Моделирование релаксации напряжений при действии импульсного электрического тока высокой плотности

Г. В. Степанов, А. И. Бабуцкий

Институт проблем прочности им. Г. С. Писаренко НАН Украины, Киев, Украина

Предложено феноменологическое уравнение связи между релаксацией упругих растягивающих напряжений при действии импульса электрического тока и усредненным повышением температуры. Уравнение позволяет аппроксимировать экспериментальные данные по прямой и обратной релаксации растягивающих напряжений в зависимости от плотности тока, уровня начальных напряжений и температуры.

Ключевые слова: импульсный электрический ток, релаксация напряжений, прямая релаксация, обратная релаксация.

Введение. В практике формоизменения труднодеформируемых металлов широко применяется технология, основанная на использовании импульсного электрического тока (ИЭТ) высокой плотности [1, 2]. Ее применение обусловлено рядом причин. Прежде всего известно тепловое действие тока в проводящем материале, состоящее в его однородном разогреве вследствие расходования источником тока энергии на перемещение заряда: в результате столкновения носителей заряда между собой и элементами кристаллической решетки работа источника тока передается электронам и кристаллической решетке в виде кинетической энергии хаотического движения или согласно молекулярно-кинетической теории вещества – в виде теплоты [1]. Кроме того, данные многочисленных экспериментальных исследований свидетельствуют о специфическом действии ИЭТ высокой плотности на металл, в результате чего существенно снижается сопротивление деформации и релаксации напряжений [2, 3]. Такое снижение нельзя объяснить повышением средней температуры металла, поскольку она, как правило, изменяется незначительно. В литературных источниках данное явление получило название электропластического эффекта [2, 3].

Природа этого эффекта исследована недостаточно. Исходя из известных данных его можно охарактеризовать как специфическое действие импульсного тока, приводящее к изменениям в материале вследствие микронеоднородного локализованного выделения тепла на дефектах структуры [4, 5], микронеоднородности свойств материала и микродеформаций по объему [6] и непосредственного взаимодействия электронов с дефектами кристаллической решетки [7–10]. Эффект нетеплового действия ИЭТ снижается с увеличением длительности импульса тока или уменьшением размеров микрообъемов: при достаточной длительности нагрева температура по микрообъемам выравнивается и приближается к средней, чем объясняется только тепловое действие тока низкой плотности.

Для оценки нетеплового действия ИЭТ необходимо учитывать неоднородность физико-механических свойств материала, определяющих микронеоднородность нагрева и деформации. Оценить поле температур вследствие действия ИЭТ в микронеоднородном материале с учетом влияния температуры на электрическое сопротивление, теплоемкость и теплопроводность металла можно только численными методами. Отсутствие данных о свойствах материалов, необходимых для такой оценки, указывает на актуальность разработки феноменологических уравнений, применимых для расчета кинетики деформирования металла с учетом теплового и нетеплового действия ИЭТ.

Ниже предложен вариант таких уравнений, которые использовались при анализе как "прямой" (положительной) релаксации, когда под действием ИЭТ происходит снижение нагрузки, так и "обратной" (отрицательной) релаксации, когда после нагружения, частичной разгрузки и последующего действия ИЭТ регистрируется не сброс нагрузки, а ее рост [11]. Аналогичное поведение материала (обратная релаксация) было зарегистрировано при проведении испытаний с образцами из керамики и металлов [12–15].

Феноменологическое уравнение состояния, учитывающее действие ИЭТ. Анализ известных результатов позволяет предположить, что установленное в экспериментах изменение (релаксация) упругих растягивающих напряжений может быть вызвано тепловым и нетепловым действием тока, проявляющимся в снижении сопротивления металла деформированию в результате пропускания ИЭТ на $\Delta\sigma_{EC}$, что существенно выше, чем на $\Delta\sigma_{T}$, вследствие только теплового действия ИЭТ. Это подтверждается также результатами экспериментов по релаксации, согласно которым уровень начальных растягивающих напряжений в полосе при ее медленном нагреве до $200...300^{\circ}$ С (результат теплового расширения металла) уменьшается, а после охлаждения возвращается к исходному. В отличие от медленного нагрева, действие ИЭТ вследствие короткой длительности вызывает понижение уровня напряжений в полосе после ее охлаждения.

Предполагая, что тепловое и нетепловое действия ИЭТ оказывают аналогичное влияние на сопротивление металла деформированию, их можно считать взаимосвязанными:

$$\Delta \sigma_{IEC} \approx \beta \Delta \sigma_T$$
, (1)

где β – коэффициент, учитывающий специфическое влияние ИЭТ.

Действие ИЭТ сопровождается деформированием материала с повышенной скоростью. Пластическое деформирование металла при повышенной скорости деформации обычно связывают с термоактивируемым движением дислокаций [16]. Согласно этой модели зависимость скорости пластической деформации $\dot{\varepsilon}$ от уровня механической нагрузки определяется изменением энергии термической активации движения дислокаций. Действие ИЭТ учитывается снижением энергии активации или повышением эффективного напряжения на величину σ_{IEC} , определяемую плотностью тока [16, 17].

С учетом вероятности прямого и обратного перехода при движении дислокаций и действия ИЭТ скорость пластической деформации определяется экспоненциальным выражением

$$\begin{split} \dot{\varepsilon} &= \dot{\varepsilon}_0 \Bigg[\exp \Bigg(-\frac{Q_0 - \gamma \sigma_{\it eff}}{kT} \Bigg) - \exp \Bigg(-\frac{Q_0 + \gamma \sigma_{\it eff}}{kT} \Bigg) \Bigg] \\ &\quad \text{при} \quad \sigma_{\it eff} = \sigma + \sigma_{\it IEC} \geq 0; \\ \dot{\varepsilon} &= 0 \quad \text{при} \quad \sigma_{\it eff} = \sigma - \sigma_s + \sigma_{\it IEC} < 0, \end{split} \tag{2}$$

где $\dot{\varepsilon}_0$ — характерная скорость пластической деформации, которая соответствует атермическому движению дислокаций; Q_0 — энергия термоактивации в материале при отсутствии нагрузки; γ — параметр, учитывающий влияние напряжения на энергию активации; k — постоянная Больцмана; σ_s — сопротивление металлической решетки. (В общем случае параметр $\dot{\varepsilon}_0$ следует полагать зависящим от уровня напряжений, температуры и плотности тока $\dot{\varepsilon}_0 = \dot{\varepsilon}_0(\sigma, T, i)$.)

Из уравнения (2) следует, что если величину $\dot{\epsilon}_0$ принять не зависящей от нагрузки, температуры и плотности тока, то небольшое изменение нагрузки (< 5%) вызывает резкое изменение скорости пластической деформации. Это не соответствует результатам экспериментальных исследований, анализ которых свидетельствует о монотонном росте релаксации напряжений с повышением уровня нагрузки и плотности тока [11, 17]. Кроме того, расчетная величина энергии термической активации движения дислокаций, определенная из условия соответствия результатам испытаний на релаксацию, практически не зависит от уровня начальной нагрузки, т.е. выражение в квадратных скобках в (2) с достаточной точностью может быть принято постоянным, что отвечает атермическому механизму пластической деформации.

Экспериментальные данные по исследованию релаксации упругих напряжений при действии ИЭТ свидетельствуют о развитии в металле пластических деформаций при начальном растягивающем напряжении ниже предела текучести. Изменение напряжений $\Delta \sigma$ в результате их релаксации при действии ИЭТ может быть представлено уравнением, учитывающим тепловой и нетепловой эффекты импульсного тока путем повышения температуры:

$$\Delta \sigma = -\sigma_Y \left(\frac{\Delta T_{IEC} + \beta \Delta T_{IEC}}{T_Y} \right)^m, \tag{3}$$

где σ_{Y} – предел текучести; T_{Y} и m – параметры.

Выражение (3) определяет изменение сопротивления металла пластической деформации, вызванное некоторой эффективной температурой $T_{eff}(t)$ = $\Delta T_{IEC} + \beta \Delta T_{IEC}$.

Повышение температуры ΔT_{IEC} с учетом ее влияния на удельное электросопротивление ho металла описывается выражением

$$\Delta T_{IEC}(t) = \int_{0}^{t} \frac{\rho i^{2}}{C_{V}} dt \approx [1 + \lambda (T_{0} + \Delta T_{IEC}^{0} / 2)] \Delta T_{IEC}^{0}, \quad \Delta T_{IEC}^{0} = \int_{0}^{t} \frac{\rho_{0} i^{2}}{C_{V}} dt, \quad (4)$$

где ρ_0 — удельное электросопротивление при температуре $T=0;\ T_0$ — начальная температура; λ — коэффициент, учитывающий рост электрического сопротивления при повышении температуры.

Коэффициент β , определяющий снижение сопротивления деформации вследствие нетеплового действия ИЭТ, увеличивается до максимального значения β_0 при $\sigma = \sigma_Y$. Для оценки нетеплового действия тока с учетом уровня напряжений может быть использовано выражение вида

$$\beta(\sigma) = \beta_0 (\sigma / \sigma_Y)^n.$$

Моделирование прямой релаксации напряжений. Зависимость эффективной температуры $T_{\it eff}$ от уровня напряжения и повышения температуры $\Delta T_{IFC}(t)$ в период действия ИЭТ затрудняет численные расчеты напряженно-деформированного состояния (НДС). При оценке релаксации растягивающих напряжений в полосе металла при действии ИЭТ принимается, что снижение сопротивления металла пластической деформации определяется эффективной температурой $T_{\it eff}$, а термическое расширение – более низкой реальной температурой, которая определяется суммой первых двух слагаемых в уравнении (4). Поэтому при моделировании действия ИЭТ на НДС в полосе металла зависимость сопротивления деформации от температуры T заменяется таковой от эффективной температуры $T_{\it eff}(t)$. При этом следует учитывать, что нагрев полосы вследствие ИЭТ при неизменной общей деформации цепи нагружения приводит к снижению уровня растягивающих напряжений. Следовательно, регистрируемое снижение напряжений соответствует уровню напряжений, пониженному на $\alpha E \Delta T_{IEC}/c$ (α – коэффициент линейного расширения; с – параметр, учитывающий влияние жесткости цепи нагружения [17]).

Изменение напряжения в результате прямой релаксации можно записать в виде

$$\Delta \sigma = -\sigma_Y \left(\frac{\Delta T_{IEC} + \beta(\sigma) \Delta T_{IEC}}{T_Y} \right)^m =$$

$$= -\sigma_{Y} \left[\frac{\Delta T_{IEC}}{T_{Y}} + \beta_{0} \left(\frac{\sigma - \alpha E \, \Delta T_{IEC} / c}{\sigma_{Y}} \right)^{n} \frac{\Delta T_{IEC}}{T_{Y}} \right]^{m}, \tag{5}$$

где T_Y , β_0 , m, n, c – параметры, определяемые по результатам испытаний на релаксацию растягивающих напряжений под действием ИЭТ исходя из условия максимального соответствия экспериментальным данным.

В качестве иллюстрации на рис. 1 приведены расчетные зависимости снижения напряжений при прямой релаксации, вызванной пропусканием ИЭТ, от уровня начального растягивающего напряжения σ . Зависимости рассчитывали для варианта пропускания ИЭТ, вызванного разрядом батареи конденсаторов емкостью 600 мкФ, заряженной до напряжения 3 кВ (на рис. 1 кривая I) и 4 кВ (кривые 2, 3) через нагруженную полосу сечением 2×6 мм из стали Ст. 3 с использованием экспериментальной методики [11, 17]. В

расчетах использовали: $T_Y = 1000^{\circ}\text{C}$; $\lambda = 9$; $\beta_0 = 7,5$; m = 2; n = 1; c = 2,4. Из результатов экспериментов и расчетов следует, что при повышенной начальной температуре уровень релаксации растягивающих напряжений существенно выше вследствие влияния температуры на электрическое сопротивление металла.

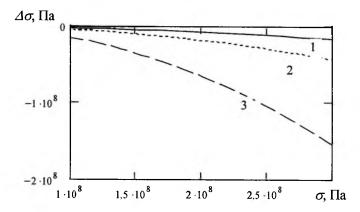


Рис. 1. Влияние растягивающего напряжения σ на уровень релаксации напряжений при действии ИЭТ, повышающего температуру на $\Delta T_{IEC}=32^{\circ}$ С при $T_{0}=0$ (I), $\Delta T_{IEC}=57^{\circ}$ С при $T_{0}=0^{\circ}$ С (I) и $\Delta T_{IEC}=57^{\circ}$ С при I0 = I150°С (I3).

Моделирование обратной релаксации напряжений. Согласно данным экспериментальных исследований и моделирования максимальная величина снижения растягивающего напряжения в результате прямой релаксации возрастает с повышением уровня напряжения, плотности тока и температуры [11, 16, 17]. Аналогично при частичной разгрузке действие ИЭТ на изменение напряжения в результате обратной релаксации может быть представлено зависимостью от максимального напряжения при нагрузке, его изменения при разгрузке, плотности тока и температуры. Следовательно, вместо (5) изменение напряжения, вызванное действием ИЭТ на полосу, нагруженную растяжением, а затем разгруженную до напряжения σ , определяется следующим выражением (вид зависимости $\Delta \sigma$ принимается аналогичным изменению напряжений при прямой релаксации):

$$\Delta \sigma = \chi \sigma_{Y} \left[\frac{\Delta T_{IEC}}{T_{Y}} + \beta_{0} \left(\frac{\sigma_{\text{max}} - \alpha E \Delta T_{IEC}/c}{\sigma_{Y}} \right)^{n} \frac{\Delta T_{IEC}}{T_{Y}} \right]^{m} - (\chi + 1) \sigma_{Y} \left[\frac{\Delta T_{IEC}}{T_{Y}} + \beta_{0} \left(\frac{\sigma - \alpha E \Delta T_{IEC}/c}{\sigma_{Y}} \right)^{n} \frac{\Delta T_{IEC}}{T_{Y}} \right]^{m}, \tag{6}$$

где $\sigma_{\rm max}$ — максимальный уровень растягивающих напряжений в процессе предшествующего нагружения. Параметр χ и другие, как и в случае уравнения (5), выбирают из условия максимального их соответствия экспериментальным данным.

Результаты моделирования обратной релаксации с использованием уравнения (6) приведены на рис. 2. Изменение напряжений под действием ИЭТ при $\sigma = \sigma_{\text{max}}$ характеризует прямую их релаксацию. Степень повышения напряжений вследствие обратной релаксации, вызванной действием ИЭТ после разгрузки, понижается с уменьшением $\sigma_{\rm max}$. Это следует из сопоставления кривых 1-3 (рис. 2), определяющих изменение напряжений $\Delta \sigma$ при действии ИЭТ при растягивающем напряжении σ , полученном разгрузкой после предшествующего нагружения до $\sigma_{\rm max}$ = 300, 200 и 100 МПа (точки на кривых 1-3). При повышении плотности тока, приводящего к повышению ΔT_{IEC} , эффект действия ИЭТ усиливается как на стадии нагрузки (на рис. 2 кривые 7 и 8, прямая релаксация), так и последующей разгрузки (кривые 5 и 6, обратная релаксация). Как и в случае прямой релаксации, данные зависимости рассчитаны для варианта пропускания ИЭТ, вызванного разрядом батареи конденсаторов емкостью 600 мкФ, заряженной до напряжения 3 кВ (на рис. 2 кривые 1-4, 6, 7) и 4 кВ (кривые 5, 8), через нагруженную полосу сечением 2×6 мм из стали Ст. 3 с использованием экспериментальной методики [11, 17]. Значения используемых в расчетах параметров таковы: $T_Y = 1000$ °C; $\lambda = 9$; $\beta_0 = 7.5$; m = 2; n = 1; c = 2.4; $\chi = 2$.

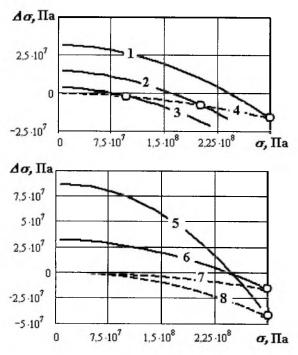


Рис. 2. Изменение напряжения $\Delta \sigma$ в полосе, вызванное обратной (кривые I–3, 5, 6) и прямой (кривые 4, 7, 8) релаксацией в результате действия ИЭТ, в зависимости от уровня растягивающего напряжения σ .

Выводы

1. Пропускание ИЭТ через полосу металла, нагруженную растяжением, вызывает релаксацию (снижение) растягивающих упругих напряжений в результате пластической деформации в период действия тока. Величина

деформации монотонно возрастает с повышением начального уровня растягивающих напряжений, плотности тока и начальной температуры.

- 2. Иропускание ИЭТ через полосу металла при растягивающем напряжении, полученном предварительным нагружением и последующей разгрузкой, вызывает обратную релаксацию, т.е. повышение растягивающего напряжения, величина которого увеличивается с ростом максимальной нагрузки, изменения напряжения при разгрузке и плотности тока.
- 3. Феноменологическая модель поведения металла, основанная на линейной зависимости теплового и нетеплового эффектов ИЭТ, обеспечивает возможность описания процессов прямой и обратной релаксации растягивающих напряжений в зависимости от плотности тока, уровня начальных напряжений и температуры.

Задачей дальнейших исследований является оценка влияния ИЭТ на кинетику релаксации напряжений при напряженном состоянии, отличающемся от одноосного растяжения.

Резюме

Запропоновано феноменологічне рівняння зв'язку між релаксацією пружних розтяжних напружень при дії імпульсу електричного струму й усередненим підвищенням температури. Рівняння дозволяє апроксимувати експериментальні дані по прямій і зворотній релаксації розтягуючих напружень у залежності від густини струму, рівня початкових напружень та температури.

- 1. *Кузьмичев В. Е.* Законы и формулы физики. Киев: Наук. думка, 1989. 864 с.
- 2. *Спицин В. И.*, *Троицкий О. А.* Электропластическая деформация металлов. М.: Наука, 1985. 160 с.
- 3. *Баранов Ю. В., Троицкий О. А., Авраамов Ю. С., Шляпин А. Д.* Физические основы электроимпульсной и электропластической обработок и новые материалы. М.: МГИУ, 2001. 844 с.
- 4. *Баранов Ю. В.* Физическая модель структурных изменений металлических материалов при воздействии импульсного электрического тока // Иробл. машиностроения и надежности машин. 2000. № 4. С. 57 65.
- 5. *Беклемишев Н. Н., Корягин Н. И., Шапиро Г. С.* Влияние локального неоднородного импульсного электромагнитного поля на пластичность и прочность проводящих материалов // Изв. АН СССР. Сер. Металлы. 1981. № 4. С. 184 187.
- 6. *Статистична природа впливу* імпульсного електричного струму на механічні властивості металів // Вісн. Терноп. держ. техн. ун-ту. 2005. № 2. С. 11 17.
- 7. *Кравченко В. Я.* Воздействие направленного потока электронов на движущиеся дислокации // Журн. экспер. и теорет. физики. 1966. **51**, вып. 6 (12). С. 1677 1688.

- 8. *Фикс В. Б.* О взаимодействии электронов проводимости с одиночными дислокациями в металлах // Там же. 1981. **80**, вып. 6. С. 2313 2316.
- 9. *Копанев А. А.* К вопросу о природе электропластического эффекта в металлах // Пробл. прочности. 1991. № 1. С. 47 51.
- 10. *Степанов Г. В.*, *Бабуцкий А. И.* Воздействие электрического тока на релаксацию напряжений в металле // Там же. 1996. № 2. С. 68 72.
- 11. Степанов Г. В., Бабуцкий А. И., Олисов А. Н., Мамеев И. А. Влияние импульса электрического тока на уровень напряжений в металлической полосе при ее растяжении // Там же. 2005. № 6. С. 61 67.
- 12. Guiu F. and Pratt P. L. Stress relaxation and plastic deformation of solids // Phys. Status Solids. 1964. 6. P. 111 120.
- 13. *McEwen S. R.*, *Kupcis O. A.*, *and Ramaswami B.* An investigation of an incremental unloading technique for estimating internal stresses // Scr. Metal. 1969. 3. P. 441 448.
- 14. Esaklul K. L., Gerberich W. W., and Koepke B. G. Stress relaxation in PZT // J. Amer. Ceram. Soc. 1980. 63. P. 25 30.
- 15. Cheng B. L. and Reece M. J. Stress relaxation and estimation of activation volume in a commercial hard PZT piezoelectric ceramic // Bull. Mater. Sci. 2001. 24, No. 2. P. 165 167.
- 16. *Степанов Г. В.*, *Бабуцкий А. И.* Оценка влияния импульсного электрического тока высокой плотности на скорость пластической деформации металлов // Пробл. прочности. 2006. № 2. С. 105 113.
- 17. Степанов Г. В., Бабуцкий А. И., Олисов А. Н., Мамеев И. А. Анализ процесса релаксации растягивающих напряжений под действием импульса электрического тока // Там же. 2006. № 1. С. 116 127.

Поступила 22. 05. 2006