Методологические аспекты прогнозирования ползучести жаропрочных сталей и сплавов. Сообщение 1. Анализ уравнений состояния

В. В. Кривенюк

Институт проблем прочности им. Г. С. Писаренко НАН Украины, Киев, Украина

Рассмотрены эффективность применения комплекса определяющих уравнений, основанного на положениях метода минимума связей, и системного анализа известных экспериментальных данных для прогнозирования ползучести в широком диапазоне температур и напряжений.

Ключевые слова: уравнения состояния, мгновенное деформирование, ползучесть, поврежденность, жаропрочность, прогнозирование.

Описанию и прогнозированию ползучести и длительной прочности металлических материалов посвящены многочисленные исследования. Однако из-за увеличения сверхнормативных сроков службы теплоэнергетического оборудования до 300 тыс. ч и более развитие прогнозирования по-прежнему актуально. Это связано с тем, что развитию теории прогнозирования никак не способствовало решение практических задач, большинство которых было сравнительно простым. При вышеупомянутых сроках эксплуатации в высокотемпературных условиях сложность задач повышается настолько, что надежное решение может быть обеспечено лишь при уточнении некоторых теоретических положений. На основе одного из них разработан метод минимума связей [1].

В соответствии с этим методом, разработка которого была вызвана необходимостью перехода к системному развитию прогнозирования, из общего числа широко используемых методов выбирались только некоторые, принятые в качестве основных. Далее при решении конкретной задачи прогнозирования длительной прочности используется только один из них.

Цель настоящего исследования – аналогично обосновать необходимость выбора комплекса уравнений состояния для развития прогнозирования ползучести с последующим постепенным совершенствованием всего комплекса выбранных уравнений. Основой для такого развития должен стать специальный банк экспериментальных данных, представительность которых определяется концепцией типовых структурных состояний. Согласно последней их существует ограниченное число, к одному из которых с практически приемлемой точностью может быть приравнено любое из возможных состояний. В первом приближении необходимость формирования банка данных объясняется следующими двумя причинами. Во-первых, сложность и трудоемкость выполнения экспериментальных исследований привели к их тотальной фрагментарности при отсутствии достаточно полных исследований свойств отдельных сталей и сплавов. Во-вторых, практически ни одно из известных уравнений состояния не было подвергнуто достаточно полной проверке. В результате можно утверждать, что при резко возросшем за последние 15—20 лет

числе новых жаропрочных сталей и сплавов сравнительная оценка возможностей известных уравнений фактически не может быть выполнена без специального банка экспериментальных данных.

Первоначально уравнения преимущественно разрабатывались для описания первой и второй стадий ползучести. Обобщенный анализ экспериментальных данных [2] привел к уравнению

$$\varepsilon = \beta t^m + kt,\tag{1}$$

где ε – деформация ползучести; β , m, k – постоянные. В дальнейшем оказалось, что значение m=1/3 – одно из наиболее широко используемых.

В работе [3] сделан вывод о том, что уравнение (1) хорошо описывает кривые ползучести, при этом была предложена более общая формула

$$p = S(\sigma)t^n + \nu(\sigma)t, \tag{2}$$

где $S(\sigma)$ и $\nu(\sigma)$ – функции напряжений вида $A\sigma^n$ с постоянными A и n при T = const. Там же установлено, что начальные участки кривых ползучести могут хорошо описываться при использовании лишь первого члена в формуле (2).

В общем случае зависимость деформации ползучести ε от напряжения σ , времени t и температуры T может быть записана в виде [4]

$$\varepsilon = f(\sigma)\varphi(t)\psi(T). \tag{3}$$

Эта зависимость предложена исходя из представлений о геометрическом подобии графиков ползучести в координатах $\varepsilon-t$ и возможности получения значений деформации ползучести из одной известной функции умножением ее ординат на некоторую величину, зависящую от двух других функций.

Зависимость (3) используется достаточно широко. Вместе с тем автор [3] утверждает, что для полных кривых ползучести, включающих третью стадию ползучести, никакого подобия вообще не существует, и какие-либо надежные формулы для описания третьей стадии отсутствуют. В этой связи следует заметить, что едва ли существует уравнение, которое не подвергалось бы каким-либо критическим замечаниям. Кроме того, трудно назвать уравнения, которые обеспечивали бы достаточно полное, точное и надежное описание ползучести для большинства материалов и различных условий нагружения. Этим в значительной мере обусловлены необходимость использования нескольких уравнений и переход к их комплексному совершенствованию.

Развитие теории прогнозирования ползучести на основании оригинальных представлений о поврежденности [3, 5, 6] привело к новому описанию третьей стадии и полной кривой ползучести. Уравнение состояния было предложено в виде

$$\dot{p} = f(\sigma, T, q_1, q_2, ..., q_n)$$
 (4)

совместно с кинетическим уравнением параметров

$$dq_i = a_i dp + b_i d\sigma + c_i dt + f_i dT, (5)$$

где a_i , b_i , c_i , f_i – некоторые функции от p, σ , t, T, а также от q_1 , q_2 , ..., q_n .

Кинетический подход (4) и (5) использовался во многих исследованиях [7–14 и др.]. Полная система уравнений для одноосного нагружения была представлена в [10]:

$$\dot{p} = f_1(p)\varphi_1(\sigma)\psi_1(\sigma/(1-\omega));
\dot{\omega} = f_2(p)\varphi_2(\sigma)\psi_2(\sigma/(1-\omega)),$$
(6)

где ω — параметр охрупчивания (ω = 0 в исходном состоянии и ω = 1 при разрушении).

Длительное высокотемпературное нагружение приводит к смене превалирующих механизмов деформирования и разрушения и, как следствие, к значительному повышению сложности описания и прогнозирования ползучести. Для таких условий нагружения кинетический подход [10] был усовершенствован введением гипотезы о необходимости использования двух кинетических параметров поврежденности [8, 9]

$$\dot{\omega}_1 = f_1(\sigma, T, \omega_1, \omega_2); \qquad \dot{\omega}_2 = f_2(\sigma, T, \omega_1, \omega_2). \tag{7}$$

В соответствии с (7) механическое уравнение состояния представлено как

$$\dot{p} = \Phi(p, \sigma, T, \omega_1, \omega_2). \tag{8}$$

Уравнение (4) в общем виде дает основание утверждать, что существует некоторое число параметров $q_1, q_2, ..., q_n$, с помощью которых может быть определено структурное состояние исследуемого материала. С помощью кинетического уравнения (5) можно описать изменение этого состояния. Автор [10] отмечал возможность использования рассматриваемого кинетического подхода для сколь угодно сложных случаев описания закономерностей пластического деформирования и разрушения различных материалов. Однако со временем обратили внимание на весьма различные способы уточнения довольно общих уравнений при решении многих практических задач. Это затрудняет учет особенностей исследуемых материалов и прогнозирование их поведения при различных условиях нагружения с достаточной точностью. Внимания заслуживает необходимость уточнения концепции $\omega = 1$, поскольку предельное значение параметра поврежденности может быть значительно меньше единицы [12].

Широкое применение находят уравнение длительной прочности [15] и уравнение [16], описывающее температурную зависимость характеристик ползучести в виде

$$\dot{p} = AT^{-q}\sigma^{-m}(\varepsilon_0 + p)^{-n}\exp\left(-\frac{U_0 - c\sigma - rp}{RT}\right),\tag{9}$$

где $A,\ U_0,\ c,\ n,\ r$ – постоянные, характеризующие свойства материала и физические закономерности процесса ползучести; m и q – коэффициенты, слабо зависящие от свойств материала, m = 1, 2 или 3, q = 1 или 2.

В работе [4] отмечаются сложность и статистическая природа процесса ползучести, который может быть разделен на качественно различные стадии при разной степени их выраженности из-за рассеяния экспериментальных данных и т.п. Показана необходимость более точного анализа процесса ползучести с применением сглаживающих сплайн-аппроксимаций для идентификации и оптимизации параметров ползучести, в частности, путем использования первой и второй производных, определяющих скорость и ускорение ползучести в любой момент времени.

Сплайн-аппроксимации позволяют уточнять хорошо известные и существенные неопределенности при оценке начальной скорости неустановившейся ползучести, а также деформации, накопленной к моменту окончания второй стадии или разрушения [4]. По-видимому, применение сглаживающих сплайн-аппроксимаций приобретает особое значение при переходе к системной классификации кривых ползучести по кинетике охрупчивания при длительном статическом нагружении вследствие значительного рассеяния экспериментальных данных в подобных случаях [17].

Рассмотренные уравнения – лишь незначительная часть известных уравнений состояния. Поэтому оценка их достаточности для решения научных и прикладных задач является довольно сложной проблемой. Вместе с тем многие задачи могут быть успешно решены с использованием положений физики и механики. Так, например, комбинированный подход [18] обеспечивает более строгий учет структурного состояния сплава при описании первой и второй стадий ползучести, но фактически непригоден для описания третьей стадии, что позволяет лишний раз убедиться, насколько актуальна и сложна разработка таких достаточно совершенных подходов. Поэтому, несмотря на значительные достижения, следует обратить внимание на два существенных упущения в решении рассматриваемой проблемы.

Для описания ползучести в сравнительно узком диапазоне напряжений [3] может оказаться пригодным то или иное выражение, и при их выборе можно главным образом исходить из соображений удобства. В результате оказалось, что подобные представления и соответственно разнообразие строгости требований к решению частных задач описания и прогнозирования ползучести привели к фрагментарности исследований и повышению сложности выбора оптимальных решений. Это первое упущение. Второе заключается в заниженной оценке значения экспериментальных исследований для развития теорий прогнозирования механического поведения металлов и сплавов при различных условиях нагружения. Это означает, что результаты экспериментальных исследований к настоящему времени изменились настолько, что могут быть учтены лишь путем выполнения специального системного анализа. В соответствии с этими представлениями были выполнены описываемые ниже исследования.

Недостаточное понимание сложности проблемы и ограниченных возможностей используемых уравнений состояния во многом определяется игнорированием близости кривых ползучести для различных по природе

материалов и соответственно низкой их информативностью. Для повышения точности учета последней разработано уравнение [19–21]

$$\dot{\varepsilon}^{1-\gamma \lg \dot{\varepsilon}} = \left[\frac{\frac{\sigma_0}{\sigma'}}{\left(1 - \frac{r\varepsilon}{1 + r\varepsilon} - \alpha t^{1/3}\right) \left(1 + \frac{h}{\sigma_0^2} \varepsilon\right)^{n/2}} \right]^{N/(3, 6 - \lg \sigma')}, \tag{10}$$

где ε , $\dot{\varepsilon}$ — деформация ползучести и ее скорость; h, r — характеристики деформационного упрочнения и разупрочнения; α — характеристика временного разупрочнения; N — характеристика наклона графика зависимости начальной скорости ползучести от напряжений в системе координат $\lg \sigma_0$ — $\lg \dot{\varepsilon}$; σ_0 , σ' — исходное напряжение и напряжение при скорости пластической деформации $\dot{\varepsilon}=1$ ч $^{-1}$ (расчеты выполнялись при значениях σ' , равных пределу прочности $\sigma_{\rm B}$, $\gamma=0$,1 и n=1).

Введение $-\gamma \lg \dot{\epsilon}$ в левую часть уравнения (10) дает нелинейную зависимость скорости пластической деформации от напряжений в двойной логарифмической системе координат $\lg \dot{\epsilon} - \lg \sigma$ в противоположность широко используемой степенной зависимости $\dot{\epsilon} \sim \sigma^n$. Показатель степени в правой части уравнения дает возможность задавать в неявном виде температурную зависимость постоянной N. Дифференциальное уравнение (10) приближенно решается методом Рунге-Кутта. Время до разрушения определяется отношением текущего значения скорости ползучести на третьей стадии к минимальной скорости, равным пяти.

Преобразуя уравнение (10) с учетом некоторых упрощений и предположений о том, что при напряжении, равном пределу прочности, $\dot{\varepsilon}=1\,\mathrm{q}^{-1}$ и что при малых длительностях нагружения можно пренебречь временной поврежденностью и принять $\alpha=0$, получаем выражение для описания кривых статического растяжения:

$$\sigma = \frac{(\sigma_{0,2}^2 + h\varepsilon)^{1/2}}{1 + r\varepsilon},\tag{11}$$

где $\sigma_{0,2}$ – условный предел текучести; ε – текущая деформация, за вычетом упругой деформации и деформации текучести (0,2%).

Предполагается также, что уравнение (11) может быть использовано для описания мгновенного деформирования

$$\sigma = \frac{\left(\sigma_{y}^{2} + h_{0}\varepsilon_{0\pi}\right)^{1/2}}{1 + r\varepsilon_{0\pi}},\tag{12}$$

где $\sigma_{\rm y}$ – предел упругости; $\varepsilon_{0{\rm n}}$ – пластическая составляющая деформации при нагружении; $h_{01}=h_0$ при $\sigma<\sigma_{0.2}$, $h_{02}=h_0$ при $\sigma>\sigma_{0.2}$.

В знаменателе правой части уравнения (10) слагаемые со знаком минус предназначены соответственно для описания деформационной и временной поврежденности. Разделение этих видов поврежденности остается сложной задачей. Точность оценки деформационной поврежденности значительно повышается при близких величинах r, рассчитываемых по уравнениям (10) и (11).

В результате уравнение (10) позволяет использовать характеристики статического растяжения и мгновенного деформирования для уточнения прогнозирования ползучести.

До настоящего времени все еще не существует единой точки зрения относительно необходимости учета мгновенной деформации при описании процесса ползучести и релаксации напряжений. В одних случаях такой учет считают необходимым [22, 23], в других – необязательным [24]. Исследования с использованием уравнения (10) подтверждают необходимость такого учета. В частности, это объясняется тем, что в реальных конструкциях допускаются сравнительно малые деформации, и их значительную часть может составлять именно мгновенная деформация, которая требует достаточно точного предсказания, особенно при больших длительностях нагружения.

Уравнения состояния в основном используются для ограниченных интервалов температурно-силового и временного нагружения [3, 25]. Уравнение (10) справедливо для более широких интервалов нагружения. Предполагается, в частности, что расширение интервалов обеспечивает более полный анализ свойств материалов, уточнение различного рода неопределенностей и улучшение прогнозирования в целом. Например, все еще сложно провести четкую границу между температурно-силовыми областями, в которых может быть использовано одно значение активационного параметра, учесть степень соответствия между характеристиками сопротивления деформированию при статическом растяжении, мгновенном деформировании и ползучести, влияние локализации, неравномерности пластической деформации при статическом растяжении и ползучести на рассматриваемые характеристики и т.п. Значение подобных неопределенностей подтверждается приводимыми ниже примерами.

С помощью формул (10)–(12) исследовались данные [27–30]. В табл. 1 приведены характеристики кратковременной прочности и значения параметров, с помощью которых описывались кривые статического растяжения, для некоторых сталей, широко применяемых в теплоэнергетике. Из рис. 1–5 следует, что кривые мгновенного деформирования описываются достаточно точно. В табл. 2 представлены значения характеристик деформационного упрочнения при статическом растяжении и мгновенном деформировании. Не во всех случаях численные значения рассматриваемых характеристик совпадают, следовательно, необходимы дальнейшие уточнения.

Относительную продолжительность третьей стадии ползучести ($t_3' = (t_{\rm p} - t_2)/t_{\rm p}$, %, где t_2 – время окончания второй стадии, $t_{\rm p}$ – время до разрушения) по уравнению (10) и экспериментальным кривым, полученным при испытаниях в довольно широких температурно-временных интервалах, иллюстрируют рис. 6, 7. Расчетные и экспериментальные значения t_3' могут

Таблица 1

Механические свойства и постоянные уравнений

	1	механиче	CKHC C	воиства и	постоя	ппыс у	равне	пии		
Материал	r, °C	$E \cdot 10^{-5}$, МПа	$\sigma_{ m y},$ МПа	$\varepsilon_{\rm y} \cdot 10^{-4},$ %	$\sigma_{0,2},$ МПа	$\sigma_{\scriptscriptstyle \rm B}, \ { m M}\Pi{ m a}$	δ, %	ψ. %	$h \cdot 10^{-7},$ $(M\Pi a)^2$	r
Х18Н10Т, пл. М	550	1,64	100	6,1	155	432	42	66	0,360	5
	600	1,60	88	5,5	142	409	40	62	0,330	5
[26]	650	1,55	70	4,5	150	375	32	40	0,270	5
	700	1,50	47	3,3	146	309	38	31	0,180	5
	750	1,43	42	2,9	172	249	42	47	0,110	5
2,25Cr–1Mo [27]	450	1,70	180	10,5	225	448	28	73	0,380	5
	500	1,62	110	6,8	220	394	25	80	0,280	5
	550	1,50	70	5,1	205	365	28	84	0,243	5
	600	1,45	41	3,3	161	283	43	90	0,147	5
	650	1,40	37	3,2	133	216	57	94	0,083	5
12Cr <u>.</u> пл. G	450	1,93	216	11,5	488	573	17	72	1,300	13
	500	1,83	160	8,7	454	505	20	81	0,960	13
[28]	550	1,68	70	4,2	351	424	36	88	0,730	13
12Cr. пл. J	450	1,93	180	9,3	456	537	18	70	1,200	13
	500	1,83	120	6,6	412	476	22	81	0,890	13
[28]	550	1,68	65	3,9	336	403	28	89	0,660	13
25X1M1Ф, пл. А [29]	450	1,93	230	12,0	514	629	17	62	0,620	5
	500	1,86	200	11,0	481	570	17	65	0,500	5
	550	1,79	100	67,0	469	504	19	80	0,350	5
	600	1,71	50	3,0	358	444	23	85	0,310	5
	650	1,63	40	25,0	257	375	32	91	0,240	5
15Х1М1Ф, пл. А	450	1,82	180	10,0	437	567	18	57	0,530	5
	500	1,77	140	7,9	423	528	20	66	0,450	5
[30]	550	1,73	120	6,9	428	492	17	54	0,360	5

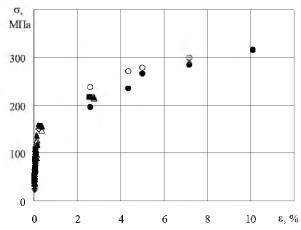


Рис. 1. Диаграммы мгновенного деформирования стали X18H10T (пл. М): \bigcirc , \bullet – T = 550°C; \triangle , \blacktriangle – T = 600°C; □, \blacksquare – T = 650°C; \diamondsuit , \bullet – T = 700°C (светлые точки – расчет, темные – эксперимент [26]).

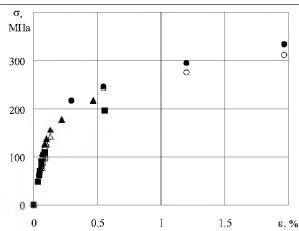


Рис. 2. Диаграммы мгновенного деформирования стали 2,25 Cr−1 Mo: \bigcirc , \bullet – T = 450°C; \triangle , \blacktriangle – T = 500°C; \Box , \blacksquare – T = 550°C (светлые точки – расчет, темные – эксперимент [27]).

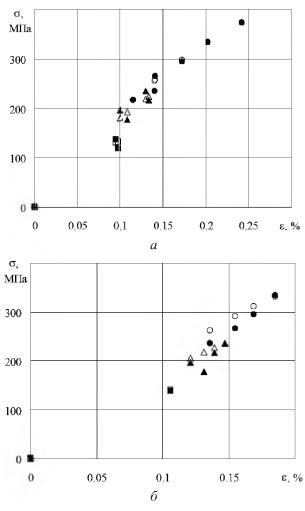


Рис. 3. Диаграммы мгновенного деформирования стали 12Сг (a – пл. G, δ – пл. J): ○, ● – T = 450°С; △, ▲ – T = 500°С; □, ■ – T = 550°С (светлые точки – расчет, темные – эксперимент [28]).

существенно отличаться в зависимости от температуры испытания, длительности нагружения, исследуемого материала. Хрупкость разрушения определяется малыми значениями t_3' , ее вероятность по данным рис. 6 и 7 может быть довольно высокой. Следует отметить, что надежная научная основа для предсказания хрупкого разрушения по ряду причин часто отсутствует, например, практически невозможно учесть неоднородность и локализацию пластической деформации.

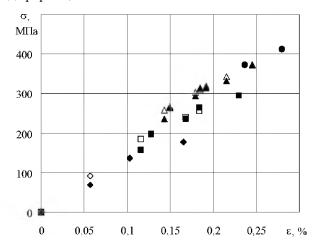


Рис. 5. Диаграммы мгновенного деформирования стали 25X1M1 Φ (пл. A): \bigcirc , \bullet − T = 450°C; \triangle , \blacktriangle − T = 500°C; \square , \blacksquare − T = 550°C (светлые точки – расчет, темные – эксперимент [30]).

Выполненные исследования позволяют утверждать, что существует возможность более эффективного решения рассматриваемой проблемы лишь при переходе к специальному системному анализу известных экспериментальных данных. Важным аспектом такого решения является специальная системная обработка экспериментальных данных, полученных в достаточно широких температурно-силовых интервалах.

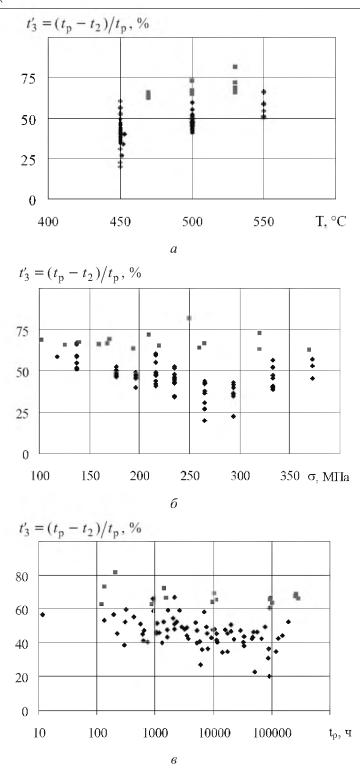


Рис. 6. Отношения продолжительности третьей стадии ползучести ко времени до разрушения $(t_3 = (t_{\rm p} - t_2)/t_{\rm p}, \%)$ при различных температурах (a), напряжениях (δ) и времени до разрушения (s) для стали 12Cr: \blacksquare — расчет, \spadesuit — эксперимент [28].

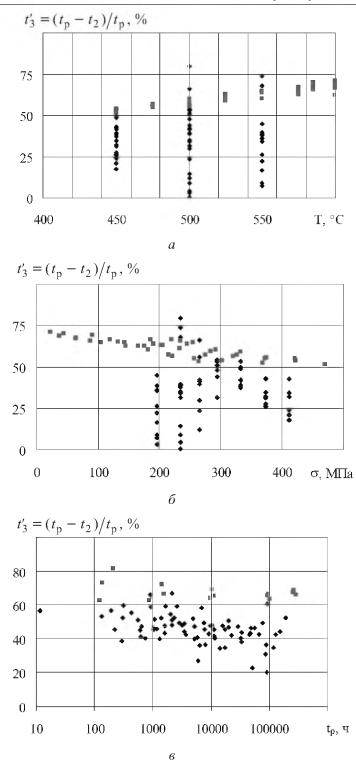


Рис. 7. Отношения продолжительности третьей стадии ползучести ко времени до разрушения $(t_3 = (t_{\rm p} - t_2)/t_{\rm p}, \%)$ при различных температурах (a), напряжениях (δ) и времени до разрушения (s) для стали 1Cr–1Mo–0,25V: \blacksquare – расчет, \spadesuit – эксперимент [30].

Таблица 2 Постоянные упрочнения в уравнениях (11) и (12)

Материал	T, °C	$h_{01} \cdot 10^{-7}$, (M Π a) ²	$h_{02} \cdot 10^{-7}$, (M Π a) ²	$h \cdot 10^{-7},$ (M\Pia)^2
X18H10T, пл. М [26]	550		0,200	0,360
	600	1,2	0,152	0,330
	650	1,2	0,150	0,270
	700	1,5		0,180
	750	1,7		0,110
2,25Cr–1Mo [27]	450		0,380	0,380
	500	1,3		0,280
	550	1,1		0,248
	600	1,1		0,147
	650			0,083
12Cr,	450	7,6		1,300
пл. G [28]	500	5,4		0,960
	550	2,3		0,730
12Cr,	450	8,7		1,200
пл. J [28]	500	5,2		0,890
	550	2,3		0,660
25Х1М1Ф,	450	7,4		0,620
пл. А	500	7,1		0,500
[29]	550	4,8		0,350
	600	2,2		0,310
	650	1,1		0,240
15Х1М1Ф,	450	8,8		0,530
пл. А [30]	500	6,8		0,450
	550	5,1		0,360

Резюме

Розглянуто ефективність використання комплексу визначальних рівнянь, що базується на положеннях методу мінімуму зв'язків, та системного аналізу відомих експериментальних даних для прогнозування повзучості у широкому діапазоні температур і напружень.

- 1. *Manson S. S. and Ensign C. R.* A quarter-century of progress in the development of correlation and extrapolation methods for creep rupture data // J. Eng. Mater. Technol. 1979. 101, No. 4. P. 317 325.
- 2. Andrade E. N. da C. On the viscous flow in metals and allied phenomena // Proc. of the Royal Society (London). 1910. Vol. 84. Series A.
- 3. *Работнов Ю. Н.* Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.

- 4. Голуб В. П., Погребняк А. Д., Романенко И. Б. О применении сглаживающих сплайн-аппроксимаций в задачах идентификации параметров ползучести // Прикл. механика. 1997. 33, № 6. С. 52 61.
- 5. *Работнов Ю. Н.* О механизме длительного разрушения // Вопросы прочности материалов и конструкций. М.: Изд-во АН СССР, 1959. С. 5 7.
- 6. *Качанов Л. М.* О времени разрушения в условиях ползучести // Изв. АН СССР. Отд-ние техн. наук. -1958. -№ 8. С. 26 31.
- 7. *Аршакуни А. Л.*, *Локощенко А. М.*, *Киселевский В. Н. и др.* Закономерности ползучести и длительной прочности. Справочник / Под общ. ред. С. А. Шестерикова. М.: Машиностроение, 1983. 102 с.
- 8. *Шестериков С. А.* Некоторые проблемы длительной прочности и ползучести // Нелинейные модели и задачи механики деформируемого твердого тела. М.: Наука, 1984. С. 180 189.
- 9. *Чижик А. А.*, *Петреня Ю. К.* О кинетических уравнениях повреждаемости при оценке ресурса и надежности материалов в условиях ползучести // Тр. ЦКТИ. 1982. Вып. 194. С. 27 37.
- Шестериков С. А., Локощенко А. М. Ползучесть и длительная прочность металлов // Итоги науки и техники. Механика деформируемого твердого тела. М.: ВИНИТИ, 1980. 13. С. 3 104.
- 11. *Bernasconi G. and Piatti G.* Creep of engineering materials and structures // Proc. of a Seminar on Creep of Engineering Materials and Structures. Ispra. Varese, Italy, 1978. P. 195 228.
- 12. *Локощенко А. М.* Исследования поврежденности материала при ползучести и длительной прочности // Прикл. мех. и техн. физика. 1982. № 6. С. 129 133.
- 13. Киселевский В. Н. Прочность конструкционных материалов ядерных реакторов. Киев: Наук. думка, 1990. 168 с.
- 14. *Коблов Е. Н.*, *Голубовский Е. Р.* Жаропрочность никелевых сплавов. М.: Машиностроение, 1998. 464 с.
- 15. *Трунин И. И*. Определение характеристик длительной прочности жаропрочных материалов с большими сроками службы // Пробл. прочности. 1969. № 6. С. 3 8.
- Трунин И. И. Механическое уравнение состояния металлических материалов и прогнозирование характеристик жаропрочности // Там же. 1976. № 9. С. 9 14.
- 17. *Голуб В. П.*, *Погребняк А. Д.*, *Чернецкая Е. В.* О кинетике охрупчивания в процессе ползучести // Прикл. механика. 2000. **36**, № 6. С. 104 113.
- 18. *Шерби О. Д.*, *Миллер А. К.* Комбинированный феноменологический и физический подход к описанию механического поведения кристаллических тел при высоких температурах // Теорет. основы инж. расчетов. Сер. Д. − 1979. − **101**, № 4. − C. 92 − 101.

- 19. *Кривенюк В. В.* Прогнозирование длительной прочности тугоплавких металлов и сплавов. Киев: Наук. думка, 1990. 248 с.
- 20. *Кривенюк В. В.* О взаимообусловленности решения задач описания и анализа особенностей высокотемпературной ползучести металлических материалов // Пробл. прочности. -1990. N 5. C. 31 35.
- 21. *Кривенюк В. В.* Исследование закономерностей деформирования металлических материалов при различных условиях статического нагружения // Там же. N 8. C. 51 58.
- 22. *Кремпл Е*. Анализ вязкопластичности на основе полной деформации. Описание ползучести при учете начальной деформации и старения // Теорет. основы инж. расчетов. Сер. Д. 1979. **101**, № 4. С. 83 91.
- 23. *Tilly G. P.* Relationship for tensile creep under transient stresses // J. Strain Anal. 1972. 7. P. 61 68.
- 24. *Наместников В. С.* О ползучести алюминиевого сплава при переменных нагрузках // Прикл. мех. и техн. физика. 1964. № 2. С. 99 105.
- 25. *Наместников В. С.* Об определяющих уравнениях в теории ползучести // Там же. 1990. № 2. С. 121 125.
- 26. *Data* sheets on the elevated-temperature properties of 18Cr–10Ni–Ti stainless steel // NRIM Creep Data Sheet. 1987. No. 5B. 32 p.
- 27. *Data* sheets on the elevated-temperature properties of 2.25Cr–lMo steel // Ibid. 1986. No. 3B. 30 p.
- 28. *Data* sheets on the elevated-temperature properties of 12Cr stainless steel // Ibid. 1994. No. 13B. 44 p.
- 29. *Data* sheets on the elevated-temperature properties of 1Cr–lMo–0.25V steel // Ibid. 1990. No. 9B. 45 p.
- 30. *Data* sheets on the elevated-temperature properties of 1Cr–lMo–0.25V steel // Ibid. 1994. No. 31B. 41 p.

Поступила 01. 07. 2004