УДК 539.2

Вплив імпульсної деформації на перерозподіл компонентів і механічні властивості на поверхні і в об'ємі зварних швів пластин алюмінієвого сплаву 2024 ТЗ-51

О. Е. Засимчук, В. Ф. Мазанко, Р. Г. Гонтарева, Л. В. Тарасенко

Інститут металофізики ім. Г. В. Курдюмова НАН України, Київ, Україна

Проведено дюрометричні та рентгенографічні дослідження зварних швів у зразках сплаву 2024 Т3-51 після імпульсного навантаження за різних температур. Встановлено параметри найбільш перспективної деформаційної обробки, а також підтверджено роль гідродинамічної пластичної течії у формуванні контрольованих структур і механічних властивостей.

Ключові слова: алюмінієві сплави, зварні з'єднання, деформація ударом, мікротвердість, фазовий склад, гідродинамічна пластична течія.

Вступ. Добре відомо, що процес зварювання матеріалу в твердому стані може викликати значну неоднорідність його структури і механічних властивостей в ділянці впливу зварного шва. Це особливо стосується процесу зварювання хімічно- і фазово-неоднорідних матеріалів, наприклад авіаційних сплавів на основі алюмінію. Термомеханічна обробка цих матеріалів супроводжується виділенням із твердого розчину ряду інтерметалідних фаз, від розміру і розпаду яких залежать важливі властивості сплаву. Проведення процедури зварювання, що зумовлює підвищення температури в зоні контакту і механічного впливу на матеріал у цій зоні, може викликати значну зміну в розподілі і розмірах часток зміцнюючих фаз, що, безумовно, впливає на властивості матеріалу. Тому важливою є спроба зменшити неоднорідність властивостей матеріалу в зоні зварного шва шляхом додаткових механічних обробок, що не впливає на формозмінення матеріалу.

Раніше [1–5] було показано, що гідродинамічній течії при пластичній деформації кристалічних матеріалів передує локальна аморфізація кристала, внаслідок чого формуються канали з рідиноподібною фазою, по яких навіть достатньо великі частинки (до декількох мікрон) можуть рухатися з дуже великою швидкістю. Ефективність цього явища значно зростає при збільшенні швидкості деформації. Останнє зумовлено тим, що при великій швидкості навантаження не встигають відбутися релаксаційні процеси (кристалізація) в каналах із рідиноподібною структурою, в той час як при повільній деформації кристалізація в гідродинамічних каналах відбувається в процесі навантаження. Таким чином, мета дослідження – віднайти можливість впливу на фазовий склад у зоні зварного шва шляхом деформаційного втручання.

Матеріал і методика досліджень. Об'єктом дослідження слугували зварені шляхом тертя пластини складнолегованого сплаву на основі алюмінію 2024 ТЗ-51 (аналог сплаву Д16) з головними домішками, %: 4,6 Cu; 1,5 Mg; 0,7 Mn; 0,4 Ti; основа Al.

Зразки для дослідження виготовляли таким чином, щоб ділянка зварного шва знаходилася в його середній частині. Деформаційне навантаження зразків проводили такими способами: удар; ультразвукове опромінення (УЗО),

[©] О. Є. ЗАСИМЧУК, В. Ф. МАЗАНКО, Р. Г. ГОНТАРЄВА, Л. В. ТАРАСЕНКО, 2007 128 ISSN 0556-171X. Проблемы прочности, 2007, № 4

18 кГц, 20 хв; прокатка (один прохід із деформацією 4...11% за кімнатної температури).

Ударне навантаження виконували на вертикальному копрі шляхом вільного падіння вантажу. Маса вантажу і швидкість падіння забезпечували необхідну енергію, що витрачається на деформацію зразка. Експеримент проводили як за кімнатної температури, так і при нагріванні зразка за допомогою електронно-променевого нагрівача. Для рівномірного нагрівання електронний промінь обертався зі швидкістю від 10^{-2} до 10^3 Гц.

Загальний час експерименту складав: $t = t_1 + t_2 + t_3 + t_4$, де t_1 – час попереднього прогрівання зразка до температури експерименту (не перевищує 2 хв); t_2 – час витримки при температурі експерименту у відсутності навантаження (1...2 хв); t_3 – час прикладення динамічного навантаження (тривалість процесу пластичної деформації, яка дорівнює 10^{-2} ... 10^{-3} с); t_4 – час охолодження зразка (декілька секунд).

Швидкість пластичної деформації розраховували за формулою $\dot{\varepsilon} = (\Delta h/h_0)/t_3$, де Δh – зміна висоти зразка внаслідок навантаження; h_0 – початкова висота зразка.

Після навантаження досліджували структуру і властивості зразків. При цьому використовували метод вимірювання мікротвердості уздовж деформованої пластини (на двох протилежних поверхнях і на зрізі, це давало можливість судити про стан матеріалу в об'ємі пластини) та рентгеноструктурний фазовий аналіз із використанням графітового монохроматора (Си– K_{α} -випромінювання).

Мікротвердість вимірювали на мікротвердомірі ПМТ-3 при навантаженні 100 г, при цьому зварний шов знаходився в середині пластини. Слід відмітити, що на двох протилежних поверхнях розміри зони зварного шва були різними. В табл. 1 буквою "Ш" позначено поверхню зразка з більш широкою зоною зварного шва, буквою "В" – відповідно поверхню з вужчою зоною зварного шва. Там же наведено умови навантаження досліджуваних зразків.

№ зразка	Ділянка обробки	Тип наванта- ження	Темпе- ратура, °С	Вантаж, кг	Висота падіння вантажу, м	Кількість ударів (проходів)	Ступінь дефор- мації, %
0	Поверхня	Удар	60	40,0	1,7	10	6,0
1	Зріз	»	20	42,5	1,7	1	44,0
2	»	УЗО	20	-	-	-	0
3	»	Удар	250	42,5	1,7	10	2,0
4-1	Поверхня (Ш)	»	20	26,0	1,7	10	5,8
4-2	Поверхня (В)	»	20	26,0	1,7	10	5,8
5-1	Поверхня (Ш)	Прокатка	20	-	-	1	4,0
5-2	Поверхня (В)	»	20	_	_	1	4,0

Таблиця	Т	аб	Л	И	Ц	Я	1
---------	---	----	---	---	---	---	---

Умови навантаження зразків

Експериментальні дані та їх аналіз. На рис. 1 показано розподіл значень мікротвердості на поверхні звареної пластини у вихідному стані. Розташування центру зварного шва відповідає точці № 65, точкам із №№ 0 і 125 – значення мікротвердості поза зоною впливу зварного шва (рис. 1).

Рис. 1. Розподіл значень мікротвердості на поверхні із широкою зоною зварного шва при випробуванні зразка у вихідному стані. (Тут і на рис. 2–5 на осі абсцис указано номери точок вимірювання по зразку упоперек шва. Відстань між точками вимірювання дорівнює 0,3 мм.)

Мікротвердість у зоні впливу зварного шва досить неоднорідна, має дві майже симетричні зони з мінімальною мікротвердістю з обох боків від зварного шва, так звані "м'які" зони.

На рис. 2 наведено дані вимірювання мікротвердості на поверхні звареної пластини у вихідному стані і після навантаження ударом (табл. 1). Порівнюючи рис. 1 і 2,a, можна зробити висновок, що вони відрізняються лише значеннями мікротвердості в зоні зварного шва, в той час як навантаження ударом (рис. $2,\delta$) призводить до значних коливань мікротвердості навіть в зоні зварного шва.

Рис. 2. Розподіл значень мікротвердості при випробуванні зразка № 0 (табл. 1) на поверхні із широкою зоною зварного шва: *а* – вихідний стан; *б* – після навантаження ударом.

У порівнянні з вихідним станом після навантаження ударом можна відмітити зміцнення матеріалу у всіх зонах.

На рис. 3,*а* показано розподіл значень мікротвердості для зразка № 1 (табл. 1). Вплив ультразвукового опромінення ілюструє рис. 3,*б* (зразок № 2). Як і в попередньому випадку, вимірювання мікротвердості проводили на зрізі зразка з метою визначення розподілу цієї механічної характеристики у його внутрішньому об'ємі.

На рис. 4,*а* представлено розподіл значень мікротвердості на зрізі зразка № 3 (табл. 1) при навантаженні за температури 250°С.

Рис. 3. Розподіл значень мікротвердості для зразків № 1 (а) і № 2 (б) – табл. 1.

Рис. 4. Розподіл значень мікротвердості для зразків № 3 (а) і № 4-1 (б).

Вплив прокатки на механічні властивості звареного зразка ілюструє рис. 5. Аналіз наведених на рис. 1–5 результатів розподілу мікротвердості в зварених пластинах багатокомпонентного сплаву на основі алюмінію 2024 ТЗ-51 після механічного навантаження за режимами, наведеними в табл. 1, показав.

• У вихідному стані для звареної пластини характерна макроскопічна неоднорідність механічних властивостей. Цю неоднорідність можна харак-

теризувати наявністю чотирьох зон: 1 – зона зварного шва; 2 – м'яка зона (по обидва боки від зварного шва); 3 – зона так званого термічного впливу; 4 – вихідний метал (мікротвердість сплаву до початку процесу зварювання). Із врахуванням фазової і хімічної неоднорідності сплаву можно припустити, що неоднорідність механічних властивостей звареної пластини зумовлена зміною фазового складу та розміру надлишкових фаз у процесі зварювання.

Рис. 5. Розподіл значень мікротвердості на поверхні зразка № 5-1 (табл. 1).

• При порівнянні рис. 1 і 4,*a* бачимо, що мікротвердість несуттєво зростає у всіх зонах звареної пластини (температура удару 20°С). У той же час при незначному підвищенні температури (до 60°С) і збільшенні навантаження від 26 до 40 кГ коливання значень мікротвердості відмічаються лише в зоні зварного шва; зміцнення або знеміцнення матеріалу у всіх зонах відсут- нє (рис. 2).

• Дослідження мікротвердості на зрізі дає уявлення про розподіл механічних властивостей у внутрішніх об'ємах зразка. Із цієї точки зору дуже цікавим є результат дії одного удару за кімнатної температури (рис. 3,*a*), що призвело до значної деформації (44%) і до повністю однорідного знеміцненого стану матеріалу. У той же час навантаження десятьма ударами за температури 250°C призводить до деформації всього 2% і до збереження неоднорідного за механічними властивостями на зрізі стану матеріалу (рис. 4,*a*). Причина такої різниці в деформації зумовлена зміною фазового складу матеріалу в ділянці зварювання.

• Прокатка (рис. 5) і ультразвукове опромінення (рис. 3,б) не викликали суттєвих змін у розподілі механічних властивостей матеріалу.

Значно зміцнити ділянку зварного шва зі збереженням неоднорідності розподілу мікротвердості вдалося при використанні режиму обробки зразка № 4 (десять ударів із мінімальним навантаженням за кімнатної температури).

Якісний фазовий аналіз показав наявність у зварених зразках окрім твердого розчину на основі алюмінію двох фаз: Al₂CuMg i CuAl₂. Отримані дані наведено в табл. 2 і 3.

№ зразка	<i>d</i> , нм	<i>S</i> , см ²	В, рад			
Вихідний	0,208	3,5	0,0152			
0	0,207	3,0	0,0145			
1	0,200	5,0	0,0174			
2	0,209	5,2	0,0151			
3	0,210	6,0	0,0174			
4	0,208	2,5	0,0121			

Наявність і кількість фази СиАІ, в леформованих зразках

Примітка. Тут і в табл. 3–5: *d* – міжплощинна відстань; *S* – сумарна площина дифракційної лінії; *B* – напівширина дифракційної лінії (400).

11a/bin	тальнеть т калькеть физи тизечних в деформованих зразках					
№ зразка	<i>d</i> , нм, при 2 <i>θ</i> ~ 25°	<i>S</i> , см ²	<i>В</i> , рад			
Вихідний	0,355	1,00	0,0087			
0	0,353	4,00	0,0129			
1	0,355	6,00	0,0174			
2	0,355	4,00	0,0145			
3	0,355	4,50	0,0261			
4	0.355	0.35	0.0087			

Таблиця З

Таблиця 2

Наявність і кількість фази Al₂CuMg в деформованих зразках

У зразку № 5 фаза CuAl₂ рентгенографічно не фіксується. Враховуючи незначну кількість у сплаві 2024 ТЗ-51 інтерметалідних фаз CuAl₂ і Al₂CuMg, для характеристики їх наявності у зварених і деформованих зразках використовувався брегтівський кут відображення найбільш інтенсивних рефлексів цих фаз на дифрактограмі зразка, що давало змогу оцінити міжплощинну відстань d за рівнянням Вульфа–Брегта.

Відносна кількість фази оцінювалася приблизно як величина, пропорційна інтегральній інтенсивності дифракційної лінії, тобто сумарній площі цієї лінії *S*. Параметр *B* давав уявлення про наявність мікронапруг у частках фази, що розглядаються.

Механічні властивості (мікротвердість) кожної ділянки звареного зразка є складною функцією декількох параметрів: ступеня деформаційного зміцнення, який залежить від величини і температури деформації; зміни концентрації твердого розчину внаслідок розчинення чи виділення надлишкових фаз; зміцнення за рахунок дисперсності часток, що виділяються з твердого розчину; знеміцнення шляхом коагуляції часток надлишкових фаз.

У процесі навантаження всі ці фактори діють одночасно, що створює малопрогнозовану ситуацію. Враховуючи дуже малий час навантаження (див. вище) і практично відсутню дифузію домішок при досить низьких температурах, зміни фазового складу можуть відбуватися лише завдяки переносу маси по каналах гідродинамічної течії.

О. Е. Засимчук, В. Ф. Мазанко, Р. Г. Гонтарева, Л. В. Тарасенко

Найбільший інтерес для практичного втілення імпульсної механічної обробки становить результат, отриманий при використанні режиму обробки зразка № 1 (табл. 1 і рис. 3,а). Досить значна деформація зразка за час одного удару (~ 10^{-3} c) за кімнатної температури дає можливість припустити, що релаксаційні процеси в каналах гідродинамічної течії під час деформації не відбувалися, і канали мали рідиноподібну структуру, що сприяло швидкому переносу маси. Внаслідок цього процесу з пересиченого твердого розчину мали виділятися домішки Cu і Mg, які формували інтерметалідні фази Al₂CuMg і CuAl₂. Про це свідчать дані, що наведені в табл. 2 і 3: параметр S фази Al₂CuMg у порівнянні з вихідним станом зростає в шість разів, фази CuAl₂ – у 1,5. Таким чином, збільшення у сплаві сумарної кількості головним чином фази Al₂CuMg за рахунок виділення з твердого розчину Cu і Mg сприяє зменшенню механічної макронеоднорідності й одночасно суттєвому знеміцненню матеріалу зварного шва. Привертає увагу також незначне збільшення параметра В для обох фаз у порівнянні з вихідним станом. Це говорить про те, що їх дисперсність майже однакова.

Аналіз впливу підвищення температури навантаження на розподіл мікротвердості і фазовий склад зварених зразків (на рис. 2 зразок № 0) показав, що незначне її підвищення і збільшення кількості ударів не дали бажаного ефекту однорідності мікротвердості, але привели до зменшення сумарної деформації. На наш погляд, останнє пов'язано з тим, що за локалізованої пластичної деформації під час навантаження, яка відбувається шляхом переносу маси по гідродинамічних каналах, в них має бути аморфна (рідиноподібна) структура. Незначне підвищення температури сприяє релаксації структури каналів у процесі їх утворення і знижує їх можливість до переносу маси під напругою. Зі збільшенням кількості ударів ріст деформації в таких умовах не відбувається. Збільшення кількості фази Al₂CuMg без зміни дисперсності її часток може зумовити лише зміцнення матеріалу зварного шва, що й ілюструє рис. 2.

Подальше підвищення температури навантаження при збереженні кількості ударів, а саме десяти (на рис. 4, а зразок № 3), призводить до зниження сумарного ступеня деформації до 2%, незначного знеміцнення окремих зон і коливань значень мікротвердості в зоні зварного шва. На однорідність розподілу мікротвердості така обробка практично не впливає. Дані, що наведено в табл. 2 і 3, свідчать про збільшення параметрів *S* і *B* обох фаз, що, ймовірно, і є причиною збереження неоднорідності механічних властивостей матеріалу зварного шва.

Як було показано вище, найбільше зміцнення спостерігається при режимі обробки зразка № 4-1 (рис. 4, δ). Режим навантаження цього зразка (табл. 1) наступний: десять ударів вагою 26 кГ за кімнатної температури при деформації 5,8%. Цікаво відмітити, що в зразках № 4 і № 0 за десять ударів було досягнуто майже однакового ступеня деформації, але при значно меншій силі удару по зразку № 4 і при підвищеній температурі в зразку № 0, тобто незначне підвищення температури діє так само, як і зменшення вантажа. Але якщо у випадку зразка № 0 мала місце більш швидка релаксація структури каналів гідродинамічної течії, то при навантаженні зразка № 4

з меншою вагою більш повільно відбувається утворення каналів, і відповідно ступінь сумарної деформації зменшується.

Зміцнення всіх зон звареного зразка № 4, на наш погляд, зумовлено зменшенням кількості обох фаз: Al₂CuMg і CuAl₂ за рахунок їх переходу у твердий розчин (табл. 2 і 3).

Зразок № 1 використовувався для встановлення змін, що відбуваються у фазовому складі зварених і деформованих ударом зразків при переміщенні від поверхні до внутрішніх шарів. Після навантаження і дослідження механічних властивостей і фазового складу на поверхні за допомогою електрополірування було знято шар товщиною 300 мкм і проведено рентгенографічне дослідження фазового складу (як і раніше, досліджувалися наявність і кількість фаз Al₂CuMg i CuAl₂). Отримані результати наведено в табл. 4 і 5.

Таблиця 4 Наявність і кількість фази СиАЬ у внутрішніх шарах зразка № 1

Trandmierd i Autometo quisa caritz y day iprimitia inapua spusita eta i					
Місце аналізу	<i>d</i> , нм	<i>S</i> , см ²	<i>В</i> , рад		
Поверхня	0,2	5,0	0,0174		
300 мкм від поверхні	0,2	3,8	0,0184		

Таблиця 5

Наявність і кількість фази Al₂CuMg у внутрішніх шарах зразка № 1

Місце аналізу	<i>d</i> , нм	<i>S</i> , см ²	В, рад
Поверхня	0,355	6	0,0174
300 мкм від поверхні	0,355	3	0,0174

Як видно з даних таблиць, дисперсність фаз Al₂CuMg і CuAl₂ на поверхні і у внутрішніх шарах не змінюється, а їх кількість несуттєво зростає. Як і на поверхні, розподіл механічних властивостей (мікротвердість) залишається однорідним.

Висновки

1. У структурно-неоднорідному алюмінієвому сплаві 2024 Т3-51 встановлено прямий зв'язок між поверхневими і внутрішніми деформаційними структурами і механічними властивостями. Найбільш перспективною деформаційною обробкою зварених зразків сплаву 2024 Т3-51 з метою усунення макроскопічної неоднорідності механічних властивостей і збереження зміцненого стану є обробка ударом із використанням такого режиму: один удар вагою 20–25 кГ за кімнатної температури.

2. У формуванні контрольованих структур і механічних властивостей при імпульсних навантаженнях багатокомпонентного алюмінієвого сплаву 2024 Т3-51 суттєву роль відіграє гідродинамічна пластична течія. Про роль останньої, а не дифузійних процесів у зміні фазового складу сплаву свідчать досить малий час навантаження і низькі температури, що виключає можливість дифузії домішок і підтверджує роль переносу маси по гідродинамічних каналах.

Резюме

Проведены дюрометрические и рентгенографические исследования сварных швов в образцах сплава 2024 ТЗ-51 после импульсного нагружения при разных температурах. Установлены параметры наиболее перспективной деформационной обработки, а также подтверждена роль гидродинамического пластического течения в формировании контролируемых структур и механических свойств.

- 1. Белякова М. Н., Засимчук Е. Э., Гордиенко Ю. Г. Признаки гидродинамического течения при импульсном сжатии молибдена и железа // Металлофизика и новейшие технологии. – 1999. – **21**, № 4. – С. 59 – 71.
- Засимчук Е. Э., Гордиенко Ю. Г., Засимчук В. И. Гидродинамическое течение пластически деформируемых кристаллов в самоорганизующихся структурных элементах // Сплавы с эффектом памяти формы и другие перспективные материалы. Ч. 2.: Тр. 38 Междунар. сем. "Актуальные проблемы прочности". – СПб., 2001. – С. 414 – 420.
- 3. Засимчук Е. Э., Гордиенко Ю. Г., Гонтарева Р. Г., Засимчук И. К. Сенсоры для оценки деформационного повреждения в структурнонеоднородных авиационных сплавах // Физ. мезомеханика. – 2002. – 5, № 2. – С. 87 – 95.
- 4. Засимчук Е. Э., Гордиенко Ю. Г., Засимчук В. И. К вопросу о возможности пластического формоизменения кристалла путем гидродинамического течения по каналам с жидкоподобной структурой // Металлофизика и новейшие технологии. 2002. 24, № 9. С. 1161 1176.
- Gordienko Yu. G., Zasimchuk E. E., and Gontareva R. G. Unconventional deformation modes and surface roughness evolution in Al single crystals under restricted cyclic tension conditions // J. Mater. Sci. Let. – 2002. – 21. – P. 1713 – 1716.

Поступила 16. 09. 2006