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Ab initio density functional calculations are performed to investigate the ideal shear deformation o f  
SiC poly types (3C, 2H, 4H, and 6H). The deformation o f  the cubic and the hexagonal poly types in 
small strain region can be well represented by the elastic properties o f  component Si4C- 
tetrahedrons. The stacking pattern in the polytypes affects strain localization, which is correlated 
with the generalized stacking fault (GSF) energy profile o f  each shuffle-set plane, and the ideal 
shear strength. Compressive hydrostatic stress decreases the ideal shear strength, which is in 
contrast with the behavior o f  metals.
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In trod u ction . S ilicon  carbide (SiC) p ossesses prominent properties such as high  
m echanical strength, chem ical stability and large band gap energy, and has been w idely  
used as thermal and m echanical functional material, electrom agnetic functional material, 
etc. D etailed  investigations in  atom istic and electronic level are required for SiC crystals 
because they have a variety o f  polytype structures characterized by stacking sequence [ 1], 
w hich  contributes to their interesting m echanical properties. Thus, w ith the aim to 
elucidate its m echanical deform ation behavior, not on ly  experim ental studies but also 
theoretical approach such as atom istic m odeling have been  carried out [2]. A b initio  (first 
principles) calculations have also been performed [3 -5 ] to g ive  reliable theoretical 
insights to the m echanical properties o f  SiC around the equilibrium state. H ow ever, the 
investigations o f  the m echanical properties around h igh ly  strained conditions are 
indispensable for understanding o f  deform ation behavior o f  crystals. A lthough ab initio 
investigations o f  the tensile properties o f  3C (/3)-SiC  by  L i and W ang [6 ] and o f  the shear 
by Ogata et al. [7] have brought som e interesting results, this issue deserves further 
studies. In particular, it is important to theoretically evaluate the ultimate strength under 
ideal shear deform ation o f  polytypes, w hich  is relevant to the critical shear stress at the 
onset o f  d islocation nucleation from a pristine crystal, to understand the p lasticity in  the 
atom istic scale. M oreover, the response o f  the ideal shear strength to com pressive stresses 
is worth investigating because local lattice configurations m ay receive shear deform ation  
in  com bination w ith normal stresses in  experim ents, nam ely nanoindentation.

Since the m echanical behavior at atom ic scale is strongly correlated w ith the 
electronic nature and it is difficult for empirical interatomic potentials to correctly  
represent various properties aw ay from the equilibrium state, it is important to study the 
m echanical deform ation by  atom istic and electronic m odeling, nam ely the ab  initio  
m ethodology.
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Ab Initio DFT Study o f  Ideal Shear Strength

In this study, w e perform ab  initio  calculations based on the density functional 
theory (D FT) to investigate the ideal shear deform ation o f  SiC polytypes (3C, 2H, 4H, 
and 6H) w ith  the aim to provide fundamental know ledge about the m echanical properties 
o f  the crystals including their behavior under h igh ly  sheared strain conditions and the 
ideal strength, focusing on the effect o f  the intrinsic polytype structure on the strain 
localization  and the ideal strength. We further explore the effect o f  hydrostatic pressure on 
the ideal strength.

S tru ctu re  o f  S iC  P olytyp es. SiC consists o f  tetrahedrons w here vertices are 
occupied  by  silicon  atom s w ith carbons located in the center o f  gravity. The crystal 
p ossesses various structures (SiC polytypes) w ith  different stacking sequence, w hich  are 
denoted in  R am sdel’s notation as nX , w here n is the number o f  layers along the c-axis 
per periodic cycle  and X  is the identifier o f  crystal structure (C: Cubic and H: 
H exagonal). Figure 1 depicts the structures o f  3C, 2H, 4H, and 6H polytypes. In this 
study, shear deform ation on the c-plane, w hich  is ( 111) in  cubic structure and (0001 ) in 
hexagonal, is studied because it is associated w ith  an important slip system  o f  SiC. A s is 
schem atically delineated in  Fig. 2, cubic (3C) and hexagonal (2H , 4H, 6H, ...) crystals 
have different symmetry in shear deformation due to the stacking structure [8 ]. Concerning 
shear on the c-plane, 3 C -S iC  has three-fold sym m etry resulting in  different geom etrical 
configurations betw een shear deform ations in and its opposite direction([121]). On the 
other hand, hexagonal polytypes have six-fo ld  sym m etry in  shear deform ation on (0001 ) 
plane because their stacking consists o f  Si4C-tetrahedrons facing opposite directions. The 
shear deform ations in  a direction and its opposite (e.g ., [0 1 1  0] and [0  1 10]) are therefore 
identical in  hexagonal polytypes.
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Fig. 1. Schematics o f stacking sequence o f SiC polytypes.

S im u lation  P rocedure. We performed ab  initio  DFT calculations based on the 
projector augm ented w ave (PAW) m ethod w ithin the framework o f  generalized gradient 
approxim ation (G G A ) using the V ienna A b Initio Sim ulation Package VASP [9, 10]. The 
plane-w ave cu to ff energy w as set to 500 eV  and the PW 91-G G A  functional [11] was 
adopted.

In the setup the x, y , and z  axes are in  [ 0 1 1 0]([ 1 2 1  ]), [2 1 1 0 ]( 101), and
[0001]([111]), respectively. Shear deform ation under zero and nonzero hydrostatic stress 
is sim ulated as follow s: A fter finding equilibrium lattice parameters o f  undeform ed  
crystals by  energy minimization under the hydrostatic stress o  h , shear deformation y zx is 
applied to each sim ulation ce ll w here atom ic configuration are relaxed until all the forces 
are b elow  0.005 eV /A  and normal strains o f  the ce ll are adjusted so that normal stress 
com ponents are w ithin ± 1 0 0  M Pa from predeterm ined o  h .
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Fig. 2. Schematics o f symmetry in shear deformation o f 3C and hexagonal SiC crystals.

R esu lts and  D iscu ssion . Stress-S tra in  R elationship. Figure 3 show s stress-strain  
relationships o f  the cubic and hexagonal polytypes (3C, 2H, 4H, and 6H) obtained by  the 
ab  initio  calculations. The curve o f  3C differs from those o f  the hexagonal polytypes 
because o f  the difference in  the stacking structure, w hich  is explained in m ore detail in 
[8 ]. A lthough the stress-strain relations up to y =  0.2 are alm ost identical betw een the 
hexagonal polytypes, the polytype structure affects the deform ation behavior at higher 
strains and thus the ideal strength; the m axim um  stress o f  2H  is the highest and o f  6H the 
low est. We find nontrivial effect o f  the structure o f  polytypes on the ideal strength r is; 
i.e ., r is o f  6H (29.83 GPa) is about 10% low er than that o f  2H  (32 .97  GPa). This is 
ob viously  due to the stacking pattern (structure) affecting the m echanical properties, 
w hich  w ill be d iscussed  later on. The ideal strength o f  3C -S iC  obtained here, 30.3 GPa, 
com pares w ell w ith the value evaluated by  the loca l density approxim ation (L D A ) by  
Ogata (29.5 GPa [12]).
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Fig. 3. Stress-strain curves o f SiC polytypes.

The ideal (theoretical) shear strength can be correlated w ith the critical shear 
strength o f  d islocation nucleation in  a pure crystal. For exam ple, Bahr et al. [13] 
demonstrated in their study o f  nanoindentation o f  tungsten and iron single crystals that the 
m axim um  shear stress required for d islocation nucleation show s an excellent agreement 
w ith the theoretical shear strength. Ohta et al. [14] devised  a sophisticated experimental 
procedure to evaluate the critical shear stress for dislocation nucleation in silicon, w hich  
also com pares w ell w ith  the theoretical strength [15]. To the best or our know ledge, there 
has been no experim ental w ork extracting the critical shear stress for dislocation  
nucleation in SiC , but w e believe that the value w e obtained in this study m ust be a good  
prediction. Experimental evaluation o f  the critical shear stress for d islocation nucleation  
in S iC  is h igh ly  desirable although it can be dem anding due to the requirement o f  special 
techniques such as preparation o f  specim ens w ith an ideal shape.
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N orm al Strains an d  Volume. C hanges in  normal strains and volum e o f  the SiC 
polytypes during shear deform ation are presented in  Fig. 4. The hexagonal polytypes 
show  nearly the sam e evolution o f  normal strains w ith  increasing shear strain. In SiC(3C) 
the evolution o f  normal strains is different and changes in £ xx and £ yy are more obvious 
than in the hexagonal polytypes; the former decreases and the latter increases as the shear 
strain grow s. R elative volum e, V/V0 =  (1 + £ xx )(1 + £  yy )(1 + £  ^  ), how ever, changes 
sim ilarly both in 3C and the hexagonal polytypes; i.e ., the volum e decreases w ith  
increasing shear strain.

0.1

0.05

0 ,

■3
E -0.05

- 0.1

-0.15

by
S im c ;
SiC{2K
SiC(4H)
SiC(6H)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
Shear strain y7I

1.1

1 . 0 5

§
ci
E

IT 0.95

0.9

S i C ( 3 C ) +

S i C ( 2 H j X

S i C ( 4 H ) 0

. S i C ( 6 H ) A

0.1 0.2 0.3 0.4 0.5 
Shear strain y71[

b

Fig. 4. Changes in normal strains (a) and volume during shear o f SiC polytypes (b).

Strain L ocaliza tion . To investigate the deform ation o f  each SUC -tetrahedron lattice, 
w e now  show  in  Fig. 5a the “bond shear strain,” y b , representing deform ation o f  each 
atom ic bond as in the schem atic. In the hexagonal polytypes y b differs depending on the 
layer, signifying that bonds o f  specific layers deform  more than the others. This is 
analogous to non-uniform  deform ation or strain localization  in  inhom ogeneous materials 
(structure). U nlike 3C, inhom ogeneous stacking structure intrinsically existing in  the 
hexagonal polytypes causes the strain localization, w hich  affects the ideal strength.

The strain localization  show s deviation from the intuitive picture o f  the deform ation  
that lattices A, B, and C  are ‘softer’ and A ', B ', and C ' are ‘stiffer’. In 6H -S iC , w hile  
lattices A  and B  accom m odate large and alm ost identical bond shear strain, lattice C  show s 
a sm all deform ation and its bond shear strain is even  sm aller than that o f  C '. This im plies 
that the deform ability o f  the bond is affected b y  the stacking discontinuity betw een  
lattices C  and B ' (C ' and A); i.e ., lattice C  is stiffened by  the overlaying lattice B ' (and 
similarly, C ' is softened by  A). This effect is seen  in  the other hexagonal polytypes as w ell.

The difference in deform ation among the layers can be explained by  the generalized  
stacking fault (G SF) energy o f  the shuffle-set layers show n in  Fig. 5b. Here, the lattice 
over a shuffle-set plane is rigidly shifted along the x  direction w ithout atomic relaxation  
w hile the lattice b elow  is fixed, and the energy increase as a function o f  the rigid shift is 
evaluated (see the schem atic in the figure).

The profile o f  GSF energy depends on the layer, m eaning that the bond in  each layer 
has different “deform ability.” The layer show ing low er peak in  0 <  x s <  1 has a higher 
deformability, w hich  corresponds to strain localization  found in  Fig. 5a. The GSF energy 
profile supports the above-m entioned hypothesis o f  the m echanism  that the deform ability  
o f  the bond in  question is affected by  the stacking discontinuity. The GSF energy 
landscape can be a profile representing the deform ability o f  each bond subject to shear 
although it does not incorporate the effect o f  atom istic relaxation.
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Fig. 5. (a) Evolution o f bond shear strain, y b. A, B, C and those with a prime denote the 
tetrahedrons as depicted in Fig. 1. (b) GSF energy landscape o f 2H and 4H with a shuffle set being 
rigidly shifted along the x direction. The abscissa is the shift displacement normalized with respect 
to the lattice width, xs =  xdj X .

E ffect o f  P ressure. Figure 6 compares the ideal shear strengths o f  the polytypes 
under zero and nonzero hydrostatic com pression. In the figure, both the abscissa and the 
ordinate are norm alized b y  r  0s , the ideal shear strength under no com pression. 

Hydrostatic com pression significantly decreases the ideal strength in  all the hexagonal 
polytypes studied here. The response o f  the ideal shear strength to com pression can be 
explained b y  the volum e change during shear; i.e ., the system s contract as the shear strain 
grow s and the com pressive normal stress helps the shear deform ation. This phenom enon  
is in  contrast w ith the properties o f  m etals, where, in general, the ideal shear strength 
increases under com pressive pressure [16, 17].
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Fig. 6 . Ideal shear strength as a function hydrostatic stress. Both abscissa and ordinate are 
normalized by r is (the ideal shear strength at Oh =  0).
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It w as demonstrated by Krenn et al. [18] that the effect o f  com pressive stress to the 
shear strength is important in  the interpretation o f  the critical stress for plastic deform ation  
found in nanoindentation experim ents, because the contribution o f  normal stress 
com ponents can change the ideal strength in  shear. Therefore, our finding here is crucial 
as it show s that the effect o f  com pressive stress to the shear strength o f  covalent system  
can be different even qualitatively from that o f  m etals. A s it has been pointed out, the 
relation betw een shear and normal stresses exhibits a strong anisotropic character [16] and 
dependence on atom species [17]. Further extensive studies for various crystals and stress 
conditions w ill be necessary to elucidate its m echanism .

C on clusions. We have investigated the ideal shear deform ation o f  SiC polytypes 
(3C, 2H, 4H and 6H) by  m eans o f  ab initio  DFT calculations based on the generalized  
gradient approximation. The variety o f  the stacking pattern in the polytypes causes strain 
localization, w hich  is correlated w ith  the GSF energy profile o f  each shuffle-set plane, and 
difference in  the ideal shear strength. We also exam ined the effect o f  hydrostatic 
com pression to the shear deform ation to reveal that the com pressive stress decreases the 
ideal shear strength in all the polytypes studied here, w hich  is in contrast to m etals, where 
in  general the ideal shear strength is increased by  com pression. More extensive studies 
w ill be required to elucidate the m echanism  o f  the effect o f  the normal stress because it 
can be h ighly anisotropic and susceptible to the interatomic bonds o f  the atom species
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