УДК 539.3

Прогнозирование несущей способности слоистых армированных композитов криогенного и аэрокосмического назначения

Н. К. Кучер, М. Н. Заразовский

Институт проблем прочности им. Г. С. Писаренко НАН Украины, Киев, Украина

Анализируются методики прогнозирования несущей способности слоистых композитов, армированных однонаправленными высокопрочными волокнами, при комнатной и криогенных температурах. Показано, что наилучшая корреляция между расчетными и экспериментальными данными отмечается при учете зависимости эффективных механических параметров слоев от температуры в рамках теории упругости слоистых неоднородных тел.

Ключевые слова: композиционные материалы, слоистые углепластики, эффективные характеристики жесткости и прочности, армированный слой, несущая способность, криогенные температуры.

Введение. Современные тенденции развития машино-, самолето- и ракетостроения характеризуются снижением материалоемкости изделий при одновременном повышении их ресурса и надежности. Удовлетворить таким взаимоисключающим требованиям можно при использовании новых композиционных материалов. Использование композитов в конструкциях ракет и самолетов является одним из наибольших достижений космонавтики и аэронавтики за последнее время [1–3].

Применение композиционных материалов, в частности угле-, стекло- и боропластиков, позволяет обеспечить высокие удельную прочность и жесткость, необходимую жаропрочность, термическую и эрозионную стойкость при различных видах термосилового нагружения. Среди композитов, используемых в криогенной технике, можно выделить сверхпроводящие кабели, которые состоят из десятков тысяч волокон, запрессованных в медную матрицу.

Свойства композиционного материала определяются свойствами входящих в его состав компонент, их соотношением, характером взаимодействия на границах раздела матрица–волокно и технологией изготовления. Многие механические параметры композиций могут быть рассчитаны по известным свойствам компонент исходя из их соотношения, характера взаимодействия на границах раздела матрица–волокно и технологии изготовления. Однако из-за большой чувствительности некоторых параметров, например прочности к действию многих факторов, не поддающихся полному учету, применение строгих математических решений не всегда возможно.

Закономерности деформирования и разрушения слоистых волокнистых композиций отражены в работах [4–7] и справочниках [8, 9]. Наиболее разработанным разделом механики гетерогенных сред, по-видимому, следует считать раздел по определению эффективных характеристик композиционных материалов. Выражая механические параметры композита через характеристики отдельных компонент, получаем большие возможности для проектирования материалов с заданными свойствами. Главным преимущест-

Н. К. Кучер, М. Н. Заразовский

вом волокнистых композитов является возможность придания материалу такой анизотропии, которая будет оптимальной для каждого частного случая его использования. Оптимизация композитов по комплексу термомеханических и функциональных характеристик невозможна без надежных и полных экспериментальных данных их механического поведения в широком интервале температур, вплоть до сверхнизких.

Исследованию термомеханического поведения полимерных композитов, армированных однонаправленными волокнами, посвящены работы [10–16]. Установлено, что деформирование таких материалов с симметричными схемами укладки волокон может быть достаточно эффективно описано в рамках теории упругости ортотропного тела. Характеристики упругости исследуемых композиций существенно зависят от температуры эксплуатации. Кроме того, поскольку термомеханические параметры армирующих волокон и матрицы значительно различаются, в таких композициях после процесса кристаллизации возникают существенные остаточные термические напряжения как при комнатной, так и низких температурах, даже при отсутствии градиента температуры по объему элемента [17, 18]. Для корректного описания процессов деформирования в композитах необходимо учитывать как температурную зависимость характеристик упругости и коэффициентов линейного теплового расширения, так и остаточных термических напряжений.

Цель настоящей работы заключается в анализе расчетных методик для прогнозирования несущей способности слоистых углепластиков, армированных однонаправленными волокнами, при статическом нагружении в условиях комнатной и криогенных температур и сопоставлении полученных расчетных результатов с экспериментальными.

Объектом исследований служили слоистые полимерные углепластики с симметричной схемой армирования. Такие композиты при определенных предположениях относятся к классу ортотропных материалов [8, 9]. Структура слоистого композита схематически показана на рис. 1. Экспериментальные исследования механического поведения слоистых углепластиков IM7/PETI-5 с различной схемой армирования для трех фиксированных значений температуры (4,2; 77; 297 К) проведены в [14]. Там же представлены параметры упругости и прочности образцов с одним направлением армирования, которые использовались нами при выполнении конкретных расчетов.

Основные гипотезы и предположения. Для характеристики напряженного состояния композита будем использовать следующие системы координат: общую "глобальную" (x, y, z) (рис. 1) и локальные "естественные" (1, 2, 3), совпадающие с осями ортотропии слоев.

Полагаем, что каждый монослой представляет собой структуру, образованную выпрямленными и одинаково ориентированными волокнами, которые равномерно расположены в полимерной матрице. Матрица и волокна предполагаются изотропными материалами с различными характеристиками упругости и коэффициентами линейного теплового расширения.

Согласно теории высоконаполненных волокнистых материалов, основанной на регуляризации структуры, и допущению об однородном напряженном состоянии вдоль ориентации волокон в одной ячейке монослой

будем считать трансверсально-изотропным материалом [4, 5]. Локальную систему координат слоя выберем таким образом, чтобы ось 01 совпадала с направлением волокон.

Рис. 1. Структура многослойного композита и принятая глобальная система координат.

Эффективные параметры упругости слоя, эффективные коэффициенты теплового линейного расширения и разрушающие напряжения для случая плоского напряженного состояния при комнатной температуре (T = 297 K) согласно [14] следующие: $E_1 = 157,6$ ГПа; $E_2 = 8,7$ ГПа; $G_{12} = 4,6$ ГПа; $\alpha_1 = -1,3 \cdot 10^{-6}$ К⁻¹; $\alpha_2 = 19,45 \cdot 10^{-6}$ К⁻¹; $\nu_{12} = 0,33$; $\sigma_{+1} = 1940$ МПа; $\sigma_{-1} = 857$ МПа; $\sigma_{+2} = 47$ МПа; $\sigma_{-2} = 220$ МПа; $\sigma_{12} = 163$ МПа; при температуре жидкого азота (T = 77 К): $E_1 = 151,6$ ГПа; $E_2 = 7,5$ ГПа; $G_{12} = 5,8$ ГПа; $\alpha_1 = -1,49 \cdot 10^{-6}$ К⁻¹; $\alpha_2 = 20,05 \cdot 10^{-6}$ К⁻¹; $\nu_{12} = 0,33$; $\sigma_{+1} = -1,49 \cdot 10^{-6}$ К⁻¹; $\alpha_2 = 20,05 \cdot 10^{-6}$ К⁻¹; $\nu_{12} = 0,33$; $\sigma_{+1} = -1,49 \cdot 10^{-6}$ К⁻¹; $\alpha_2 = 20,05 \cdot 10^{-6}$ К⁻¹; $\nu_{12} = 0,33$; $\sigma_{+1} = -1,49 \cdot 10^{-6}$ К⁻¹; $\alpha_2 = 20,05 \cdot 10^{-6}$ К⁻¹; $\nu_{12} = 0,33$; $\sigma_{+1} = -1,49 \cdot 10^{-6}$ К⁻¹; $\alpha_2 = 20,05 \cdot 10^{-6}$ К⁻¹; $\nu_{12} = 0,33$; $\sigma_{+1} = -1,49 \cdot 10^{-6}$ К⁻¹; $\alpha_2 = 20,05 \cdot 10^{-6}$ К⁻¹; $\nu_{12} = 0,33$; $\sigma_{+1} = -1,49 \cdot 10^{-6}$ К⁻¹; $\alpha_2 = 20,05 \cdot 10^{-6}$ К⁻¹; $\nu_{12} = 0,33$; $\sigma_{+1} = -1,49 \cdot 10^{-6}$ К⁻¹; $\alpha_2 = 20,05 \cdot 10^{-6}$ К⁻¹; $\nu_{12} = 0,33$; $\sigma_{+1} = -1,49 \cdot 10^{-6}$ К⁻¹; $\alpha_{-1} = -1,49 \cdot 10^{$ = 1287 MΠa; σ_{-1} = 1125 MΠa; σ_{+2} = 21 MΠa; σ_{-2} = 294 MΠa; σ_{12} = 242 MΠa. Здесь E_1, E_2, G_{12} – модули продольной упругости и сдвига монослоя; v_{12} – коэффициент Пуассона; α_1 , α_2 – коэффициенты линейного теплового расширения; σ_{+1} и σ_{-1} – величины эффективных разрушающих напряжений слоя при действии растягивающих и сжимающих усилий в направлении волокон; σ_{12} – прочность при сдвиге в плоскости армирования. В обозначениях v_{ii} принято, что индекс *i* относится к направлению приложения нагрузки, индекс *j* – к направлению вызванной этой нагрузкой поперечной деформации. Для вычисления остальных коэффициентов Пуассона необходимо воспользоваться условием, следующим из предположения о существовании упругого потенциала.

Видно, что с понижением температуры эксплуатации до 77 К все термомеханические параметры однонаправленного углепластика существенно изменяются, что должно учитываться в прочностных расчетах. Например, модули продольной упругости E_1 и E_2 при охлаждении до 77 К

уменьшаются соответственно на 3,8 и 13%, а модуль сдвига G_{12} увеличивается на 26%. Наиболее существенно изменяются прочностные характеристики однонаправленного композита: σ_{+1} , σ_{+2} уменьшаются на 33,5 и 55,6%, σ_{-1} и σ_{-2} увеличиваются на 31,3 и 33,6%. При дальнейшем охлаждении до 4,2 К подобные тенденции, как правило, сохраняются [1, 11–16], хотя и отмечаются некоторые особенности в области, близкой к абсолютному нулю.

Отметим, что коэффициенты линейного термического расширения слоя имеют разные знаки в направлениях осей ортотропии слоя и также изменяются при понижении температуры эксплуатации. В частности [14], при T = 4,2 К параметр α_1 увеличивается более чем в два раза. Коэффициенты Пуассона можно считать постоянными для рассматриваемого температурного диапазона.

Усредненные характеристики жесткости и податливости таких композиций при комнатной температуре могут быть достаточно эффективно определены в рамках теории упругости неоднородных тел на основании параметров упругости волокна и матрицы [5, 15]. Соответствующие характеристики прочности трансверсально-изотропного материала, за исключением параметра σ_{+1} , могут быть определены только из соответствующих экспериментов [16].

В дальнейшем при определении эффективных характеристик композита и расчете распределения напряжений в его слоях при деформировании армированный слой будем считать гомогенным материалом, который характеризуется вышепредставленными параметрами.

Исследуемый слоистый углепластик изготовлен методом горячего прессования предварительно пропитанных связующим слоев при соответствующей температурной обработке, давлении и времени выдержки. Предполагается, что все слои жестко связаны между собой. Поскольку термомеханические параметры слоев существенно различаются, при изготовлении композита после кристаллизации матрицы в нем возникают остаточные термические напряжения даже при отсутствии градиента температуры по объему элемента.

За начальную температуру T_0 , при которой отсутствуют температурные остаточные напряжения в полимерном пластике [17, 18], можно принять температуру кристаллизации матрицы плюс 15 К. Предположим, что T – температура материала, которая постоянна по всему объему композита. Тогда $\Delta T = T - (T_{\rm kp} + 15)$ определяет приращение температуры, при котором возникают остаточные термические напряжения в слоистом материале. Следуя работе [18], для полимерной матрицы примем $T_{\rm kp} = 373$ К.

Чтобы оценить несущую способность композита при заданной температуре, необходимо с учетом зависимостей термомеханических параметров от температуры вычислить соответствующие эффективные параметры композита и определить остаточные термические напряжения в слоях. Затем рассчитываются локальные напряжения в композите, которые возникают от действующих нагрузок. На основе полученных распределений напряжений и соответствующего критерия прочности слоя можно прогнозировать прочность композита в целом. Расчет напряженно-деформированного состояния слоистых композиций. Методы исследования деформационных свойств слоистых материалов достаточно полно представлены в [4–9]. Наибольшее распространение среди них получили классическая и уточненная теории слоистых пластин и оболочек [19–22], а также теория упругости неоднородных тел [4, 6], которая является более общей и позволяет точнее описывать процессы деформирования.

Для представления определяющих соотношений последней воспользуемся линейными зависимостями между компонентами тензоров напряжения σ_{ij} , деформации ε_{ij} и температуры ΔT анизотропного тела в матричном виде:

$$\sigma_i = \lambda_{ij}\varepsilon_j - \beta_i \Delta T, \qquad \varepsilon_i = A_{ij}\sigma_j + \alpha_i \Delta T, \qquad i, j = 1, 2, \dots, 6, \tag{1}$$

где

$$\begin{aligned} \sigma_1 &= \sigma_{11}; \quad \sigma_2 &= \sigma_{22}; \quad \sigma_3 &= \sigma_{33}; \quad \sigma_4 &= \sigma_{23}; \quad \sigma_5 &= \sigma_{13}; \quad \sigma_6 &= \sigma_{12}; \\ \varepsilon_1 &= \varepsilon_{11}; \quad \varepsilon_2 &= \varepsilon_{22}; \quad \varepsilon_3 &= \varepsilon_{33}; \quad \varepsilon_4 &= \varepsilon_{23}; \quad \varepsilon_5 &= \varepsilon_{13}; \quad \varepsilon_6 &= \varepsilon_{12}, \end{aligned}$$

 λ_{ij} , A_{ij} – элементы симметричных матриц жесткости и податливости, связанные соотношением $[\lambda][A] = [E]; [E]$ – единичная матрица; β_i , α_i – компоненты вектор-столбцов коэффициентов термических напряжений и коэффициентов линейного теплового расширения. При этом $\{\beta\} = [\lambda]\{\alpha\}$. По повторяющимся индексам в (1) предполагается суммирование.

Для расчета напряженно-деформированного состояния слоистых структур, слои которых повернуты один относительно другого на различные углы, необходимо располагать соотношениями, определяющими деформационные свойства монослоев в повернутой системе координат. Исходя из гипотезы континуума каждый монослой будем считать ортотропным материалом, который обладает тремя плоскостями упругих свойств симметрии. Матрица жесткости ортотропного тела в главных осях ортотропии имеет 12 ненулевых элементов (из них независимых девять). При повороте системы координат вокруг оси, перпендикулярной к плоскости армирования, на угол θ таких компонент будет уже 20. Столько же компонент в матрице жесткости имеет среда с одной плоскостью симметрии упругих свойств.

Предположим, что ось 03 декартовой системы координат перпендикулярна к единственной плоскости симметрии материала. Для такой среды матрица жесткости [λ] характеризуется 13 независимыми константами, а вектор-столбцы { α } и { β } – четырьмя параметрами:

$$[\lambda] = \begin{bmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} & 0 & 0 & \lambda_{16} \\ \lambda_{22} & \lambda_{23} & 0 & 0 & \lambda_{26} \\ & \lambda_{33} & 0 & 0 & \lambda_{36} \\ & & \lambda_{44} & \lambda_{45} & 0 \\ & & & \lambda_{55} & 0 \\ & & & & & \lambda_{66} \end{bmatrix}; \qquad \{\alpha\} = \begin{cases} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ 0 \\ 0 \\ \alpha_6 \end{bmatrix}; \qquad \{\beta\} = \begin{cases} \beta_1 \\ \beta_2 \\ \beta_3 \\ 0 \\ 0 \\ \beta_6 \end{bmatrix}.$$
(3)

Компоненты тензора четвертого ранга λ_{ij} при повороте системы координат вокруг оси 03 на угол θ определяются по следующим формулам преобразования [4, 6]:

$$\begin{aligned} \lambda_{11}^{\prime} &= m^{4} \lambda_{11} + 2m^{2} n^{2} (\lambda_{12} + 2\lambda_{66}) + 4mn(m^{2} \lambda_{16} + n^{2} \lambda_{26}) + n^{4} \lambda_{22}; \\ \lambda_{12}^{\prime} &= m^{2} n^{2} (\lambda_{11} + \lambda_{22} - 4\lambda_{66}) - 2mn(m^{2} - n^{2}) (\lambda_{16} - \lambda_{26}) + \\ &+ (m^{2} + n^{2}) \lambda_{12}; \quad \lambda_{13}^{\prime} &= m^{2} \lambda_{13} + n^{2} \lambda_{23} + 2mn \lambda_{36}; \\ \lambda_{16}^{\prime} &= m^{2} (m^{2} - 3n^{2}) \lambda_{16} - mn[m^{2} \lambda_{11} - n^{2} \lambda_{22} - \\ &- (m^{2} - n^{2}) (\lambda_{12} + 2\lambda_{66})] + n^{2} (3m^{2} - n^{2}) \lambda_{26}; \\ \lambda_{22}^{\prime} &= n^{4} \lambda_{11} + 2m^{2} n^{2} (\lambda_{12} + 2\lambda_{66}) - 4mn(m^{2} \lambda_{26} + n^{2} \lambda_{16}) + m^{4} \lambda_{22}; \\ \lambda_{23}^{\prime} &= n^{2} \lambda_{13} + m^{2} \lambda_{23} - 2mn \lambda_{36}; \\ \lambda_{26}^{\prime} &= m^{2} (m^{2} - 3n^{2}) \lambda_{26} - mn[n^{2} \lambda_{11} - m^{2} \lambda_{22} + \\ &+ (m^{2} - n^{2}) (\lambda_{12} + 2\lambda_{66})] + n^{2} (3m^{2} - n^{2}) \lambda_{16}; \\ \lambda_{33}^{\prime} &= \lambda_{33}; \quad \lambda_{36}^{\prime} &= (m^{2} - n^{2}) \lambda_{36} + mn (\lambda_{23} - \lambda_{13}); \\ \lambda_{44}^{\prime} &= m^{2} \lambda_{44} - 2mn \lambda_{45} + n^{2} \lambda_{55}; \quad \lambda_{45}^{\prime} &= (m^{2} - n^{2}) \lambda_{45} + n^{2} \lambda_{55}; \\ \lambda_{55}^{\prime} &= m^{2} \lambda_{55} + 2mn \lambda_{45} + n^{2} \lambda_{44}; \\ \lambda_{66}^{\prime} &= m^{2} n^{2} (\lambda_{11} + \lambda_{22} - 2\lambda_{12}) + 2mn(m^{2} - n^{2}) (\lambda_{22} - \lambda_{16}) + \\ &+ (m^{2} - n^{2})^{2} \lambda_{66}, \end{aligned}$$

где $m = \cos(\theta); n = \sin(\theta); \theta$ – угол поворота; λ'_{ij} – компоненты матрицы жесткости в "новой" системе координат.

Формулы преобразования компонент α_i и β_i тензоров первого ранга приведены, например, в [8, 9].

Зависимости между усредненными по толщине композита деформациями $\langle \varepsilon_i \rangle$, напряжениями $\langle \sigma_i \rangle$ и температурой ΔT определяются соотношениями:

$$\langle \sigma_i \rangle = \overline{\lambda}_{ij} \langle \varepsilon_j \rangle - \overline{\beta}_i \Delta T; \qquad \langle \varepsilon_i \rangle = \overline{A}_{ij} \langle \sigma_j \rangle + \overline{\alpha}_i \Delta T,$$
 (5)

где $[\overline{\lambda}], [\overline{A}]$ – матрицы усредненных жесткостей и податливостей слоистой среды, которые связаны соотношением $[\overline{\lambda}][\overline{A}] = [E]; \{\overline{\alpha}\}, \{\overline{\beta}\}$ – векторстолбцы усредненных коэффициентов термических напряжений и коэффициентов линейного теплового расширения материала.

Усредненные характеристики жесткости, податливости, коэффициентов термических напряжений и коэффициентов линейного теплового расширения слоистых материалов рассчитываются исходя из известных механических параметров слоев на основе уравнений теории упругости неоднородных тел, удовлетворяя при этом всем внешним краевым условиям и условиям непрерывности на поверхностях раздела. Тогда для композита, образованного слоями с одной плоскостью упругой симметрии, имеем [6]

Прогнозирование несущей способности

$$\begin{cases} \overline{\lambda}_{11} = \langle \lambda_{11} \rangle + \langle \lambda_{13} \lambda_{33}^{-1} \rangle^2 \langle \lambda_{33}^{-1} \rangle^{-1} - \langle \lambda_{13}^2 \lambda_{33}^{-1} \rangle; \\ \overline{\lambda}_{12} = \langle \lambda_{12} \rangle + \langle \lambda_{13} \lambda_{33}^{-1} \rangle \langle \lambda_{23} \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle^{-1} - \langle \lambda_{13} \lambda_{23} \lambda_{33}^{-1} \rangle; \\ \overline{\lambda}_{13} = \langle \lambda_{13} \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle^{-1}; \\ \overline{\lambda}_{16} = \langle \lambda_{16} \rangle + \langle \lambda_{13} \lambda_{33}^{-1} \rangle \langle \lambda_{36} \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle^{-1} - \langle \lambda_{13} \lambda_{36} \lambda_{33}^{-1} \rangle; \\ \overline{\lambda}_{22} = \langle \lambda_{22} \rangle + \langle \lambda_{23} \lambda_{33}^{-1} \rangle^2 \langle \lambda_{33}^{-1} \rangle^{-1} - \langle \lambda_{23}^2 \lambda_{33}^{-1} \rangle; \\ \overline{\lambda}_{26} = \langle \lambda_{26} \rangle + \langle \lambda_{36} \lambda_{33}^{-1} \rangle \langle \lambda_{23} \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle^{-1} - \langle \lambda_{36} \lambda_{23} \lambda_{33}^{-1} \rangle; \\ \overline{\lambda}_{26} = \langle \lambda_{26} \rangle + \langle \lambda_{36} \lambda_{33}^{-1} \rangle \langle \lambda_{23} \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle^{-1} - \langle \lambda_{36} \lambda_{23} \lambda_{33}^{-1} \rangle; \\ \overline{\lambda}_{33} = \langle \lambda_{33}^{-1} \rangle^{-1}; \quad \overline{\lambda}_{36} = \langle \lambda_{36} \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle^{-1} - \langle \lambda_{36} \lambda_{23} \lambda_{33}^{-1} \rangle; \\ \overline{\lambda}_{66} = \langle \lambda_{66} \rangle + \langle \lambda_{36} \lambda_{33}^{-1} \rangle^2 \langle \lambda_{33}^{-1} \rangle^{-1} - \langle \lambda_{36}^3 \lambda_{33}^{-1} \rangle; \\ \overline{\lambda}_{66} = \langle \lambda_{66} \rangle + \langle \lambda_{36} \lambda_{33}^{-1} \rangle^2 \langle \lambda_{33}^{-1} \rangle^{-1} - \langle \lambda_{36}^3 \lambda_{33}^{-1} \rangle; \\ \lambda_{14} = \frac{\lambda_{1}}{\lambda_{2}^{2} - \lambda_{1} \lambda_{2}}; \quad \overline{\lambda}_{45} = \frac{\lambda_{2}}{\lambda_{2}^{2} - \lambda_{1} \lambda_{3}}; \quad \lambda_{3} = \langle \frac{\lambda_{55}}{\lambda_{2}^{2} - \lambda_{1} \lambda_{2}}; \\ \lambda_{1} = \langle \frac{\lambda_{44}}{\lambda_{45}^{2} - \lambda_{44} \lambda_{55}} \rangle; \quad \lambda_{2} = \langle \frac{\lambda_{45}}{\lambda_{45}^{2} - \lambda_{44} \lambda_{55}} \rangle; \quad \lambda_{3} = \langle \frac{\lambda_{55}}{\lambda_{45}^{2} - \lambda_{44} \lambda_{55}} \rangle, \\ \overline{\beta}_{1} = \langle \beta_{1} \rangle + \langle \lambda_{13} \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle^{-1} \langle \lambda_{33}^{-1} \beta_{3} \rangle - \langle \lambda_{13} \lambda_{33}^{-1} \beta_{3} \rangle; \\ \overline{\beta}_{2} = \langle \beta_{2} \rangle + \langle \lambda_{23} \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle^{-1} \langle \lambda_{33}^{-1} \beta_{3} \rangle - \langle \lambda_{23} \lambda_{33}^{-1} \beta_{3} \rangle; \\ \overline{\beta}_{3} = \langle \lambda_{33}^{-1} \rangle^{-1} \langle \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle^{-1} \langle \lambda_{33}^{-1} \beta_{3} \rangle - \langle \lambda_{36} \lambda_{33}^{-1} \beta_{3} \rangle, \\ \overline{\beta}_{6} = \langle \beta_{6} \rangle + \langle \lambda_{36} \lambda_{33}^{-1} \rangle \langle \lambda_{33}^{-1} \rangle^{-1} \langle \lambda_{33}^{-1} \beta_{3} \rangle - \langle \lambda_{36} \lambda_{33}^{-1} \beta_{3} \rangle, \\$$

где λ_{ij} – параметры жесткости *k*-го слоя относительно системы координат, которая повернута вокруг оси 03 на соответствующий угол; компоненты $\overline{\lambda}_{16}$, $\overline{\lambda}_{26}$, $\overline{\lambda}_{36}$, $\overline{\lambda}_{45}$, $\overline{\alpha}_{6}$, $\overline{\beta}_{6}$ равны нулю для симметричной схемы укладки монослоев.

Применительно к структуре углепластика, который состоит из слоев с четырьмя направлениями армирования, можно записать

$$\begin{cases} \left\langle \lambda_{ij} \right\rangle = [c_1 \lambda_{ij}^0 + c_2 \lambda_{ij}^{90} + c_3 \lambda_{ij}^{45} + c_4 \lambda_{ij}^{-45}] \Delta h/H; \\ \left\langle \alpha_1 \right\rangle = [c_1 \alpha_i^0 + c_2 \alpha_i^{90} + c_3 \alpha_i^{45} + c_4 \alpha_i^{-45}] \Delta h/H; \\ \left\langle \beta_i \right\rangle = [c_1 \beta_i^0 + c_2 \beta_i^{90} + c_3 \beta_i^{45} + c_4 \beta_i^{-45}] \Delta h/H, \end{cases}$$
(7)

где λ_{ij}^{90} – параметры жесткости монослоя относительно локальной системы координат, которая повернута на угол $\theta = 90^{\circ}$; Δh – толщина слоя; H – общая толщина пакета; c_i – относительное процентное содержание соответствующего слоя.

Н. К. Кучер, М. Н. Заразовский

Ненулевые элементы матрицы жесткости ортотропного тела относительно главных осей ортотропии с техническими постоянными упругости связаны посредством известных соотношений [4]:

$$\begin{split} \lambda_{11} &= (1 - \nu_{23}\nu_{32})DE_1; & \lambda_{22} = (1 - \nu_{31}\nu_{13})DE_2; \\ \lambda_{33} &= (1 - \nu_{12}\nu_{21})DE_3; & \lambda_{12} = (\nu_{21} + \nu_{23}\nu_{31})DE_1; \\ \lambda_{13} &= (\nu_{31} + \nu_{21}\nu_{32})DE_1; & \lambda_{23} = (\nu_{32} + \nu_{12}\nu_{31})DE_2; \\ \lambda_{44} &= G_{23}; & \lambda_{55} = G_{13}; & \lambda_{66} = G_{12}; \\ D &= [1 - \nu_{12}\nu_{21} - \nu_{23}\nu_{32} - \nu_{31}\nu_{13} - 2\nu_{12}\nu_{23}\nu_{31}]^{-1}, \end{split}$$
(8)

где E_1 , E_2 , E_3 , G_{12} , G_{13} , G_{23} – эффективные модули продольной упругости и сдвига соответственно; ν_{ij} – коэффициенты Пуассона монослоя.

Для исследуемого слоя справедливы следующие соотношения:

$$E_3 = E_2; \qquad G_{13} = G_{23} = G_{12}; \qquad \nu_{13} = \nu_{23} = \nu_{12}; \qquad \alpha_3 = \alpha_2. \tag{9}$$

На основе эффективных характеристик слоя с использованием соотношений (6)–(9) можно вычислить элементы матриц $[\overline{\lambda}], [\overline{A}]$ и компоненты вектор-столбцов $\{\overline{\alpha}\}, \{\overline{\beta}\}$. После определения всех эффективных характеристик слоистого композита можно вычислить локальные напряжения в каждом слое по соотношениям:

$$\begin{cases} \sigma_{1} = [\lambda_{11} + \lambda_{13}\lambda_{33}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{13}\lambda_{33}^{-1}\rangle - \lambda_{13})]\langle\varepsilon_{1}\rangle + \\ + [\lambda_{12} + \lambda_{13}\lambda_{33}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{23}\lambda_{33}^{-1}\rangle - \lambda_{23})]\langle\varepsilon_{2}\rangle + \\ + \lambda_{13}\lambda_{33}^{-1}\langle\lambda_{33}^{-1}\rangle\langle\varepsilon_{3}\rangle + 2[\lambda_{16} + \lambda_{13}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{36}\lambda_{33}^{-1} - \lambda_{36}\rangle)\langle\varepsilon_{12}\rangle - \\ - [\beta_{1} + \lambda_{13}\lambda_{33}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{33}^{-1}\beta_{3}\rangle - \beta_{3})]\Delta T]; \\ \sigma_{2} = [\lambda_{12} + \lambda_{23}\lambda_{33}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{13}\lambda_{33}^{-1}\rangle - \lambda_{13})]\langle\varepsilon_{1}\rangle + \\ + [\lambda_{22} + \lambda_{23}\lambda_{33}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{23}\lambda_{33}^{-1}\rangle - \lambda_{23})]\langle\varepsilon_{2}\rangle + \lambda_{23}\lambda_{33}^{-1}\langle\lambda_{33}^{-1}\rangle\langle\varepsilon_{3}\rangle + \\ + 2[\lambda_{26} + \lambda_{23}\lambda_{33}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{36}\lambda_{33}^{-1}\rangle - \lambda_{36})]\langle\varepsilon_{12}\rangle - \\ - [\beta_{2} + \lambda_{23}\lambda_{33}^{-1}(\langle\lambda_{13}\lambda_{33}^{-1}\rangle - \lambda_{33}^{-1}\beta_{3}\rangle - \beta_{3})]\Delta T; \\ \sigma_{3} = \langle\lambda_{33}^{-1}\rangle^{-1}(\langle\lambda_{13}\lambda_{33}^{-1}\rangle + \langle\lambda_{23}\lambda_{33}^{-1}\rangle\langle\varepsilon_{2}\rangle + \langle\varepsilon_{3}\rangle + \\ + 2\langle\lambda_{36}\lambda_{33}^{-1}\rangle\langle\varepsilon_{12}\rangle - \langle\lambda_{33}^{-1}\beta_{3}\rangle\Delta T); \\ \sigma_{12} = [\lambda_{16} + \lambda_{36}\lambda_{33}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{23}\lambda_{33}^{-1}\rangle - \lambda_{23})]\langle\varepsilon_{2}\rangle + \lambda_{36}\lambda_{33}^{-1}\langle\varepsilon_{3}\rangle + \\ + [\lambda_{26} + \lambda_{36}\lambda_{33}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{23}\lambda_{33}^{-1}\rangle - \lambda_{23})]\langle\varepsilon_{2}\rangle + \lambda_{36}\lambda_{33}^{-1}\langle\varepsilon_{3}\rangle + \\ \end{cases}$$

Прогнозирование несущей способности

$$\begin{cases} +2[\lambda_{66} + \lambda_{36}\lambda_{33}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{36}\lambda_{33}^{-1}\rangle - \lambda_{36})]\langle\varepsilon_{12}\rangle - \\ -[\beta_{6} + \lambda_{36}\lambda_{33}^{-1}(\langle\lambda_{33}^{-1}\rangle^{-1}\langle\lambda_{33}^{-1}\beta_{3}\rangle - \beta_{3})]\Delta T; \\ \sigma_{13} = \frac{2}{\lambda_{2}^{2} - \lambda_{1}\lambda_{3}}(\lambda_{3}\langle\varepsilon_{13}\rangle + \lambda_{2}\langle\varepsilon_{23}\rangle); \\ \sigma_{23} = \frac{2}{\lambda_{2}^{2} - \lambda_{1}\lambda_{3}}(\lambda_{2}\langle\varepsilon_{13}\rangle + \lambda_{1}\langle\varepsilon_{23}\rangle), \end{cases}$$
(106)

где σ_1 , σ_2 , σ_3 , σ_{12} , σ_{13} , σ_{23} – напряжения в *k*-ом слое относительно глобальной системы координат, которая совпадает с осями ортотропии композита ($\sigma_1 = \sigma_x$, $\sigma_2 = \sigma_y$, $\sigma_3 = \sigma_z$).

В качестве примера рассмотрим вычисление распределения остаточных напряжений в слоях композита, который подвергается только температурному воздействию. Как следует из постановки задачи, при этом компоненты усредненных напряжений равны нулю:

$$\langle \sigma_1 \rangle = \langle \sigma_2 \rangle = \langle \sigma_3 \rangle = \dots = \langle \sigma_6 \rangle = 0.$$
 (11)

Тогда из соотношений (5) при условии (11) получим

$$\langle \varepsilon_1 \rangle = \overline{\alpha}_1 \Delta T; \quad \langle \varepsilon_2 \rangle = \overline{\alpha}_2 \Delta T; \quad \langle \varepsilon_3 \rangle = \overline{\alpha}_3 \Delta T.$$
 (12)

Остальные компоненты усредненных деформаций равны нулю.

Вычислив эффективные термомеханические параметры композита с использованием соотношений (6)–(9), с помощью формул (10) можно определить распределение термических напряжений в слоях. Результаты распределения локальных напряжений в слоистом углепластике $[90_6 / 0_{10}]$ в рамках моделей теории упругости неоднородных структур и классической теории слоистых пластин показаны на рис. 2.

Экспериментальные исследования термического деформирования композита приведены в [18]. При расчете использовали следующие значения термомеханических параметров слоя: $E_1 = 92,9$ ГПа; $E_2 = 6,2$ ГПа; $G_{12} = 1,61$ ГПа; $\nu_{12} = 0,296$; $\alpha_1 = -0,106 \cdot 10^{-6}$ K⁻¹; $\alpha_2 = 25,6 \cdot 10^{-6}$ K⁻¹ и $\Delta T = -91$ K.

Как видно из рис. 2, распределение локальных напряжений в слоях при использовании вышеуказанных подходов существенно различается как количественно, так и качественно. Лучшая корреляция с экспериментом наблюдается в случае теории упругости слоистых структур.

Аналогичные распределения остаточных термических напряжений в композите $[45/90_3/-45/\overline{0}_3]_s$ для термомеханических параметров слоя, приведенных в [14], показаны на рис. 3. Как и следовало ожидать, сдвиговые компоненты тензора напряжения для такого вида нагружения возникают только в слоях с направлением армирования $\theta = \pm 45^\circ$. Величины максимальных нормальных напряжений при T = 77 К более чем в два раза выше аналогичных параметров слоев, полученных при комнатной температуре.

Рис. 2. Распределение термических напряжений в слоях углепластика $[90_6 / 0_{10}]$ при температуре T = 297 К в рамках теории упругости неоднородных структур (*a*) и классической теории слоистых пластин (δ): 1, 2 – слои, армированные волокнами в направлениях $\theta = 0$ и 90°.

На рис. 4 приведено расчетное распределение напряжений в слоях без учета влияния температуры при действии распределенной нагрузки σ_0 в направлении оси 0x. В этом случае имеем

$$\langle \sigma_1 \rangle = \sigma_0; \quad \langle \sigma_2 \rangle = \langle \sigma_3 \rangle = \dots = \langle \sigma_6 \rangle = 0.$$
 (13)

Подставляя величины усредненных напряжений во второе соотношение (5), получаем

$$\langle \varepsilon_1 \rangle = \overline{A}_{11} \sigma_0; \quad \langle \varepsilon_2 \rangle = \overline{A}_{21} \sigma_0; \quad \langle \varepsilon_3 \rangle = \overline{A}_{31} \sigma_0.$$
 (14)

ISSN 0556-171Х. Проблемы прочности, 2008, № 2

20

Рис. 3. Распределение остаточных термических напряжений в слоях углепластика $[45/90_3/-45/\overline{0}_3]_s$ при температурах T = 297 К (*a*) и 77 К (*б*) в рамках теории упругости неоднородных структур. (Здесь и на рис. 4: 1, 2, 3, 4 – слои, армированные волокнами в направлениях $\theta = 0, 90, 45, -45^\circ$ соответственно.)

Остальные компоненты средних деформаций равны нулю. Для такого вида нагружения во всех слоях возникают нормальные напряжения σ_x и σ_y , а также сдвиговые напряжения σ_{xy} в слоях с направлением армирования $\theta = \pm 45^{\circ}$.

Видно, что при действии растягивающих усилий в композите возникают как положительные, так и отрицательные нормальные напряжения. Максимальной напряженностью характеризуются слои, армирование которых совпадает с направлением действующих усилий. Аналогично можно найти распределение напряжений в слоях для различных комбинаций $\langle \sigma_x \rangle$, $\langle \sigma_y \rangle$ и $\langle \sigma_{xy} \rangle$ [16], в том числе с учетом остаточных термических напряжений.

Рис. 4. Распределение безразмерных нормальных σ_x , σ_y и сдвиговых σ_{xy} напряжений в слоях углепластика $[45/90_3/-45/\overline{0}_3]_s$ при действии распределенной нагрузки σ_0 в направлении оси 0x при температуре T = 77 К (без учета термических напряжений).

Вычисленные с помощью соответствующего критерия прочности анизотропных сред распределения напряжений можно использовать для расчета прочности рассматриваемого конструктивного элемента.

Оценка прочности слоистых пластиков. Обзор различных критериев разрушения анизотропных материалов, их преимущества в отношении принятых ограничений и возможности описания процессов разрушения наиболее полно изложены в работах [4, 8, 9, 21–24]. Наибольшее распространение в инженерной практике при оценке прочности композитных систем получили тензорно-полиномиальные формы критерия разрушения [4, 8, 9].

Большинство существующих методов построения предельных поверхностей разрушения основаны на представлении слоистого композита в виде составного анизотропного материала. Для их определения используют свойства слоя, критерий слоя, а также теорию слоистых сред, позволяющую осуществить переход от усредненных напряжений и деформаций к локальным.

В настоящее время разрабатываются подходы, с помощью которых можно оценить прочность не отдельных слоев, а слоистого композита в целом, например критерии Пуппо–Эвенсена или Ву–Шойблейна [4, 23] и др. Недостатками этих критериев являются сложность получения исходной информации и невозможность их использования для композитов с другими схемами укладки слоев.

В практических расчетах используются также другие простые критерии предельного состояния, которые не обладают общностью тензорно-полиномиального критерия, но имеют некоторые иные преимущества. Это критерии максимальных напряжений и максимальных деформаций, обычно применяемые в случае плоского напряженного состояния. Критерий максимальных напряжений имеет вид

Прогнозирование несущей способности ...

$$\sigma_{-1} \le \sigma_1 \le \sigma_{+1}; \quad \sigma_{-2} \le \sigma_2 \le \sigma_{+2}; \quad \sigma_{12}^- \le \sigma_{12} \le \sigma_{12}^+.$$
 (15)

Если достигается хотя бы одно равенство во всех слоях структуры, то материал считается разрушенным.

Воспользуемся этим критерием для оценки прочности композита в рамках упрощенной модели [8] и подходов, учитывающих распределение локальных напряжений в рамках модели классической теории слоистых пластин и теории упругости неоднородных структур. Результаты таких расчетов представлены в таблице. Как видно из данных таблицы, максимальная погрешность при определении разрушающих напряжений композита на основе использования представленных распределений напряжений (рис. 3, 4) при T = 77 К не превышает 1,7%, при комнатной температуре – 1,0%. Такое хорошее совпадение расчетных данных с экспериментальными обусловлено в первую очередь высокой достоверностью исходных параметров слоя, тщательно проведенными экспериментами по определению несущей способности композита и отработанной технологией его изготовления. При этом нет необходимости проводить другие расчеты несущей способности материала, в том числе исходя из прочности наиболее слабого звена [4, 16, 23], хотя проблема растрескивания в наиболее слабых слоях при деформировании композита оказывает существенное влияние на его усталостную прочность.

Экспериментальные и расчетные значения эффективных разрушающих напряжений композита при действии распределенной нагрузки σ_0 в направлении оси 0x при T = 77 и 297 К

Т,К	$\left\langle \sigma_{ m эксп} ight angle .$ МПа	(<i>о</i>), МПа,по упрощен-	Прогнозируемое разрушающее напряжение композита $\langle \sigma_x \rangle$, МПа	
		ной модели [8]	Классическая теория	Теория упругости
297	711	699	<u>1142</u> 1155	<u>652</u> 699
77*	585	699	$\frac{1142}{1187}$	<u>652</u> 811
77	585	461	$\frac{762}{805}$	$\frac{433}{591}$

Примечания. 1. Звездочкой обозначено, что при расчете разрушающих напряжений композита использовали термомеханические характеристики слоя, определенные экспериментально при комнатной температуре. 2. Над чертой приведены данные, полученные без учета термических напряжений, под чертой – с учетом термических напряжений.

Заключение. Наиболее корректное прогнозирование несущей способности слоистых пластиков при низких и криогенных температурах исходя из критерия слоя возможно на основе зависимостей механических параметров материала от температуры и учета существенных температурных напряжений композиции. В рамках упругих моделей расчетное распределение напряжений в слоях лучше согласуется с экспериментальным при использовании теории упругости неоднородных структур.

Резюме

Аналізуються методики прогнозування несучої здатності шаруватих композитів, що армовані односпрямованими високоміцними волокнами, за кімнатної та кріогенної температур. Показано, що найкраща кореляція між розрахунковими і експериментальними даними має місце при врахуванні залежності ефективних механічних параметрів шарів від температури в рамках теорії пружності шаруватих неоднорідних тіл.

- 1. Лотоцкая В. А., Похил Ю. А., Телегон А. И., Дергун С. М. Прочность и пластичность металлических и неметаллических композитов криогенного и аэрокосмического назначения // Пробл. прочности. – 2005. – № 5. – С. 93 – 103.
- Konyukhov S. N. Applied mechanics problems accompanying spacecraft launches from a floating platform and their resolution by the sea launch progect // Int. Appl. Mech. – 2004. – 40, No. 2. – P. 115 – 139.
- 3. *Кива Д. С.* Решение проблем прикладной механики при создании транспортных самолетов "АН" // Прикл. механика. – 2006. – **42**, № 10. – С. 3 – 11.
- Композиционные материалы: В 8 т. / Под ред. Л. Браутмана, Р. Крока. Т. 2. Механика композиционных материалов / Под ред. Дж. Сендецки. – М.: Мир, 1978. – 564 с.
- 5. Ванин Г. А. Микромеханика композиционных материалов. Киев: Наук. думка, 1985. 304 с.
- Механика композитов: В 12 т. / Под ред. А. Н. Гузя. Т. 3. Статистическая механика и эффективные свойства материалов / Под ред. Л. П. Хорошуна. – Киев: Наук. думка, 1993. – 390 с.
- 7. *Марченко В. А., Хруслов Е. Я.* Усредненные модели микронеоднородных сред. Киев: Наук. думка, 2005. 551 с.
- 8. Справочник по композиционным материалам: В 2 кн. Кн. 2 / Под ред. Дж. Любина. М.: Машиностроение, 1988. 584 с.
- 9. Композиционные материалы. Справочник / Под общ. ред. В. В. Васильева и Ю. М. Тарнопольского. М.: Машиностроение, 1990. 310 с.
- 10. Perepechko I. I. Low-Temperature Properties of Polymers. New York: Pergamon Press, 1980. 300 p.
- 11. Schutz J. B. Properties of composite materials for cryogenic applications // Gryogenics. 1998. **38**, No. 1. P. 3 12.
- Qu X. S., Haftka R. T., Venkataraman S., and Jonson T. F. Deterministic and reliability-based optimization of composite laminates for cryogenic environments // AIAA J. – 2003. – 41, No. 10. – P. 2029 – 2036.
- 13. *Hui D. and Dutta P. K.* Cryogenic temperature effects on performance of polymer composites. http://www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/ 20040084029-2004085941.pdf.

- Gates T. S., Whitley K. S., Grenoble R. W., and Bandoravalla T. Thermal/ mechanical durability of polymer-matrix composites in cryogenic environments: 44th Annual AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics (Norfolk, VA, April 7–10, 2003) // AIAA. – 2003. – N7408.
- Kucher N. K., Zemtsov M. P., and Zarazovskii M. N. Deformation behaviour and strength of unidirectional carbon fiber laminates // Mech. Comp. Mater. - 2006. - 42, No. 5. - P. 407 - 418.
- Кучер Н. К., Заразовский М. Н. Оценка прочности эпоксикарбоволокнитов, армированных однонаправленными волокнами // Пробл. прочности. – 2006. – № 6. – С. 95 – 112.
- Crastro A. S. and Kim R. Y. On the determination of residual stresses in fiber reinforced thermoset composites // J. Reinforced Plast. Compos. – 1993. – 12, No. 5. – P. 545 – 558.
- Shokrieh M. M. and Kamali S. M. Theoretical and experimental studies on residual stresses in laminated polymer composites // J. Comp. Mater. – 2005. – 39, No. 24. – P. 2213 – 2225.
- 19. Алфутов Н. А., Зиновьев П. А., Попов Б. Г. Расчет многослойных пластин и оболочек из композиционных материалов. М.: Машиностроение, 1984. – 264 с.
- 20. Амбарцумян С. А. Общая теория анизотропных оболочек. М.: Наука, 1974. 448 с.
- 21. *Пискунов В. Г., Рассказов А. О.* Развитие теории слоистых пластин и оболочек // Прикл. механика. 2002. **38**, № 2. С. 22 57.
- Пискунов В. Г. Итерационная аналитическая теория в механике слоистых композитных систем // Механика композитных материалов. 2003.
 39, № 1. С. 3 24.
- 23. *Разрушение*: В 7 т. / Под ред. Г. Либовица. Т. 7. Разрушение неметаллов и композитных материалов. Ч. 1. Неорганические материалы. М.: Мир, 1976. 634 с.
- 24. Малмейстер А. К., Тамуж В. П., Тетерс Г. А. Сопротивление полимерных и композитных материалов. – Рига: Зинатне, 1980. – 572 с.

Поступила 19. 04. 2007