\theta_{m}, n) = \frac{1}{B_{2}}\theta_{m}^{4} + \frac{2}{B_{3}}\theta_{m}^{2}n^{2} + \frac{1}{B_{1}}n^{4}.$$
 (8)

Приравнивая правые части обоих уравнений (7), получаем уравнение для определения числа волн по кольцу *n* в зависимости от параметров ISSN 0556-171Х. Проблемы прочности, 2008, № 3 19

оболочки и параметра *m*. Чтобы выделить функциональную часть этой зависимости и перейти к безразмерным величинам, первое уравнение (7) с учетом (6), (8) запишем в виде

$$\frac{N_{12}}{E_1 h} = \frac{1}{2mn} \frac{L}{\pi R} \left[ \rho^2 f_1^{\ 0}(\theta_m, n) + \frac{m^4}{f_2^{\ 0}(\theta_m, n)} \left(\frac{\pi R}{L}\right)^4 \right],\tag{9}$$

где

$$\rho^2 = \frac{D_2}{B_1(1 - \nu_1 \nu_2)R^2};$$
(10)

$$f_1^0(\theta_m, n) = \frac{D_1}{D_2} \theta_m^4 + \frac{2D_3}{D_2} \theta_m^2 n^2 + n^4;$$
  

$$f_2^0(\theta_m, n) = \frac{B_1}{B_2} \theta_m^4 + \frac{2B_1}{B_3} \theta_m^2 n^2 + n^4,$$
(11)

и представим  $n^2$  следующим образом:

$$n^2 = \frac{\pi R}{L\sqrt{\rho}} n_0^2 \tag{12}$$

(как видно из приведенного ниже,  $n_0$  – число (в первом приближении) при  $\theta_m << n$ , не зависящее от параметров оболочки).

Подставим (12) в (11) и затем в (9), в результате чего получим

$$\frac{N_{12}}{E_1 h} = \frac{\rho^{5/4}}{2mn_0} \left(\frac{\pi R}{L}\right)^{1/2} \left[ \tilde{f}_1^{\ 0}(m, n_0) + \frac{m^4}{\tilde{f}_2^{\ 0}(m, n_0)} \right],\tag{13}$$

где

$$\widetilde{f}_1^0(m, n_0) = \frac{D_1}{D_2} \left(\frac{\pi R}{L}\right)^2 \rho m^4 + \frac{2D_3}{D_2} \frac{\pi R}{L} \sqrt{\rho} m^2 n_0^2 + n_0^4;$$
(14a)

$$\widetilde{f}_{2}^{0}(m,n_{0}) = \frac{B_{1}}{B_{2}} \left(\frac{\pi R}{L}\right)^{2} \rho m^{4} + \frac{2B_{1}}{B_{3}} \frac{\pi R}{L} \sqrt{\rho} m^{2} n_{0}^{2} + n_{0}^{4}.$$
(146)

Из (7) следует, что, заменив *m* в правой части (13) m+2, ее величина не изменяется. Следовательно, получаем уравнение, определяющее  $n_0$ :

$$\frac{1}{m} \left[ \tilde{f}_1^0(m, n_0) + \frac{m^4}{\tilde{f}_2^0(m, n_0)} \right] = \frac{1}{(m+2)} \left[ \tilde{f}_1^0(m+2, n_0) + \frac{(m+2)^4}{\tilde{f}_2^0(m+2, n_0)} \right].$$
(15)

Если в уравнении (15) пренебречь в функциях  $\tilde{f}_1^0(m, n_0)$  и  $\tilde{f}_2^0(m, n_0)$ (14) первыми двумя слагаемыми по сравнению с  $n_0^4$ , т.е. положить  $\tilde{f}_1^0(m, n_0) = \tilde{f}_2^0(m, n_0) = n_0^4$ , то получим приближенные решения [2–5] и, в частности, формулу (2) (после подстановки выражения  $n_0$  через *m* в (13) и минимизации по *m*). Таким образом, эти приближенные решения основаны на малости параметра

$$\varepsilon = \frac{\pi R}{L} \sqrt{\rho} \tag{16}$$

по сравнению с  $n_0^2$  (величина  $\sqrt{\rho}$  для изотропной оболочки имеет порядок  $\sqrt{h/R}$ :  $\sqrt{\rho} = \frac{1}{\sqrt[4]{12(1-\nu^2)}} \sqrt{h/R}$ ). Отметим, что параметр  $\varepsilon$  связан с обычно

используемым в теории оболочек "параметром подобия"  $\chi$  [3, 4] простой зависимостью:  $\varepsilon = 1/\chi$ .

2. Асимптотическое решение. Для того чтобы получить более точное решение, разложим  $n_0^2$  и уравнение (13) в ряд по  $\varepsilon$ , оставив лишь члены порядка  $\varepsilon^0$  (= 1) и  $\varepsilon^1$  (члены порядка  $\varepsilon^2$  отбрасываются, так как для изотропной оболочки  $\varepsilon^2$  имеет порядок h/R). Представим  $n_0^2$  в виде (*b* пока неизвестный коэффициент)

$$n_0^2 = \tilde{n}_0^2 (1 + b\varepsilon + ...)$$
(17)

и запишем разложения

$$\begin{cases} \widetilde{f}_{1}^{0}(m,n_{0}) = n_{0}^{4} + \frac{2D_{3}}{D_{2}}m^{2}n_{0}^{2}\varepsilon + ... = \widetilde{n}_{0}^{4}(1+b\varepsilon)^{2} + \\ + \frac{2D_{3}}{D_{2}}m^{2}\widetilde{n}_{0}^{2}(1+b\varepsilon)\varepsilon + ... \approx \widetilde{n}_{0}^{4} + \left(2b\widetilde{n}_{0}^{4} + \frac{2D_{3}}{D_{2}}m^{2}\widetilde{n}_{0}^{2}\right)\varepsilon + ...; \\ \widetilde{f}_{2}^{0}(m,n_{0}) = n_{0}^{4} + \frac{2B_{1}}{B_{3}}m^{2}n_{0}^{2}\varepsilon + ... = \widetilde{n}_{0}^{4}(1+b\varepsilon)^{2} + \\ + \frac{2B_{1}}{B_{3}}m^{2}\widetilde{n}_{0}^{2}(1+b\varepsilon)\varepsilon + ... \approx \widetilde{n}_{0}^{4} + \left(2b\widetilde{n}_{0}^{4} + \frac{2B_{1}}{B_{3}}m^{2}\widetilde{n}_{0}^{2}\right)\varepsilon + ...; \\ \frac{1}{\widetilde{f}_{2}^{0}(m,n_{0})} = \frac{1}{\widetilde{n}_{0}^{4}} \left[1 + \left(2b + \frac{2B_{1}}{B_{3}}\frac{m^{2}}{\widetilde{n}_{0}^{2}}\right)\varepsilon + ...\right]^{-1} = \\ = \frac{1}{\widetilde{n}_{0}^{4}} \left[1 - \left(2b + \frac{2B_{1}}{B_{3}}\frac{m^{2}}{\widetilde{n}_{0}^{2}}\right)\varepsilon + ...\right]. \end{cases}$$
(18)

Заменив *m* в (18) *m*+2, получим аналогичные выражения для  $\tilde{f}_1^0(m+2, n_0)$  и  $\tilde{f}_2^0(m+2, n_0)$ . Подставим эти выражения в уравнение (15) и приравняем коэффициенты при одинаковых степенях  $\varepsilon$  в обеих частях ISSN 0556-171X. Проблемы прочности, 2008, № 3 21

последнего. В результате получим решения в первом и вгором приближениях.

2.1. Решение в первом приближении (классическое решение). Коэффициенты при членах порядка  $\varepsilon^0$  входят в уравнение

$$(m+2)\left(\widetilde{n}_{0}^{4}+\frac{m^{4}}{\widetilde{n}_{0}^{4}}\right)=m\left[\widetilde{n}_{0}^{4}+\frac{(m+2)^{4}}{\widetilde{n}_{0}^{4}}\right],$$

откуда

$$\widetilde{n}_0^8 = F(m);$$
  $F(m) = m(m+2)(3m^2 + 6m + 4).$  (19)

Подставим полученное значение  $\tilde{n}_0$  в выражения (14), в которых в этом приближении остаются только последние слагаемые:

$$\tilde{f}_1^0(m, n_0) = \tilde{f}_2^0(m, n_0) = \sqrt{F(m)}.$$

Теперь эти выражения подставим в формулу для критического касательного усилия (13):

$$\frac{N_{12}^0}{E_1 h} = \frac{\rho^{5/4}}{2} \left(\frac{\pi R}{L}\right)^{1/2} \Phi(m), \tag{20}$$

где

$$\Phi(m) = \frac{1}{m\sqrt[6]{F(m)}} \left[ \sqrt{F(m)} + \frac{m^4}{\sqrt{F(m)}} \right].$$
(21)

Значение параметра *m* определяется из условия минимума критической нагрузки, т.е. минимума  $\Phi(m)$ . Минимум легко находится численно, он достигается при  $m_* = 1,3768$  и равен  $\Phi(m_*) = 3,9807$ . Из (19) имеем  $F(m_*) = 83,4428$ , откуда  $\tilde{n}_0 = 1,7384$ , а формула (20) сводится к

$$\frac{N_{12}^0}{E_1 h} = 3,5278 \left(\frac{R}{L}\right)^{1/2} \rho^{5/4}.$$
(22)

Для ортотропной оболочки параметр  $\rho$  равен (из (10) и (6))

$$\rho = \frac{1}{\sqrt{12(1 - \nu_1 \nu_2)}} \sqrt{\frac{E_y}{E_x}} \frac{h}{R}.$$
(23)

После подстановки (23) в (22) получим классическое решение (2).

2.2. Решение во втором приближении. Переходим ко второму приближению, которое позволяет определить b (17) и уточнить  $n_0$  и критическое усилие.

Приравнивая в (15) после подстановки в него (18) коэффициенты при  $\varepsilon^1$ , находим

Устойчивость ортотропных тонкостенных цилиндрических оболочек ....

$$(m+2)\left[2b\tilde{n}_{0}^{4} + \frac{2D_{3}}{D_{2}}m^{2}\tilde{n}_{0}^{2} - \frac{m^{4}}{\tilde{n}_{0}^{4}}\left(2b + \frac{2B_{1}}{B_{3}}\frac{m^{2}}{\tilde{n}_{0}^{2}}\right)\right] = m\left[2b\tilde{n}_{0}^{4} + \frac{2D_{3}}{D_{2}}(m+2)^{2}\tilde{n}_{0}^{2} - \frac{(m+2)^{4}}{\tilde{n}_{0}^{4}}\left(2b + \frac{2B_{1}}{B_{3}}\frac{(m+2)^{2}}{\tilde{n}_{0}^{2}}\right)\right], \quad (24)$$

откуда с учетом полученного из уравнения первого приближения равенства  $\widetilde{n}_0^{\,8} = F(m)$  (19) имеем

$$b = \frac{1}{2(3m^2 + 6m + 4)\sqrt[4]{F(m)}} \left( F(m)\frac{D_3}{D_2} - F_1(m)\frac{B_1}{B_3} \right),$$
(25)

где

$$F_1(m) = 5m^4 + 20m^3 + 40m^2 + 40m + 16$$

Если при вычислении *b* принять *m* равным значению, полученному в первом приближении (*m* = 1,3768), тогда

$$b = 0,7691 \frac{D_3}{D_2} - 2,000766 \frac{B_1}{B_3}.$$

В частности, для изотропной оболочки  $(D_3/D_2 = 1, B_1/B_3 = 1)$  имеем b = -1,2316. Чтобы получить более точное решение, учитывающее зависимость *m* от  $\rho$ , необходимо выражение для *b* как функции от *m* (25) подставить в (17) (вместе с  $\tilde{n}_0 = \sqrt[8]{F(m)}$ ), а затем полученное выражение для  $n_0^2$  – в (18) и (13). Тогда для критического касательного усилия запишем выражение вида (20):

$$\frac{N_{12}^0}{E_1 h} = \frac{\rho^{5/4}}{2} \left(\frac{\pi R}{L}\right)^{1/2} \Phi_1(m,\varepsilon),$$
(26)

где

$$\Phi_1(m,\varepsilon) = \frac{1}{mF^{5/8}(m)} \left\{ F(m) + m^4 + \left[ \frac{D_3}{D_2} F_2(m) - \frac{B_1}{B_3} F_3(m) \right] \varepsilon \right\}; \quad (27)$$

$$F_2(m) = \frac{m^2(m+2)}{F^{1/4}(m)} (7m^3 + 21m^2 + 20m + 6);$$
(28)

$$F_3(m) = \frac{m^2}{F^{3/4}(m)} \left[ 2m^4 + \frac{(m+2)F_1(m)}{\sqrt{F(m)}} (m^3 + 9m^2 + 12m + 6) \right].$$
(29)

ISSN 0556-171Х. Проблемы прочности, 2008, № 3

23

Для каждого заданного  $\varepsilon$  значение *m* определяется из условия минимума  $\Phi_1(m, \varepsilon)$  по *m*. Минимизация выполняется численно.

#### 3. Анализ уточненного решения.

3.1. Изотропная оболочка. Для изотропной оболочки параметр m и функция  $\Phi_1(m, \varepsilon)$  зависят только от  $\varepsilon$ . Расчеты выполняли в пакете Maple в диапазоне  $\varepsilon$  (0; 0,2). Полученные численные результаты представлены в таблице, где даны значения  $m_*$  для точек минимума и соответствующие значения  $n_0$ , b и  $\Phi_1(m_*, \varepsilon)$ . Там же приведены отношения критической нагрузки  $N_{12}$  к классическому значению  $N_{12}^{cl}$ , определяемому формулой (2), т.е. полученному в первом приближении.

Зависимость параметров волнообразования и безразмерной критической нагрузки изотропной оболочки от параметра  $\varepsilon = (\pi R/L) \sqrt{\rho}$ 

| Е    | <i>m</i> * | $n_0$ | Ь      | $\Phi_1(m_*,\varepsilon)$ | $\psi = N_{12} \big/ N_{12}^{cl}$ |
|------|------------|-------|--------|---------------------------|-----------------------------------|
| 0    | 1,377      | 1,738 | -1,232 | 3,9810                    | 1,0000                            |
| 0,02 | 1,250      | 1,666 | -1,237 | 3,9350                    | 0,9779                            |
| 0,04 | 1,145      | 1,602 | -1,244 | 3,8640                    | 0,9558                            |
| 0,06 | 1,055      | 1,543 | -1,254 | 3,8080                    | 0,9337                            |
| 0,08 | 0,975      | 1,488 | -1,266 | 3,7300                    | 0,9116                            |
| 0,10 | 0,905      | 1,436 | -1,279 | 3,6440                    | 0,8895                            |
| 0,15 | 0,738      | 1,304 | -1,322 | 3,3955                    | 0,8342                            |
| 0,20 | 0,591      | 1,174 | -1,380 | 3,1010                    | 0,7790                            |

Значения  $m_*$  и  $n_0$  заметно уменьшаются с ростом  $\varepsilon$ ; коэффициент  $\Phi_1(m_*, \varepsilon)$  при критической нагрузке также изменяется, но значительно меньше, и в рассмотренном интервале  $\varepsilon$  для изотропной оболочки составляет не более 22%. Отметим, что коэффициент *b* также зависит от  $\varepsilon$ , но весьма слабо.

Результаты расчетов (таблица) можно с достаточной точностью аппроксимировать линейными зависимостями от  $\varepsilon$  (получены в пакете Maple методом наименьших квадратов, погрешность менее 3%):

$$m_* = 1,377 - 3,801\varepsilon; \qquad n_0 = 1,738 - 2,763\varepsilon; \Phi_1(m_*,\varepsilon) = 3,981 - 4,328\varepsilon; \qquad \psi = 1,0 - 1,087\varepsilon.$$
(30)

Таким образом, критические значения касательных напряжений для изотропной оболочки во втором приближении определяются формулой (2) с поправочным множителем  $\psi$ , определяемым (30). С учетом (16) имеем

$$\tau_{cr} = 0.74 \frac{E}{(1-\nu^2)^{5/8}} \left(\frac{h}{R}\right)^{5/4} \left(\frac{R}{L}\right)^{1/2} \left(1.0 - 1.087 \frac{\pi R}{L} \sqrt{\rho}\right).$$
(31)

Подставляя в (31) выражение для  $\rho$  (23), окончательно запишем

$$\tau_{cr} = 0.74 \frac{E}{(1-\nu^2)^{5/8}} \left(\frac{h}{R}\right)^{5/4} \left(\frac{R}{L}\right)^{1/2} \left[1.0 - \frac{1.835}{(1-\nu^2)^{1/4}} \frac{R}{L} \left(\frac{h}{R}\right)^{1/2}\right].$$
 (32)

Поскольку поправочный коэффициент всегда меньше единицы, уточненное значение критического напряжения ниже классического, полученного в первом приближении. Различие между решениями возрастает с уменьшением L/R и исчезает при  $L/R \rightarrow \infty$ . Уточненная зависимость критического напряжения  $\tau_{cr}$  от параметра L/R несколько отличается от полученной по классическому решению: падение  $\tau_{cr}$  с ростом L/R оказывается более медленным.

На рис. 1 приведена зависимость безразмерного критического касательного напряжения  $\frac{\tau_{cr}}{E} \cdot 10^3$  от параметра L/R для изотропной оболочки при R/h = 300, построенная по формуле (32). Для сравнения там же нанесены результаты расчета по классическому решению (2) и по формуле Доннела для шарнирно опертой оболочки [1, 4].



Рис. 1. Зависимость безразмерного критического касательного напряжения от относительной длины изотропной оболочки при R/h = 300, полученная по различным решениям.

Для достаточно коротких оболочек уточненное решение заметно отличается от классического, в частности, при L/R = 2; 1 и 0,5 на 5,5; 10,8 и 21,7% соответственно (для данного значения R/h). Очевидно, что погрешностью такой величины нельзя пренебрегать в практических расчетах.

С помощью формулы Доннела получены результаты, близкие к классическому решению, однако с ростом L/R значения  $\tau_{cr}$  уменьшаются более быстро. В диапазоне малых длин L/R полученные по этой формуле значе-

ния  $\tau_{cr}$  более завышены, чем по классическому решению; при достаточно больших значениях L/R критические напряжения по Доннелу оказываются несколько ниже, чем в данном решении.

3.2. Ортотропная оболочка. Для ортотропной оболочки принято, что значение модуля сдвига G (в поверхности оболочки) выражается через модули упругости в продольном и поперечном направлении формулой

$$G = \frac{E_{x}E_{y}}{E_{x} + E_{y} + E_{x}\nu_{y} + E_{y}\nu_{x}}.$$
(33)

Тогда отношения жесткостей, входящие в основное уравнение второго приближения (24), выражаются через  $\eta = E_x / E_y$  с помощью (6):

$$\frac{B_1}{B_3} = 0.5(1+\eta), \qquad \frac{D_3}{D_2} = \frac{\nu_x + \nu_y + 2}{1 + \nu_y + (1+\nu_x)/\eta}.$$
 (34)

Следовательно, величины  $m_*$ ,  $n_0$  и  $\Phi_1(m_*, \varepsilon)$  становятся функциями  $\eta$ (для данного  $\varepsilon$ ). При рассмотрении влияния отношения  $\eta$  на поправочный коэффициент второго приближения  $\psi = N_{12} / N_{12}^{cl}$  необходимо учитывать, что отношение модулей входит также в величину  $\rho$  (23), от которой зависит параметр  $\varepsilon$  (16). Обозначая соответствующие величины для оболочки с равными модулями упругости в обоих направлениях индексом "0"

$$\rho_0 = \frac{1}{\sqrt{12(1 - \nu_x \nu_y)}} \frac{h}{R}; \qquad \varepsilon_0 = (\pi R/L)\sqrt{\rho_0}, \qquad (35)$$

имеем

$$\rho = \frac{\rho_0}{\sqrt{\eta}}; \qquad \varepsilon = \frac{\varepsilon_0}{\sqrt[4]{\eta}}.$$

Подставим выражение для є вместе с (34) в формулу (27) и после некоторых преобразований получим

$$\Phi_1(m,\varepsilon) = \overline{\Phi}_1(m,\varepsilon_0) = \frac{1}{mF^{5/8}(m)} \{F(m) + m^4 + \Phi_2(m,\eta)(\eta)^{1/4}\varepsilon_0\},$$
 (36)

где

$$\Phi_{2}(m,\eta) = \left[\frac{\nu_{x} + \nu_{y} + 2}{\sqrt{\eta}(1 + \nu_{y}) + \frac{1}{\sqrt{\eta}}(1 + \nu_{x})}F_{2}(m) - 0.5\left(\frac{1}{\sqrt{\eta}} + \sqrt{\eta}\right)F_{3}(m)\right]; \quad (37)$$

функции  $F_2(m)$  и  $F_3(m)$  определены выражениями (28), (29); функция  $\Phi_2(m, \eta)$  обладает свойством симметрии относительно параметра  $\eta = E_x/E_y$ , она не изменяется при замене  $\eta \Leftrightarrow 1/\eta$ , т.е.  $E_x \Leftrightarrow E_y$ , поскольку одновременно происходит замена  $\nu_x \Leftrightarrow \nu_y$ . Тогда из (36) следует, что роль слагаемого, зависящего от  $\varepsilon_0$ , т.е. поправки второго приближения, возрастает при  $E_x/E_y > 1$ .



Рис. 2. Зависимость отношения критической нагрузки (во втором приближении) к классическому значению  $\psi = N_{12}/N_{12}^{\ cl}$  от параметра  $\varepsilon_0$  для различных  $E_x/E_y$ .

На рис. 2 представлена зависимость отношения критической нагрузки (во втором приближении) к классическому значению  $\psi = N_{12}/N_{12}^{cl}$ , т.е.  $\Phi_1(m_*, \varepsilon)/\Phi_1(m_*, 0)$ , от параметра  $\varepsilon_0$  для различных  $E_x/E_y$ . При больших значениях  $E_x/E_y$  (порядка 5–10) поправка второго приближения может достигать 30...40% и более, в то время как в случае очень малых  $E_x/E_y$  она также возрастает по сравнению со случаем  $E_x/E_y = 1$ , но все же намного меньше, чем для больших  $E_x/E_y$ .

### Выводы

1. Получено уточненное аналитическое решение задачи устойчивости изотропной, ортотропной и конструктивно-ортотропной цилиндрической оболочки при кручении (для шарнирно опертых краев), учитывающее отбрасываемые в классическом решении "малые" слагаемые.

2. В случае оболочек средней и малой длины погрешность классического решения для изотропных оболочек составляет порядка 10...20%, для ортотропных – до 40% и более.

3. Погрешность классического решения возрастает с увеличением отношения модулей упругости  $E_x/E_y$  в продольном и кольцевом направлении.

#### Резюме

Методом розкладу за малим параметром отримано аналітичний розв'язок задачі стійкості ортотропної і конструктивно-ортотропної циліндричної оболонки при крутінні. Відомий класичний розв'язок є першим наближенням для даного розв'язку. Виконано детальний числовий аналіз для ізотропних та ортотропних оболонок. Показано, що для ізотропних оболонок відносно малої та середньої довжини похибка класичного розв'язку складає 10...20%. Для ортотропних оболонок похибка класичного розв'язку, як правило, більша, аніж для ізотропних, і може сягати 40%.

- Donnell L. Stability of Thin Walled Tubes under Torsion // NACA Report. 1933. – No. 479.
- 2. Вольмир А. С. Устойчивость деформируемых систем. М.: Гос. изд.-во физ.-мат. лит., 1967. 984 с.
- Григолюк Э. И., Кабанов В. В. Устойчивость круговых цилиндрических оболочек // Итоги науки. Серия "Механика". – М.: ВИНИТИ, 1969. – 348 с.
- 4. Григолюк Э. И., Кабанов В. В. Устойчивость оболочек. М.: Наука, 1978. 360 с.
- 5. *Кабанов В. В.* Устойчивость неоднородных цилиндрических оболочек. – М.: Машиностроение, 1982. – 256 с.
- Fung Y. C. and Sechler E. E. Instability of thin elastic shells // Structural Mechanics: Proc. 1st Symp. Naval Structural Mechanics (Stanford University, 1958). – New York: Pergamon Press, 1960. – P. 115 – 168.
- Simitses G. J. Instability of orthotropic cylindrical shells under combined torsion and hydrostatic pressure // AIAA J., 1967. – 5, No 8. – P. 1463 – 1469.
- Товстик П. Е. Некоторые задачи устойчивости цилиндрических и конических оболочек // Прикл. математика и механика. 1983. 47, вып. 5. С. 815 822.
- 9. *Маневич А. И.* Устойчивость и оптимальное проектирование подкрепленных оболочек. Киев; Донецк: Вища шк., 1979. 152 с.

Поступила 08. 11. 2006