О вычислении диаграмм деформирования двухфазных керметов

В. Т. Головчан

Институт сверхтвердых материалов им. В. М. Бакуля НАН Украины, Киев, Украина

Предложены аналитические алгоритмы для построения диаграмм растяжения и сжатия двухфазных керметов, основанные на концепции средних по объему фаз напряжений и физических уравнениях теории малых упругопластических деформаций. Деформационные свойства и прочность кермета предполагаются зависящими от таких параметров его микроструктуры, как средний размер и коэффициент вариации распределения размеров зерен твердой фазы, коэффициент смежности зерен твердой фазы и средняя толщина прослоек металлической фазы. Выполнен численный анализ характерных параметров диаграмм деформирования твердых сплавов WC-Со в широких интервалах значений концентрации кобальта и размера карбидного зерна. Установлено хорошее соответствие между теоретическими величинами пределов прочности при растяжении и сжатии и известными экспериментальными значениями. Построенные модельные диаграммы деформирования твердых сплавов могут рассматриваться в качестве альтернативных по отношению к соответствующим экспериментальным диаграммам в переменных напряжение – относительное изменение длины образца.

Ключевые слова: кермет, твердый сплав WC–Co, диаграммы растяжения и сжатия, прочность и пластичность.

Введение. Керметы (керамико-металлические материалы) составляют широкий класс гетерогенных материалов конструкционного и инструментального назначения [1]. Благодаря сочетанию тугоплавкой и хрупкой неметаллической и пластичной металлической фаз композиты обладают физико-механическими и эксплуатационными характеристиками, которые существенно отличаются от таковых исходных компонентов. Экспериментальные диаграммы деформирования керметов строятся, как правило, в переменных осевое усилие P – изменение длины образца Δl (перемещение подвижного захвата испытательной машины) [2]. Замена удлинения Δl общей деформацией стержня $\varepsilon = \Delta l/l_0$ и осевого усилия *P* напряжением $\sigma = P/F$ практически не преобразует такие диаграммы в традиционные в механике материалов диаграммы в переменных напряжение – деформация даже в случае образца цилиндрической формы. При нагружении короткого образца из малопластичного материала в нем возникает сложное неоднородное напряженно-деформированное состояние, обусловленное влиянием концевых эффектов. В результате общая деформация может заметно отличаться от локальной деформации в среднем сечении [3]. Отметим также, что используемый в работе [3] способ измерения локальной деформации обладает, вероятно, недостаточной точностью.

Начальный участок диаграмм деформирования твердых сплавов WC– Со в [4] вычислялся с применением метода конечных элементов, в [5–7] – на основании средних по объему фаз напряжений. В настоящей работе предлагается аналитический алгоритм для построения диаграмм деформирования двухфазных керметов, базирующийся на основных соотношениях микромеханики макроскопически изотропных композитных материалов с

© В. Т. ГОЛОВЧАН, 2006

учетом характерных особенностей их микроструктуры. При этом исследуется процесс нагружения образца вплоть до его разрушения. Поскольку сопротивление керметов деформациям растяжения и сжатия различается между собой, диаграммы растяжения и сжатия рассматриваются отдельно. В обоих случаях численная реализация алгоритма выполнена для твердых сплавов WC–Co, которые являются типичными представителями композитных материалов класса керметов.

Микроструктура композита. Ниже металлическая фаза кермета называется связкой, так как, во-первых, ее функциональное назначение состоит в соединении частиц твердой фазы в единое целое. Во-вторых, связка не является чистым металлом, а представляет собой твердый раствор атомов керамического компонента. Зададим микроструктуру рассматриваемого композитного материала с помощью таких параметров: d_2 – средний размер зерен твердой фазы; V_2 – коэффициент вариации распределения размеров зерен твердой фазы; C_{2-2} – коэффициент смежности зерен твердой фазы, равный относительной доли их межконтактной поверхности; l_1 – средняя толщина прослоек связки.

Указанные параметры измеряются в плоскости шлифа методом случайной прямой и удовлетворяют равенству

$$\frac{l_1}{d_2} = \frac{1}{1 - C_{2-2}} \frac{c_1}{c_2}, \qquad c_2 = 1 - c_1, \tag{1}$$

где c_1 и c_2 – объемные концентрации фаз; коэффициент смежности C_{2-2} является функцией объемного содержания связки c_1 и коэффициента вариации V_2 :

$$C_{2-2} = F(c_1, V_2).$$
(2)

Вид функции *F* определяется по экспериментальным данным о микроструктуре с применением регрессионного анализа. Ниже все величины с индексом 1 относятся к связке, с индексом 2 – к твердой фазе.

Соотношения микромеханики упругопластических композитов. Используемый аналитический алгоритм для построения диаграмм деформирования двухфазных керметов основан на средних по представительному объему ΔV композита и средних по объемам фаз ΔV_1 и ΔV_2 ($\Delta V = = \Delta V_1 + \Delta V_2$) деформациях ε_{ij} , $\varepsilon_{ij}^{(1)}$, $\varepsilon_{ij}^{(2)}$ и напряжениях σ_{ij} , $\sigma_{ij}^{(1)}$, $\sigma_{ij}^{(2)}$. Для этих средних величин имеют место равенства:

$$\varepsilon_{ij} = c_1 \varepsilon_{ij}^{(1)} + c_2 \varepsilon_{ij}^{(2)}; \qquad \sigma_{ij} = c_1 \sigma_{ij}^{(1)} + c_2 \sigma_{ij}^{(2)}. \tag{3}$$

Применяются физические уравнения теории малых упругопластических деформаций:

$$\sigma = 3K(\varepsilon - \alpha\theta); \qquad s_{ij} = 2\mu' e_{ij}; \qquad \mu' = \frac{\sigma_i}{3\varepsilon_i}; \tag{4a}$$

$$\sigma = \frac{1}{3}\sigma_{kk}; \qquad \varepsilon = \frac{1}{3}\varepsilon_{kk}; \qquad s_{ij} = \sigma_{ij} - \sigma\delta_{ij}; \qquad e_{ij} = \varepsilon_{ij} - \varepsilon\delta_{ij}, \quad (46)$$

где K – модуль всестороннего сжатия; μ' – секущий модуль сдвига.

Наличие в первом равенстве (4а) температурной деформации позволяет учитывать остаточные термические микронапряжения, которые возникают в фазах во время остывания композитного материала после спекания (пропитки) из-за различия в коэффициентах теплового расширения фаз. Величина θ равна разности комнатной температуры и температуры, по достижении которой прекращается процесс релаксации касательных напряжений в застывшей связке.

Связь между напряжениями в фазах и макроскопическими напряжениями легко получить из равенств (4) и (3):

$$\sigma_{ij}^{(1)} = s_{ij}^{(1)} + \sigma^{(1)}\delta_{ij}, \qquad s_{ij}^{(1)} = m_{12}s_{ij}, \qquad \sigma^{(1)} = k_{12}\sigma + \sigma_{res}^{(1)};$$

$$\sigma_{ij}^{(2)} = s_{ij}^{(2)} + \sigma^{(2)}\delta_{ij}, \qquad s_{ij}^{(2)} = m_{21}s_{ij}, \qquad \sigma^{(2)} = k_{21}\sigma + \sigma_{res}^{(2)}.$$
(5)

где

$$m_{12} = \frac{\mu'_1(\mu'_2 - \mu')}{c_1\mu'(\mu'_2 - \mu'_1)}; \qquad k_{12} = \frac{K_1(K_2 - K')}{c_1K'(K_2 - K_1)}; m_{21} = \frac{\mu'_2(\mu'_1 - \mu')}{c_2\mu'(\mu'_1 - \mu'_2)}; \qquad k_{21} = \frac{K_2(K_1 - K')}{c_2K'(K_1 - K_2)}.$$
(6)

Выражения для остаточных микронапряжений имеют вид

$$\sigma_{res}^{(1)} = \frac{3K_1K_2}{c_1(K_2 - K_1)} (\alpha' - \langle \alpha \rangle)\theta; \quad \sigma_{res}^{(2)} = -\frac{c_1}{c_2} \sigma_{res}^{(1)}; \quad \langle \alpha \rangle = c_1\alpha_1 + c_2\alpha_2.$$
(7)

При определении переменных параметров упругости μ' и K' кермета воспользуемся формулами для эффективных модулей упругости двухфазного композитного материала, которые выводятся в рамках обобщенного сингулярного приближения теории случайных функций [8]:

$$K' = c_1 K_1 + c_2 K_2 - \frac{c_1 c_2 (K_1 - K_2)^2}{c_1 K_2 + c_2 K_1 + bkc}, \qquad bkc = \frac{4}{3} \mu_c;$$

$$\mu' = c_1 \mu'_1 + c_2 \mu'_2 - \frac{c_1 c_2 (\mu'_1 - \mu'_2)^2}{c_1 \mu'_2 + c_2 \mu'_1 + b\mu c}; \qquad b\mu c = \frac{\mu_c (9K_c + 8\mu_c)}{6(K_c + 2\mu_c)}.$$
(8)

Выбор в (8) модулей упругости тела сравнения обычно связывают с типом микроструктуры. Для матричного композита с дисперсной фазой 2 полагают $\mu_c = \mu_1$, $K_c = K_1$. Если микроструктура образована двумя взаимо-проникающими каркасами, то $\mu_c = c_1\mu_1 + c_2\mu_2$ и $K_c = c_1K_1 + c_2K_2$. Ниже для модулей упругости тела сравнения используем такие выражения:

$$\mu_{c} = (1 - C_{2-2})\mu'_{1} + C_{2-2}\mu'_{2}; \qquad K_{c} = (1 - C_{2-2})K_{1} + C_{2-2}K_{2}.$$
(9)

Данные равенства содержат микроструктурный параметр, который в соответствии с (2) предполагается зависящим не только от объемного содержания фаз, но и от коэффициента вариации распределения размеров зерен твердой фазы. При $C_{2-2} = 0$ все зерна фазы 2 разделены связкой, т.е. имеем матричный композит. Модули упругости твердого сплава WC–Co, вычисленные с использованием равенств (8) и (9), отличаются от экспериментальных значений для всех технических марок этого сплава всего на 2...4%.

Коэффициент теплового расширения кермета в равенствах (7) определяется по формуле [8]

$$\alpha' = \langle \alpha \rangle + \frac{\alpha_1 - \alpha_2}{K_2 - K_1} \left(\frac{1}{K'} - \frac{c_1}{K_1} - \frac{c_2}{K_2} \right) K_1 K_2.$$
(10)

Зависимость макроскопического коэффициента теплового расширения от пластических деформаций в фазах обусловлена зависимостью макроскопического модуля всестороннего сжатия в соответствии с первыми равенствами в (8) и (9).

Как следует из выражений (5), напряженное состояние в фазах является сложным даже в случае одноосного напряженного состояния композитного материала. В связи с этим диаграммы растяжения (сжатия) каждой из фаз необходимо модифицировать в соответствии с гипотезой единой кривой [9]. Связка в кермете обычно представляет собой твердый раствор тугоплавкой компоненты в металле. Ее диаграмма растяжения может существенно отличаться от диаграммы растяжения чистого металла. Тугоплавкая фаза является хрупкой при растяжении и проявляет некоторую пластичность в условиях сжатия. Уравнение единой кривой в переменных интенсивность напряжений σ_i – секущий модуль сдвига μ' имеет вид

$$\mu' = \mu, \quad \sigma_i \le \sigma_{\mathrm{T}}; \quad \frac{1}{\mu'} = \frac{1}{\mu} + \frac{3}{\sigma_i} f(\sigma_i), \quad \sigma_i > \sigma_{\mathrm{T}}, \tag{11}$$

где функция $f(\sigma_i)$ равна пластической деформации при одноосном напряженном состоянии.

Поскольку тугоплавкая фаза в микроструктуре кермета присутствует в виде каркаса и конгломератов твердых частиц, принимаем, что разрушение кермета инициируется разрушением тугоплавкой фазы. В таком случае для нахождения предела прочности кермета необходимо ввести определенный критерий разрушения твердой фазы. Воспользуемся для этого относительно простой гипотезой Баландина [10]:

$$(\sigma_i^{(2)})^2 + \sigma_{kk}^{(2)}(\sigma_c^{(2)} - \sigma_p^{(2)}) = \sigma_c^{(2)}\sigma_p^{(2)},$$
(12)

где $\sigma_{\rm c}^{(2)}$ и $\sigma_{\rm p}^{(2)}$ – пределы прочности при сжатии и растяжении соответственно.

Алгоритм вычисления диаграммы растяжения. При одноосном растяжении кермета напряжением $\sigma_3 = p$ гидростатическая составляющая тензора напряжений $\sigma = \frac{1}{3}p$, девиаторные компоненты $s_3 = \frac{2}{3}p$, $s_2 = s_1 = -\frac{1}{3}p$. Для сумм нормальных напряжений и интенсивностей напряжений в фазах на основании равенств (5) получаем такие выражения:

$$\sigma_{kk}^{(1)} = pk_{12} + 3\sigma_{res}^{(1)}, \qquad \sigma_i^{(1)} = pm_{12};$$

$$\sigma_{kk}^{(2)} = pk_{21} + 3\sigma_{res}^{(2)}, \qquad \sigma_i^{(2)} = pm_{21}.$$
(13)

Принимаем, что твердая фаза деформируется в упругом режиме вплоть до момента ее разрушения. Алгоритм вычисления диаграммы растяжения кермета состоит из следующих этапов.

1. Вычисление предела прочности σ_p из решения системы двух нелинейных алгебраических уравнений:

$$\mu_{1}^{\prime} = \mu_{1}, \quad \sigma_{i}^{(1)} \leq \sigma_{T}^{(1)}; \quad \frac{1}{\mu_{1}^{\prime}} = \frac{1}{\mu_{1}} + \frac{3}{\sigma_{i}^{(1)}} f_{1}(\sigma_{i}^{(1)}), \quad \sigma_{i}^{(1)} > \sigma_{T}^{(1)};$$

$$p^{2} m_{21}^{2} + (pk_{21} + 3\sigma_{res}^{(2)})(\sigma_{c}^{(2)} - \sigma_{p}^{(2)}) = \sigma_{c}^{(2)} \sigma_{p}^{(2)}.$$
(14)

При этом в выражениях (6), (8) и (9) секущий модуль фазы 2 совпадает с ее модулем сдвига, т.е. $\mu'_2 = \mu_2$.

2. Вычисление секущего модуля μ'_1 фазы 1 для заданной последовательности значений внешнего напряжения p в интервале $(0, \sigma_p)$ из решения первого в (14) алгебраического уравнения.

3. Определение по формулам (8) секущих модулей кермета и вычисление секущего модуля упругости $E' = \frac{9K'\mu'}{3K' + \mu'}$.

4. Определение полной и пластической деформации по оси растяжения:

$$\varepsilon = \frac{p}{E'}, \qquad \varepsilon_p = p\left(\frac{1}{E'} - \frac{1}{E}\right).$$
 (15)

В результате получаем последовательность точек диаграммы растяжения $\sigma = f(\varepsilon)$ или ее участка упрочнения $\sigma = \varphi(\varepsilon_p)$.

Диаграмма растяжения твердых сплавов WC–Co. Упругие характеристики материалов фаз рассматриваемого твердого сплава таковы: $\mu_1 = 81,5$ ГПа, $K_1 = 187,3$ ГПа; $\mu_2 = 301$ ГПа, $K_2 = 392$ ГПа.

Диаграмма растяжения кобальтовой связки на участке упрочнения с учетом ее *in situ* свойств приведена в [4] и может быть представлена в виде

$$f(\sigma_i^{(1)}) = 0.06 \ln \left[1 - \frac{1}{0.7} (\sigma_i^{(1)} - 0.27 - 0.22 l_1^{-0.5}) \right].$$
(16)

ISSN 0556-171Х. Проблемы прочности, 2006, № 3

103

Пределы прочности карбидной фазы при сжатии $\sigma_{\rm c}^{(2)}$ и растяжении $\sigma_{\rm p}^{(2)}$ полагаем зависящими от среднего размера зерен WC [11]:

$$\sigma_{\rm c}^{(2)} = 1,64 + 3,54 d_2^{-0.5}, \qquad \sigma_{\rm p}^{(2)} = 0,168 + 0,201 d_2^{-0.878}, \tag{17}$$

где напряжения σ измеряются в ГПа, средний размер карбидного зерна d_2 – в мкм.

Остаточные напряжения в (7) вычисляются при таких значениях коэффициентов теплового расширения и разности температур:

$$\alpha_1 = 13, 4 \cdot 10^{-6} \text{ K}^{-1}, \quad \alpha_2 = 5, 2 \cdot 10^{-6} \text{ K}^{-1}, \quad \theta = -700 \text{ K}.$$

Выражение для коэффициента смежности карбидных зерен (2) выбираем в виде [12]

$$C_{2-2} = 1 - c_1^{0.644} \exp(0.391V_2).$$
 (18)

Для описания всей совокупности марок твердых сплавов располагаем микроструктурными параметрами d_2 , V_2 и c_1 . Средняя толщина прослоек кобальтовой связки определяется формулой (1) с учетом равенства (18). Результаты вычислений предела прочности σ_p и предельной пластической деформации ε_p технических марок твердых сплавов ВК6, ВК10, ВК15, ВК20 и ВК25 при коэффициенте вариации $V_2 = 0,5$ приведены в табл. 1. Как следует из данных таблицы, предел прочности указанных сплавов при растяжении является монотонно возрастающей функцией от среднего размера карбидного зерна d_2 . Сплавы ВК6 и ВК10 разрушаются хрупко, а остальные имеют при растяжении очень малую предельную пластичность. Диаграмма растяжения наиболее прочного из рассмотренных сплавов ВК25 с достаточной точностью аппроксимируется двухзвенной ломаной линией с модулем упругости E = 460,7 ГПа до напряжения $\sigma = 0,745$ ГПа и модулем пластичности D = 283,3 ГПа за пределом упругости (рис. 1).

Рис. 1. Диаграмма растяжения сплава BK25 с карбидным зерном $d_2 = 1$ мкм.

	при растяжении твердых сплавов							
	<i>d</i> ₂ , мкм	Объемное содержание связки <i>с</i> ₁						
		0,1 (BK6)	0,16 (BK10)	0,24 (BK15)	0,305 (BK20)	0,37 (BK25)		
	1,0	0,84	1,06	1,280	1,410	1,490		
l		0	0	0,154	0,445	0,939		
	2,0	0,74	0,96	1,170	1,290	1,360		
l		0	0	0,171	0,448	0,911		
	3,0	0,71	0,91	1,120	1,230	1,300		
		0	0,09	0,179	0,449	0,895		

Таблица 1 Значения предела прочности и предельной пластической деформации при растяжении твердых сплавов

Примечание. Над чертой приведены значения $\sigma_{\rm p}$, ГПа, под чертой – $\varepsilon_{\rm p} \cdot 10^3$.

Алгоритм вычисления диаграммы сжатия. Прочность керметов при одноосном сжатии значительно выше, чем при растяжении. В этих условиях в тугоплавкой фазе также возникают пластические деформации, что оказывает существенное влияние на форму диаграммы сжатия кермета. Алгоритм вычисления такой диаграммы включает следующие этапы.

1. Вычисление предела прочности $\sigma_{\rm c}$ путем решения системы трех нелинейных алгебраических уравнений:

$$\begin{split} \mu_{1}^{\prime} &= \mu_{1}, \qquad \sigma_{i}^{(1)} \leq \sigma_{T}^{(1)}; \qquad \frac{1}{\mu_{1}^{\prime}} = \frac{1}{\mu_{1}} + \frac{3}{\sigma_{i}^{(1)}} f_{1}(\sigma_{i}^{(1)}), \qquad \sigma_{i}^{(1)} > \sigma_{T}^{(1)}; \\ \mu_{2}^{\prime} &= \mu_{2}, \qquad \sigma_{i}^{(2)} \leq \sigma_{T}^{(2)}; \qquad \frac{1}{\mu_{2}^{\prime}} = \frac{1}{\mu^{2}} + \frac{3}{\sigma_{i}^{(2)}} f_{2}(\sigma_{i}^{(2)}), \qquad \sigma_{i}^{(2)} > \sigma_{T}^{(2)}; \quad (19) \\ p^{2} m_{21}^{2} + (-pk_{21} + 3\sigma_{res}^{(2)})(\sigma_{c}^{(2)} - \sigma_{p}^{(2)}) = \sigma_{c}^{(2)} \sigma_{p}^{(2)}. \end{split}$$

2. Вычисление секущих модулей μ'_1 и μ'_2 для заданной последовательности значений *p* в интервале (0, σ_c) из решения первых двух уравнений (19).

3. Определение модулей кермета μ' и K' по формулам (8) и нахождение E'.

4. Вычисление полной и пластической деформации с помощью равенств (15).

Диаграмма сжатия твердых сплавов WC–Co. При рассмотрении диаграммы растяжения деформация твердой фазы предполагалась упругой, ее предел прочности при сжатии $\sigma_c^{(2)}$ в критерии разрушения (12) приравнивался к пределу упругости $\sigma_{0,05}$ поликристаллического WC. В условиях сжатия монокарбид вольфрама может деформироваться пластически, и в этом случае мы не располагаем экспериментальной диаграммой сжатия. В связи с этим определим характерные точки на такой диаграмме из экспериментальных концентрационных зависимостей $\sigma_{0,2}(V_{Co})$ и $\sigma_c(V_{Co})$ при сжатии твердых сплавов [13] путем их экстраполяции на нулевое содержание связки:

$$\sigma_{0,05}^{(WC)} = 1,64 + 3,54 d_{WC}^{-0,5}; \qquad \sigma_{0,2}^{(WC)} = 1,8 + 4,9 d_{WC}^{-0,5}; \sigma_{c}^{(WC)} = 2,4 + 5,6 d_{WC}^{-0,5}.$$
(20)

Для диаграммы сжатия поликристаллического WC на участке упрочнения воспользуемся аппроксимацией

$$\sigma = \sigma_0 + A \sqrt{\varepsilon_p}.$$

Определив параметры σ_0 и A на основании (20), получим

$$\varepsilon_{p}^{(\text{WC})} = 0,002 \left(\frac{\sigma - \sigma_{0,05}^{(\text{WC})}}{\sigma_{0,2}^{(\text{WC})} - \sigma_{0,05}^{(\text{WC})}} \right)^{2}.$$
 (21)

Связь между напряжениями и деформациями для кобальтовой связки и в случае сжатия твердых сплавов задается функцией (16). В качестве пределов текучести фаз в уравнениях (19) используются

$$\sigma_{\tau}^{(1)} = 0,27 + 0,22 l_1^{-0.5}; \qquad \sigma_{\tau}^{(2)} = \sigma_{0,05}^{(\text{WC})}.$$

Представляется достаточно обоснованным предположение о том, что в условиях сжатия твердого сплава прочность карбидного скелета отличается от прочности поликристаллического WC. Это связано с тем, что в данном случае межзеренная контактная поверхность, через которую передается от зерна к зерну нагрузка, составляет лишь часть такой поверхности в поликристалле. Поскольку величина удельной контактной поверхности зерен карбидной фазы равна коэффициенту их смежности, прочность карбидного скелета должна зависеть от C_{2-2} . Кроме того, его пределы прочности при растяжении и сжатии должны быть меньше аналогичных характеристик для поликристаллического WC, которые определяются последними равенствами в (17) и (20). Постулируемую зависимость выбираем в виде

$$\sigma_{\rm p}^{(2)} = (0,168 + 0,201d_2^{-0,878})\sqrt{C_{2-2}}, \qquad \sigma_{\rm c}^{(2)} = (2,4+5,6d_2^{-0,5})\sqrt{C_{2-2}}. \tag{22}$$

С учетом вышеприведенных данных можно вычислить прочность и пластичность рассматриваемых твердых сплавов. Результаты соответствующих вычислений предела прочности σ_c и предельной пластической деформации ε_p технических марок твердых сплавов ВК6, ВК10, ВК15, ВК20 и ВК25 при сжатии приведены в табл. 2. Коэффициент вариации V_2 принимался равным 0,5. Данные табл. 2 свидетельствуют о том, что предел прочности рассматриваемых сплавов является монотонно убывающей функцией от концентрации кобальтовой связки и среднего размера карбидного зерна. Зависимость пластической деформации в момент разрушения от этих параметров имеет более сложный характер.

	при сжатии твердых сплавов							
	<i>d</i> ₂ , мкм	Объемное содержание связки <i>с</i> ₁						
l		0,1 (BK6)	0,16 (BK10)	0,24 (BK15)	0,305 (BK20)	0,37 (BK25)		
	1,0	6,370	5,670	4,840	4,220	3,640		
l		0,372	0,329	0,317	0,343	0,408		
	2,0	5,160	4,650	4,020	3,540	3,070		
l		0,442	0,390	0,356	0,354	0,379		
	3,0	4,620	4,190	3,650	3,230	2,820		
		0,500	0,445	0,401	0,384	0,388		

Таблица 2 Значения предела прочности и предельной пластической деформации при сжатии тверлых сплавов

Примечание. Над чертой приведены значения σ_c , ГПа, под чертой – $\varepsilon_p \cdot 10^2$.

Для $c_1 < 0,305$ функция ε_p есть монотонно возрастающей от d_2 и убывающей от c_1 . При $c_1 > 0,305$ наблюдается противоположная тенденция. В табл. 3 приведены данные о пределах упругости $\sigma_{0,05}$ и пластичности $\sigma_{0,2}$ при сжатии рассматриваемых твердых сплавов. Оба предела монотонно уменьшаются с повышением концентрации кобальта и среднего размера карбидного зерна. Характерно, что отношение $\sigma_{0,2}$ к $\sigma_{0,05}$ увеличивается в направлении от малокобальтовых сплавов к многокобальтовым.

Таблица З

Значения пределов упругости и пластичности твердых сплавов при сжатии

d_2 , мкм	Объемное содержание связки <i>c</i> ₁						
	0,1 (BK6)	0,16 (BK10)	0,24 (BK15)	0,305 (BK20)	0,37 (BK25)		
1,0	4,82	3,00	1,93	1,47	1,18		
	5,84	5,24	4,36	3,24	2,25		
2,0	3,98	2,82	1,78	1,35	1,07		
	4,64	4,22	3,64	3,04	2,14		
3,0	3,57	2,74	1,71	1,28	1,02		
	4,09	3,75	3,28	2,84	2,08		

Примечание. Над чертой приведены значения $\sigma_{0.05}$, под чертой – $\sigma_{0.2}$, ГПа.

Теоретические диаграммы сжатия сплавов ВК6, ВК15 и ВК25 иллюстрирует рис. 2. По характеру эти диаграммы отличаются от аналогичных диаграмм растяжения большей кривизной. Их наклон к оси деформации заметно изменяется при значениях напряжения, при которых в фазах возникают первые пластические деформации. Так, например, для сплава ВК15 с карбидным зерном 2 мкм это происходит в окрестности точек $\sigma = 0,84$ и 3,3 ГПа. При $\sigma < 0,84$ ГПа обе фазы деформируются упруго, и этот участок диаграммы представляется отрезком прямой с модулем упругости E = 543,2 ГПа. В интервале напряжений $0,84 < \sigma < 3,3$ ГПа пластические деформации испытывает лишь металлическая фаза. Среднее значение модуля пластичности D = 459,9 ГПа. Для $\sigma > 3,3$ ГПа в пластическое состояние переходит также твердая фаза. На этом участке значение модуля пластичности равно 235,3 ГПа.

Рис. 2. Диаграммы сжатия сплавов ВК6, $d_2 = 1$ мкм (*a*), ВК15, $d_2 = 2$ мкм (б) и ВК25, $d_2 = 3$ мкм (*b*).

Обсуждение результатов. Для вычисления диаграмм деформирования двухфазных керметов с использованием изложенных выше алгоритмов необходимо располагать диаграммами деформирования фаз, которые правильно отображают их *in situ* свойства. Такие свойства формируются в результате применяемой многостадийной технологии изготовления керметов и, к сожалению, нужные диаграммы не всегда известны. Поэтому приходится привлекать некоторые вспомогательные экспериментальные результаты и вводить дополнительные предположения, которые трудно обосновать строго. В итоге возникает определенная аналитическая модель деформирования и разрушения кермета, степень адекватности которой реальной ситуации может быть выявлена лишь на основании сравнения теоретических и надежных экспериментальных результатов. Выполним такую процедуру для исследованных выше твердых сплавов группы ВК.

Композиты данного типа в условиях растяжения являются весьма хрупкими материалами, что сильно усложняет методику их испытаний на растяжение. Известно лишь несколько работ, посвященных этой теме. Диаграммы растяжения некоторых марок твердых сплавов WC–Co приведены в [2, 14]. Из-за широкого разброса экспериментальных результатов воспользуемся данными из [14] для сплава с объемным содержанием кобальта 0,37 и средним размером карбидного зерна 2,3 мкм. Заметим, что для приведенных здесь значений параметров его микроструктуры имеет место сильное нару-

шение равенства (1), что свидетельствует о большой погрешности их измерения. Предел прочности сплава равен 1,33 ГПа. Этот результат неплохо согласуется со значением 1,41 ГПа для сплава ВК25 с $d_{\rm WC} = 2,2$ мкм [2]. Вычисленная величина предела прочности сплава с микроструктурными параметрами $c_1 = 0,37$, $d_2 = 2,3$ мкм, $l_1 = 2,19$ мкм и $C_{2-2} = 0,38$ составляет 1,34 ГПа. Другие характеристики экспериментальной диаграммы (E = 424 ГПа, $\sigma_{0,01} = 0,895$ ГПа и пластичность $\varepsilon_p = 0,23\%$) значительно хуже соответствуют рассчитанным значениям (E = 460,7 ГПа, $\sigma_{0,01} = 0,76$ ГПа и $\varepsilon_p = 0,09\%$). Полная деформация в момент разрушения равна 0,38%.

В [2] приведены также данные о пределах прочности сплавов ВК15 и ВК6 при растяжении, равных 1,3 и 0,96 ГПа соответственно. Расчетные значения при $d_2 = 2,2$ мкм составляют 1,15 и 0,73 ГПа. Таким образом, соответствие между теоретическими и экспериментальными результатами ухудшается с уменьшением в сплаве концентрации кобальта. Сплав становится более хрупким, а диапазон рассеяния результатов измерений – более широким. Какие-либо сведения о точности результатов в [2] отсутствуют.

Экспериментальному исследованию параметров диаграммы сжатия твердых сплавов WC–Со посвящены многие публикации. Прочность некоторых составов сплавов при сжатии определялась в [2, 13] на образцах переменного поперечного сечения с утолщенными концами. Некоторые результаты этих работ и данные австрийской фирмы "Plansee Tizit GmbH" [15] представлены в табл. 4. Сравнение экспериментальных значений предела прочности с расчетными (табл. 2) показало достаточно хорошее их соответствие. Наибольшее различие, как и в случае растяжения, имеет место для малокобальтовых сплавов, хотя и оно находится в пределах 10%.

$d_{\rm WC}$,		V _{Co}					
MKM	0,1	0,16	0,24	0,305	0,37	источник	
1,0	6,80	5,3				[13]	
2,0	5,75	4,5	4,0	3,9	3,6	[13]	
	5,50					[15]	
2,2	5,35		4,2		3,8	[2]	
3,0	4,40		3,8	3,3	2,9	[15]	

Таблица 4 Экспериментальные значения предела прочности при сжатии

Сравнение теоретических значений предельной пластичности с экспериментальными некорректно, поскольку в процессе нагружения образца определяют только величину его относительного сокращения. Поэтому такие экспериментальные характеристики, как предел текучести, предельная пластическая деформация, удельная работа пластической деформации [16] являются условными и не соответствуют общепринятому смыслу. Это становится очевидным, если принять во внимание эволюцию разрушения образца [3]. Например, в [16] приведены следующие значения прочности и пластичности сплава ВК6 при сжатии с $d_{\rm WC} = 2,2$ мкм: $\sigma_{\rm c} = 4,95$ ГПа и $\varepsilon_p = 0,011$.

Соответствующие расчетные значения $\sigma_c = 5,02$ ГПа и $\varepsilon_p = 0,0046$. Таким образом, при практически совпадающих величинах пределов прочности экспериментальные и теоретические значения пластичности отличаются в 2,4 раза.

Заключение. Практическое использование изложенных выше алгоритмов вычисления диаграмм растяжения и сжатия предполагает прежде всего знание истинных свойств материалов фаз рассматриваемого кермета. Гипотеза разрушения твердой фазы (13) может считаться достаточно обоснованной лишь для твердого сплава WC–Co. Возможность ее применения к другому кермету остается неопределенной и потребует дополнительной проверки. Выполненный детальный анализ прочности твердых сплавов свидетельствует о высокой эффективности предложенных алгоритмов. Основанный на них вычислительный эксперимент позволяет относительно просто исследовать зависимость прочности и пластичности кермета от параметров его структуры.

Резюме

Запропоновано аналітичні алгоритми для побудови діаграм розтягу і стиску двофазних керметів, що базуються на концепції середніх по об'єму фаз напружень і фізичних рівняннях теорії малих пружно-пластичних деформацій. Деформаційні властивості і міцність кермету припускаються залежними від таких параметрів його мікроструктури, як середній розмір і коефіцієнт варіації розподілу розмірів зерен твердої фази, коефіцієнт суміжності зерен твердої фази і середня товщина прошарків металевої фази. Виконано числовий аналіз характерних параметрів діаграм деформування твердих сплавів WC–Co у широких інтервалах значень концентрації кобальту і розміру карбідного зерна. Виявлено хорошу відповідність між теоретичними значеннями границь міцності при розтязі і стиску і відомими експериментальними результатами. Запропоновані модельні діаграми деформування твердих сплавів можуть розглядатися як альтернативні по відношенню до відповідних експериментальних діаграм у змінних напруження – відносна зміна довжини зразка.

- 1. Кислый П. С., Бондарук Н. И., Боровикова М. С. и др. Керметы / Под ред. П. С. Кислого. Киев: Наук. думка, 1985. 272 с.
- 2. Лошак М. Г. Прочность и долговечность твердых сплавов. Киев: Наук. думка, 1984. 326 с.
- 3. Чернявский К. С., Травушкин Г. Г., Сопронова З. Н. Микромеханизмы деформации и разрушения на последовательных стадиях нагружения сжатием твердых сплавов WC-Co // Пробл. прочности. 1993. № 10. С. 53 62.
- 4. *Poech M. H., Fischmeister H., and Spiegler R.* Assessment of the in situ flow properties of the cobalt phase in WC–Co hard metals // J. Hard Mater. 1991. 2, No. 3-4. P. 197 205.

- 5. *Литошенко Н. В.* Оценка условного предела упругости твердого сплава WC–Co при растяжении // Пробл. прочности. 1999. № 6. С. 116 122.
- 6. *Литошенко Н. В.* Оценка условного предела упругости твердого сплава WC-Co при сжатии // Там же. 2000. № 1. С. 111 119.
- 7. *Литошенко Н. В.* Закономірності впливу залишкових термічних мікронапружень та дисперсії розмірів карбідних зерен на деформаційні характеристики твердих сплавів WC–Co: Автореф. дис. ... канд. техн. наук. – Київ, 2002. – 24 с.
- 8. *Шермергор Т. Д.* Теория упругости микронеоднородных сред. М.: Наука, 1977. 494 с.
- 9. *Писаренко Г. С., Можаровский Н. С.* Уравнения и краевые задачи теории пластичности и ползучести. Справочное пособие. Киев: Наук. думка, 1981. 494 с.
- 10. *Баландин П. П.* К вопросу о гипотезах прочности // Вестн. инженеров и техников. 1937. № 1. С. 19 24.
- 11. Головчан В. Т., Бондаренко В. П., Литошенко Н. В. О прочности поликристаллического монокарбида вольфрама при растяжении // Пробл. прочности. 2003. № 4. С. 82 92.
- Golovchan V. T. and Litoschenko N. V. On the contiguity of carbide phase in WC–Co hardmetals // Int. J. Refr. Met. Hard Mater. – 2003. – 21. – P. 241 – 244.
- Johanson I., Persson G., and Hiltscher R. Determination of static and fatigue compressive strength of hard metals // Powder Metal. 1970. 13, No. 26. P. 449 463.
- Nishimatsu C. and Gurland J. Experimental survey of the deformation of the hard-ductile two-phase alloy system WC-Co // Trans. ASM. – 1960. – 52. – P. 469 – 484.
- 15. *World* Directory and Handbook of Hardmetals and Hardmaterials. Fifth edition. J. A. Kenneth (Ed.). Brooks. Int. Carbide Data, 1992. 953 p.
- 16. Линдо Г. В., Чистякова В. А., Песков Б. А. и др. Исследование пластических свойств и износостойкости буровых твердых сплавов // Твердые сплавы. Структура и свойства твердых сплавов: Сб. науч. тр. ВНИИТС. – М.: Металлургия, 1983. – С. 63 – 65.

Поступила 09. 03. 2005