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T. N aropa

TexHnyeckuii yHnsepcuteT r. Onone, Monblua

PaccuMTaHbl TeopeTuYeckne KOIMMPULMEHTbI KOHLEHTPAUMIA HamNps>KeHUA ¢ UCrMofb3oBaHnem
NOHATUA "PUKTMBHBIN Paanyc” ans TPYBHbIX N TPYGHO-(hNAHLEBbIX CBApHbLIX CoeAvHeHMiA. Mpea-
NOXKEHO 151 OLEHKN YCTaN0CTHO AONMOBEYHOCTU MaTEPUANOB B YCNOBUSX LIMK/IMUYECKOTO YMCTO-
ro uarméa, YMCTOro KpyuyeHWUst N KOMGUHALMM MPOMOPLIMOHANLHOTO M3r16a C KpydeHueMm WCrosb-
30BaTb NapameTpbl NAOTHOCTM SHEPTUU HOPMaNbHBIX U CABUTOBLIX AehopMaLinii B KPUTUUECKNX
NMockocTsX. KpuTwnuyeckme NAOCKOCTM Onpeaensniv MeToaamu, 6asvpyloLmMMUCs Ha MakcuMalb-
HbIX MapameTpax NA0THOCTU 3HEPIMU HOPMasbHbIX AeddopMaunii U CABUMOBbLIX AedpopmaLyii.

KntoyueBble CNOBaA: csapHoe coeagmnHeHnme, NNOTHOCTL 3HEPTIMM JedopMmaumum, Teo-

peTmuyeckuid Ko3d G MUuMEHT KOHIUEHTpPAaUL UM HanNnpsaxX eHNINl.

Introduction. In the case of local approach to the w elded joints subjected to
m ultiaxial loadings, it is necessary to know stress concentration at the w eld edge
[1].H0wever,usua||y it is not possible to m easure a real radius of the toe of weld,
so a suitable m ethod ofmeasurem ents is necessary. T his problem was successfully
solved for welded joints subjected to uniaxial loading w here the fictitious radius

m ethod was applied [1]. This m ethod was based on the N euber theory [2]. This

paper presents a m odel of fatigue life estim ation based on the param eter of strain
energy density under the com plex stress state. In this paper, the results obtained
for the tube-tube and flange-tube welded joints under pure bending, torsion, in-

and out-of-phase com bination [1] are estim ated w ith use of som e chosen criteria
based on the energy param eter [3, 4].
1. T heoretical N otch Coefficient. A ccording to the N euber proposal

stress averaging is based on the m icrostructure hypothesis and it is assum ed that

crack initiation is controlled by stress in the notch bottom averaged in a sm all
volum e of the m aterial in the place w here the m axim um stress occurs. The
suitable m aterial param eter is a substitute m icrostructural length p . Stresses in
the notch bottom should be averaged along this length norm al to the notch

surface. T he calculated fictitious radius is expressed by the follow ing equation:

Pf = P + sP * = sP «. (1)
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W hen the radius is known, we can calculate the notch coefficient. T he

fictitious radius also depends on geometry of specimens and a loading type [1, 2].

The fictitious notch radius pf depends on the actual notch radius p, the
substitute m icrostructural length p and the m ultiaxiality coefficient s, according
to the N;uber proposal. In m any cases, the zero notch radius is assumed, pZO,
w ith p = 0.4 mm for welded steels [2, 5]. For round specim ens subjected to
bending (for V = 0.3), we obtain S = (5 - 2v + 2v 2)/(2—2v+ 2v 2) and P =
1.16 mm for bending and S =1 and pft:0.4 mm for torsion.

2. Energy M odel for Fatigue L ife A ssessm ent. The strain energy density

param eter is defined as [2]

1 signlo(t) F signlo(t)] 1
w (t)zA O(t)e(t) g [ () 2 g [ ()1 = _ a(t)£(t)sign[£<t)‘ O(x)]. (2)

G eneralized criterion ofthe norm al and shear strain energy density param eter

in the critical plane m ay be w ritten as [4]

we,(t)y =pWnscy + KWn(t), (3)
w here
Wnsct) - 05v  (t)Ens(tysign (rascly, £NSct)g, (4)
Wviy = 05s OV(t)EV(tysign (v, Encol, (5)
and the coefficients and k are in order to chose the criterion.

Criterion of the Maximum Parameter of Shear and Normal Strain Energy
Density in the Plane Determined by the Normal Strain Energy Density Parameter
The critical plane is determ ined by the norm al strain energy density param eter

and criterion (3) m ay be written as

we () =PWWVt) + Wv(y, (6)

w here coefficient is selected depending on the m aterial according to the results
of nonproportional tests

Criterion of the Maximum Parameter of Shear and Normal Strain Energy
Density in the Plane Determined by the Shear Strain Energy Parameter, in tnis
case, the critical plane is determ ined by the shear strain energy density param eter

and criterion (3) m ay be written as

4 — k(l—V)2
we (= ko — v)WHscty + il +v 7 (7)

w here K:(aaf/raf).
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A n algorithm for determ ination of fatigue life m ay be w ritten in the follow ing

steps. For local strains we obtain the follow ing values of strains (stage 1)

(8)

10,

O w ing to the biaxial stress state on the surface and the edges ofthe notch (or

weld), the stresses an(t) and (t) and strains and (t)y are
af(u a XX (1) mta yy(t) 2ntmfa Xy(t), 11,
TFS(t)y = 1flsaxx(t)y+ mfmsayy(t)y + (1fms+ Ismf)axy(t), (12)
e f (t) If € XX (t) me‘yy(&) »ie zz (t) 2Afmfexy(1), (13)
efs(t) = |If xx(t)y + mfmseyy(t)y+ nfnsezz(t)+ (1fms=+ Ismfjyexy(t)y. (14)

If we have the stress and strains histories (stage 2) in any plane defined by
the direction cosines, in this plane we can determ ine histories of the strain energy
density parameter. For criterion (6) the critical plane is defined by the param eter
ofnorm al strain energy density according to Eqgs. (5), (11), and (13). For criterion

(7) the critical plane is defined by the parameter of shear strain energy density

param eter - according to Eqgqs. (4), (12), and (14) The position of the critical
plane (stage 3) is defined by the given values of direction cosines In, mn, nn
(n=f,8) of unit vectors f and S occurring in fatigue criteria. The method of
fatigue dam age accum ulation includes fatigue dam age accum ulation in m any

planes of the given particle and selection of the plane of the m axim um dam age

degree. In the plane stress state, the direction cosines 1f, mf, Is,and ms o f the
vectors f and S, occurring in the form ulas for the energy density param eter of
norm al strains and shear strains, are defined by one angle a as If = cos a,
mf = sin a, Is= — sin a , and MS = cos a From the previous considerations it

appears that the criterion w here the critical plane is determ ined by the m axim um
param eter of norm al strain energy density is valid for cast iron being a cast
m aterial. T he criterion defined in th e plane determ ined by th e m axim um
param eter of shear strain energy density is valid for steel. U nder cyclic loading it

is necessary to determ ine history of the energy parameter only for one cycle (T).
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Table 1
Mechanical Properties of StE460 Steel
Material E, GPa v R0.2, MPa Rm>MPa a5,%
StE460 206 0.3 520 670 25
Table 2
Calculated Coefficients of Stress Concentration and Fatigue Notches
Weld joint Kb K tt Kb Kett
Flange-tube 3.93 1.85 311 1.88
Tube-tube 2.20 177 192 1.79
Table 3
Parameters of S —N Curves of the Tested Joints in the Local System
Welded joint A m r A. r K (5+105)
Flange-tube  17.034 4.306 0.965 25.782 8.233 0.974 1.65*
Tube-tube 16.342 4.207 0.968 - - - 1.65*

Fig. 1. Geometries of welded joints: (a) flange-tube and (b) tube-tube.

Let us verify the criterion assum ing the critical plane determ ined by the
m axim um norm al strain energy density param eter. In the case of flange-tube
joints (Fig. 2a), the results are included into the scatter band for pure bending
except for torsion . A s for tube-tube joints (Fig. 2b), only one point for
proportional loading and one point for non-proportional loading are located

outside the scatter band for pure bending. There were no tests of tube-tube joints

under pure torsion because cracks occurred outside the joint in th e native
m aterial. L et us consider the criterion assum ing the critical plane determ ined by
th e m axim um param eter o f shear strain energy density Figure 3 show s
com parisons of calculated and experim ental lives for particular tests. In the case

of flange-tube joints (Fig. 3a), the results are included into the scatter band for

pure bending except for one point for proportional loading. As for tube-tube
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joints (Fig. 3b), one point for proportional loading and one point for non -
proportional loading and one point for non-proportional loading are located
outside the scatter band for pure bending, like in the case w hen the critical plane
is determ ined by the norm al strain energy density param eter (Fig. 2b)

N calc,cycle N calc >cycle

Fig. 2. Comparison of calculated and experimental lives for flange-tube (a) and tube-tube (b)
welded joints according to criterion for the critical plane determined by the normal strain energy
density parameter for 5 = 10.

N calc,cycle N calc, cycle

Fig. 3. Comparison of calculated and experimental lives for flange-tube (a) and tube-tube (b)
welded joints according to criterion in the critical plane determined by the shear strain energy
density parameter.

If the critical plane is determ ined by the m axim um param eter of norm al
strain energy density, after the non-proportional tests it is necessary to determ ine
the coefficient 5 including a part concerning the shear strain energy density
param eter in th e expression for the equivalent strain energy density . Thus,
application of the energy criterion using the critical plane determ ined by shear

strain energy density seem s to be m ore convenient.
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CONCLUSIONS

1. In order to assess history of m ultiaxial fatigue in w elded joints by local
stresses and strains, we m ust know a real local radius at the weld edge. O w ing to

application of the fictitious local radius, w hen in the w orst case for sharp notches

p = 0 means a crack, we are able to calculate notch coefficients for bending KR
and for torsion Kft.Thus,we should determ ine separate fictitious notch radii pf
for bending and torsion . In the case o f steel w elded joints, the radii are
pfb= 1,16 mm for bending and pft= 0.4 mm for torsion.

2. The param eter of norm al and shear strain energy densities in the critical

plane determ ined by the param eter of shear and norm al strain energy density for

steel w elded joints gives com parable results. However, if the critical plane is
determ ined by the norm al strain energy density param eter, it is necessary to
define (in experim ents) the weight function including th e shear strai energy

density param eter in this plane. Thus, application of the energy criterion defined
in the critical plane determ ined by the shear strain energy density param eter is
recom m ended.
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Pe3some

PospaxoBaHOo TeopeTMUHIiI Koed iyieHTNW KOHLULEHTpPauuii HanpyxX eHb i3 BUMKOPMUCTAaH -
HAM noHATTA “¢ iKkTMBHMUIK papgiyc” ans Tpy6HUX i TpyO6GHO- naHUueBMUX 3BapHMUX
3¢ HaHELG. 3anponoHOBAaHDO AN oY iHKHM BTOMHOT AL OBTFOBIYHOCTI M aTepianis B
yMoBax L4 MKAI4YHOFNO 4YMCTOrFO B3rMHY, Y4MNCTOTFO KPYTiHHS Ta KomMm©GiHauii nponop-

yioHanbHOTo 3rMHYy 3 KPYTiIiHHAM BMKOPMWCTOBYBAaTMW NapameTpu TycTuHN eHeprTii

HOPpPpManbHMUX Aed opmauyii i pedopmayii 3cysy B KPpWTKUYHMX nnonouw M HaKX. K pwu-
TMMYHI NNoOw MHM BUIHAYAaNMW mMeTogamMu, W o 6a3yi TbCA Ha MaKCHUManNbHNUX nNapa-
MeTpax TFTycTMWUHMU eHeprii HopManbHMWUX pfedopmayiii Ta ged opmalyii 3cyByYy.
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