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OueHKa ynpyronaacTUYeckoro napamerpa CMeLlaHHOCTU Ha OCHOBE
pasfInyHbIX KpuUTepueB pocTa TpewwuHbl. CoobuieHne 2. MeTtop
peLleHus 1 pesynbTaThl

B. H. LUnaHHMKoB, XX. M. CaxabyTanHoB

Ka3aHCKWiA rocyapCTBEHHbIA SHEPreTMUecKuiA YHMBEPCUTET, KasaHb, Poccus

Mpeano>keH HOBbIA MOAXOA K PELleHMI0 3aay CMellaHHbIX BW0B pPas3pyLieHWs, OCHOBaHHbIN Ha
AethOPMaLMOHHO/ TEeopuu NNACTUYHOCTU CO CTEMeHHbIM YNPOYHEHMEM W Ha UCMONb30BAHUM
ynpyroro 1 nnacTWYecKoro napameTpPOB CMELAHHOCTW. B 3aBUCMMOCTW OT YCNOBUIA CMellaH-
HOCTM Harpy><eHNs U UCXOHOrO HaNpaBneHUs IMHUN TPELLMHLI 3TOT NOAX0/ N03BONSIET OLEHUTb
LUIMPOKMNIi CNeKTP BO3MOXKHbIX TPAeKTOPUIA pacnpoCTpaHeHNs TPELLMHbI: N0 MexaHu3mMam casura
M OTpbiBa. NS ABYXMepHON 3aaus B NOMSPHONA cUCTEME KOOPAMHAT WCMOoMb3yeTCs ypaBHeHue
paBHoBecus ¢ (hyHKUMed Spu. Ans maTepuana co CTeneHHbIM yNpoYHeHeM NPUMEHSAETCS MOAeNb
Pam6epra-Ocryga. C NoMOLb0 MeTOfa KOHEUHbIX Pa3HOCTel MONyYyeHO UUCNeHHOe pelueHue
3alauM CMELIaHHOTO Harpy><eHus AN rpaHWdHbIX YCNOBWIA, COOTBETCTBYWOLINX ABYM Clydyasm
pacnpoCTpPaHeHNs1 TPeWnHbl. Ha OCHOBAHUM MpPeAsiodKEHHOr0 MOAXOAA OLEHEHbl 3aBUCMMOCTMH
napameTPOB CMELIAHHOCTMW OT PasfMyHbIX NapameTpPOB HArpy>KeHus U HaknoHa TPeLuHbl npu
pasHbIX 3HaYeHUsX NoKasaTens YNPOUHeHUs, KOTOPble XOPOLIO COrNacyloTcs C 9KCNepuMeHTab-
HbIMU [JaHHbBIMK.

KnueBble CNOBA: noseaeHmne TPpew UH NpU CMelW aHHOM Tune aehopMuUpOBaHNS,
Manomacw tabHas TekyuyecTb, CMeHa MexaHuM3mMa pas3spylleHUs, POCT TPew WHbI,

napameTpbl CMeWaHHOCTH.

Governing Equations. In this section, we will follow the development of
the governing equations of crack-tip fields for strain-hardening material. We will
then use these equations to construct mixed-mode crack-tip fields for two crack
growth direction criteria or competing fracture mechanisms under both plane
strain and plane stress conditions. We consider a crack with the crack front
parallel to the z-axis in the Cartesian coordinate system, X, Y,and Z,where the
z-axis is perpendicular to the x —Y plane. Let I and L denote the polar
coordinates centered at the crack tip, while 0 is the angle of crack plane
orientation with respect to the y-axis (Fig. 1).

W ithin the context of small strain approach, the equilibrium equations are

EO_rr 41 dOra Orr—Oiai=0’
dr r dd r
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Fig. 1. The biaxially loaded inclined crack and the near and far fields.
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r dd dr r

For two-dimensional plane problems, equilibrium is ensured for all stresses

derived from the Airy stress function by

1dp 1 d29p d2 d (1 d(p\
0

rdr r2dd2 dr2 Ord— drirdd) (2)

The partial differential equation governing the Airy stress function (2) (under
the restriction of no unloading) can be obtained by eliminating the strains from

the com patibility equation

1d2(rfdd) | 1 d2ermr  lderr 2 d( df
r

r dr2 ra2 ddz r dr 2dr1  dd

The material is assumed to obey the total deformation theory of plasticity
with a power-law hardening stress-strain response. Plastic deform ation is assumed
to be independent of the hydrostatic component of the stress, P = akk/3, and,
further, is assumed to be completely determined by the first invariant of the stress

deviator

Sij 0 j - 30 kKA (4)

The generalized stress-strain relation is

.y 3
Efi] —a+ ~)si; s 3 0kkdij+~a00n Lj»> (5)
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3
where v is Poisson’s ratio and ae is the effective stress defined by ae = ZSJSJ.

In simple tension, constitutive equation (5) for strain-hardening m aterial reduces

to the model suggested by Ramberg and Osgood

falE, a<ao,

e=
[a/E + ao(a/E)yn, a>aol.

(6)

In the above relation, a0 and N are the hardening parameters, while o 0 is the
yield stress in simple tension. The yield condition for strain-hardening material
can be assumed to have the form o0€=00 or oe/o 0= 1

The dominant singularity solution for a cracked plate of a strain-hardening
m aterial, known as the HRR -singular field [1, 2]), was completed by the solution
for the mixed-mode elastic-plastic stress distribution, corresponding only to
tensile fracture mechanism, presented by Shih [3]. According to these approaches,
the dominant singularity governing the asymptotic behavior of the stresses at the

crack tip has the following form:

aij=aO0K Mr 1/(n+1)~ij,
(7)
ae=alOKpr«imn+1)~e,

where KM is the plastic stress intensity factor, and MPpP is the near-field mixity

parameter of Shih [3]. The dimensionless functions ~j and ~e depend only on
the polar angle B, M P.,and n. Under plane strain conditions, when the elastic
strains are negligible and the dimensionless effective stress is related to both the

stress components and the Airy dimensionless stress function <, the following

expression holds:

a a >)2 + 3-2p (8

whereas the relationship under plane stress conditions is given by:

-2 ~2 ~2 -~ - ~2
ae=armr aBB_ alraB 3arB, (9)
where
- - - dp
~m=sp+ 62 aBB=s(s- 1)(, a rB=(1- s)

In the present work, the fourth-order differential equation governing the
dominant singularity derived from the com patibility equation is expressed in the
form ofan eigenvalue equation for S, by taking into account Eqs. (8) and (9). For

plane strain, we get

tiz ’ %
R aj a 2 = 0, (10)
V< V
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where

ai = n(S—2)[n(s—2)+ 21, ae = s(2—s),
a3 = 4(s —[n(s —2)+ 1], ad=3(1—s)2,

w hile the differential equation for plane stress is given by:

( N
n(s—2) m on- s(s—3)0 —2 +
+n(S—2)[n(S—2) + :I_]crn_1 +
+ 6(s—Dn(s —2)+ 1 =0, (11

where

~2=52(s2—3s+ 3)0 2+ 3(5—1)2 +02 + s(3—5)00 2m

Boundary Conditions. For a stress-free crack, boundary conditions on both

upper and lower crack lips can be taken as

~ee— )=0, ~re— )»=0 or 0— »=0 01— )»=0

~ee(r) =0, ~re () = 0, or 0O(n)=0, 01ln)= 0, (12

and with an imposed symmetry for the case of a tensile crack (pure Mode 1)

0 1(0) = 0 3(0) = o- (13)

In the case of pure shear (Mode 11), we have the boundary conditions in

Eqs. (12) as well. We also have to satisfy the following conditions for 0 =0

~re)= max and ~ee(0)= d =0 or 00)=020)=0. (14)

In the mixed mode loading conditions, except for the stress-free boundary
conditions (12) and the assumption [4] that the singular parts of strain energy
density W must be equal at opposite points on either side of the crack, that is

W(n )= W(—n ), it is necessary to introduce additional conditions in intermediate
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points of the integration interval from —n wup to + n. These conditions have to
correspond to the dominant fracture mechanism. It is clear from the preceding
discussion that the dominant mechanism (between the two considered) determines
the stable crack growth direction. Therefore, we propose to complete the
boundary conditions for mixed mode fracture proceeding from the assumption

that some dimensionless stress has to have an extremum along the crack growth
*

direction 0= 0

Then, for fracture mechanism referred to as tensile crack, it will be the
condition of the crack growth direction along the normal to the maximum tensile

stresses, i.e.,

=0 or <20*=0, —n < O0*<<. (15)

This type of boundary condition was proposed in (Dolgorukov [5], Shlyannikov
and Dolgorukov [6]). In the case of fracture mechanism referred to as Shear
crack, an additional boundary condition is related to the crack propagation in the

direction of maximum shear strains or stresses, i.e.,

(16)

In conclusion, the four-order differential Eq. (10) for plane strain and Egq.
(11) for plane stress, respectively, are solved numerically for two groups of
boundary conditions. Each of them corresponds to the dominating fracture
mechanism: the tensile crack [Eqs. (12) and (15)] and the shear crack [Eqgs. (12)
and (16)].

M ethod of Solution. For the purpose of solution of nonlinear eigenvalue
equations, apply both the shooting method and the finite-difference method.
These two methods are applied using iteration. However, the shooting method
and its variants were inadequate for mixed mode analysis. A more correct method
employing the finite difference procedure was used in our investigation and
highly accurate solutions with very rapid convergence were obtained.

The nonlinear fourth-order differential eigenvalue equations (10) and (11)
for plane strain and plane stress conditions are solved numerically by means of

transform ation to the system of first-order differential equations

(17)
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The finite-difference counterpart for system (17) is introduced as

~ A6i ~ ~

oitl—oi=_~ (0 11+ + 0 iix

~ ~ A6i ~ ~

0 1itl—o li=~ ~ (0 2itl+ 0 2ix

- - AGi ~ - (18)

0 2,i+1 —0 2,i = “» (0 3,i+1 + 0 3,i),

0 3,i+1 0 3,
Here imax is the number ofnode points within the interval —n < 6 < n. The step
size of integration A6i = 61+l —6i was varied in an appropriate manner. The

solution of the nonlinear equation (17) to transfer to finding of the roots for the
algebraic system (18). Before describing the solution of Eqs. (17), we shall
formulate the Cauchy problem for the same system. Let us assume an

approximate solution for vth iteration to be known. The last equation of system
(17) can be treated as one nonlinear equation with respect to variable 0 3Ww+) and
written in the form

s/~ (vk 1)\~ (v+l)  ~
° (0 3,i+1)= 0 3,i+1 —0 3,i —

—{<?i+1[0 i+1(0 3v#1)),0 1,i+1(0 3v+1))),0 2,i+1(0 3v+1)),0 3%i+i] +
+<@i(01,020,02030)} , -0, (19)

in which values 0i+1, 01i+1, and 0 2i+1 are expressed through first three

equations of system (17):

(el AQ;

1(2V|++1) =0 Z,i + 9= (0 3v++i + 0 3 i),

: AQir - A0

01, , 20204 2.0 (20)
(vl AQi f -~ AQi

(V+)—0i+ 5 1201i+ 2 20, (0 1+ +i+0 3,i)

The equation (20) is solved by the Newton method

~(v+1) ~(v) $ (0(v),0(v),02v),0 3v))
0 3,i+1 = 0 3,i+1 (VW .7 . (21)
y 30 3,i+1
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The iterations proceed by V until the difference between the consecutive values

of and <~>3/)+1 is less than a given number

on 8+1 < £- (22)

M ore details of the solution are described in [7].

M ode M ixity Parameters Determination. For the mixed mode small-scale
yielding problem, two parameters KM and MP introduced by Shih (1974) are
required to specify completely the stress and strain fields in the vicinity of the
crack tip. As has already been discussed related to Eqgs. (7), K = KM is the

amplitude ofthe dominant singularity or plastic stress intensity factor and M P s

the near-field mixity parameter

tan 23
7L 0 (0= 0 29

As follows from the above method based on the boundary conditions, the
angular distribution of stresses and strains depends on the crack growth direction
*

angle 0 or the dominant fracture mechanism. From our solutions which are

*

given below, we can point out that, for each particular value of 0 , one or

generally two values of MP ranging from pure Mode | to pure Mode Il can be
*

found. Thus, the crack deviation angle 0 to identify each possible set of

dimensionless stresses and strains distributions and M P cannotbe thought of as

a unique measure of the near-field in the light of the fracture mechanism under

mixed mode Ioadi'ng. In turn, the crack grow th direction angle 0 can be found

through any fracture criterion expressed in terms of the elastic stress intensity
factors. Several different criteria have been proposed for determining the
direction of crack growth under general mixed mode loading conditions (see, for
example the criterion by Shlyannikov and Braude [8]). Hence, it is possible to
connect the near-field to the far-field which by-passes an analysis of the
intermediate field as it was proposed in Part 1 by equation (14). Unlike the
investigation of Shih [3], plastic mixity parameter M P in the present work will
directly be obtained from both dimensionless ° 00 and ° rO distributions without
a finite element analysis of intermediate fields, but calculating the relationship
between elastic and plastic mixity parameters.

In accordance with the approach by Shih [3], the plastic stress intensity
factor KM in pure Mode I (or pure Mode Il) can directly be expressed in terms
of corresponding elastic stress intensity factor using Rice’s /-integral. In mixed
mode small-scale yielding, KM can also be expressed in terms of the /-integral
(Shih [3]). That is
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V(n+1
K2+ K2 (Y
i= Ine ~)(KRI)Ml and kM = 2 * (24)
aooln(e )
where Kj and K 2 are elastic stress intensity factors
odna
= 2 [(L+~) - (1—~")cos20] and K2=~2n-~ (1—")sin20, (25)
and E = E for plane stress, E =e/(1—v2) for plane strain, where v is

Poisson’s ratio.

In the above relations, & and N are the hardening parameters, a is the half
crack length, 0 is the inclined angle of crack to the y-axis, and ] is the biaxial
normal stress ratio. Different degrees of biaxiality and mixed mode are given by
the combinations of 0 and ]. Tensile load corresponds to 0 = 90° for any ], and
pure shear load to 0= 45°, ] = —1 Note that the crack growth direction angle is
a function ofthese parameters [i.e., 0 = 0* (o ,él,],v,rlla)] expressed in the form
of a fracture criterion.

The numerical constant Inco ) is obtained from the s‘ingula’rity analysis by

means of conjugation solutions for far- and near-fields

f (Wdy —Oj-njUixds) = 0.57(1 —v2)o2[(1+]2)—(1—] 2)co0s20]. (26)

A fter transform ation ofthe left part of Eq. (26), we have the following expression

for the integral along contour * close to crack tip

f(Wdy —o jnjUixds)= ao(KM)nlr (n+1)(s—2)+11n (0 *), (27)
2
where
Ine*)= fQ (n,e)de, (28)
and
= e u N+lcos( sin
0t . orrlue
1

(~rrur + ~Treue)cose.
n+ 1

Employing the Ramberg-Osgood relation between stresses and strains and the
stress components derived from the stress function Airy as well, we can obtain the
dimensionless radial and tangential displacements for plane strain and their

derivatives included in the previous equation
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n+ 1 dur
ur(a) = 7, (n + Lun 1[a20 + 0 2]. ub(a) = ) —3un~1(i-s)01 (29)
where
dUr 3N+ 1)un-3 N—1 uou ~2 u u
AP ee— U, ~2 ~p1(a20 + 02)+ 0e(a201+ 03)

Pl=2(a20+ 02)(a201+03)+ 224010 2.

dur 1ldL n+ 1 u dUa

u~ _da_ = _ﬁ"d_a —3————ﬁ———u e (1—s)o 1, ur + “JaT = (s —2)ur

w hile the following expressions hold for plane stress

1 0 d o
Ur(a) = Hs_—ZH L0 n—1js(3 —s)r2 + 2
(30)
n+1 A
Ua (a) dur(a) g, sy a0el
n
where
dur(a) un 1 I(n—1~ s(3—s)u+d 0 + s(3—s)do + d o
0
n(s —2)+ 11 2u
dua(a) n—i

2 Ur(a),

N = 2s2(s2—3s+ 3)0d0 + (5s2—9s+ 6)r ~-2 +

d20 d30 u d30
+ 22— 2o T+ s(3—s)o — 3

It should be noted that the integration constant given by Eq. (28) has
different values under plane stress and plane strain which are denoted as |0 and
.respectively. The amplitude KM has been introduced since it is convenient

to normalize the dimensionless stress tensor u y(6,n,|\/| P) so that effective stress
[ue(a,Nn,MP)] is equal to 1. Thus, for small-scale yielding, that is when the

plastic zone near the crack tip is very small compared to crack length, the
amplitude ofthe singularity KM can directly be determined by application ofthe
./-integral [Eq. (24)].
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Finally, the nonlinear governing equations (10) and (11) for both types ofthe
dominating fracture mechanisms can be solved numerically using the iteration
scheme with error and step-size control. Due to the mixed mode loading, we need
to consider the crack-tip fields from 0 = —n to 0 = +n. To satisfy the stress-free
boundary conditions, we have ~ee = ~re = 0 at 0= £n. We also reinforce the

boundary conditions that are related to the leading fracture mechanism so that the

stresses <700 and o Ie are extrema along the crack growth direction 0 =0

Results and Discussion. In this section, we study the general mixed mode
loading conditions. For the cases that we consider here, we introduce two types of
crack-tip fields. The first one, referred to as tensile crack field type, corresponds
to Mode | predominant loading conditions [Eqgs. (12), (15)]. The other, shear
crack field type, is related to M ode Il predominant loading co%nditions [Egs. (12),

(16)]. One ofsuch boundary conditions is set at points 0 =10 predetermining the

H

crack grow th direction. Thus, the variable 0= 0 possesses consecutive values in

a range from 0 =0 up to 0 = —80° with step size equal to 5° It should be
*

noted thatwe have pure Mode | at 0 = 0 for the tensile crack, while pure Mode Il

takes place for the shear crack. For each value of 0=0 , with the help of the

obtained dimensionless stress distributions, the appropriate values of plastic
mixity parameter l\/lp are calculated that identify each concrete case of the
mixed mode crack behavior.

Besides, in our numerical computations with predominant Mode | Itﬁiding

conditions, the mixity parameter Mp varies from 1to 0 by varying 0=0 from
0 =0 upto 0 = —(70—80 ), respectively, depending on the strain-hardening

exponent n.

In 6/he case of predominant Mode Il fracture mechanism, M P changes from
0

0 (at 0 = 0)to 1. Our analysis and computation data for the two-dimensional

problem take into account the different crack behavior for two main types of
stress-strain state because the results for plane strain and plane stress are
contrasted.

According to ournumerical results, the angular variations ofthe dimensionless
singular crack-tip stress and strain fields, 000 and , are shown in Fig. 2a-d
for the two materials corresponding to the strain-hardening exponent N= 3 and
N= 13, respectively.

Note that when we construct the power-law solutions, we assume that the

extrema of the singular stresses 000 and ~~ (or ~~) corresponding to the

. . . . . . " c .
dominant fracture mechanisms exist in the crack growth direction 0=0 . This
fact is confirmed in Fig. 2, where the angular variations of ~ 00 and are

shown for various values 0=0 (and consequently for different values of the

mixity parameter Mp). The crack-tip fields shown in Fig. 2a, b are the tensile

crack type fields while in Fig. 2c, d are presented the shear crO}ck type fields.
0
These results are necessary to establish dependence between 0 and |\/|p for

each ofthe considered dominant fracture mechanisms. From Fig. 2a, b, itis clear

that the departure from Mode | conditions (thatis, M P less than unity) gives rise
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to a reduction in the peak value of the amplitude of the tensile stress component
~ 0 associated with the tensile crack dominant singularity in the plastic zone of
the crack-tip. Distributions similar to those shown in Fig. 1 have been determined

for N=2,3, 5, 9, and 13 and plane stress conditions.

Fig. 2. Angular variations of (a, b) tensile stresses and (c, d) shear strains for different near-tip
mixities corresponding to n =3 and n = 13 under plane strain.

Summarized Mixed Mode Crack Behavior Parameters. The maximum
tensile stress and maximum shear stress (or strain) criteria have been used in
experimental studies of the crack growth direction in mixed mode fracture for
brittle and ductile materials [8-10]. Some experimental results show that the

angle of crack growth direction coincides with the maximum tensile stress

position. On the other hand, high Mode Il components induced shear-controlled
failure. Predominant Mode Il loading drives the crack in the maximum shear
direction. In ductile steels, in pure Mode 11 condl_iiiions, the stable crack extends
approxim ately in its origibnal'dir'ection (that |s 0 ~ 0). The predi.cted directions
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of maximum tensile stress and maximum shear according to our small-scale
yielding plane-strain analysis (for example, results in Fig. 2 and others) for the
work-hardening materials with N=2,3, 5, 9, and 13 are summarized in Fig. 3a.
The upper set of curves is related to the tensile crack fracture mechanism and
agree with [3], whereas the lower set curves correspond to the shear crack fracture

mechanism.

Fig. 3. Integration parameter In and crack angle 0 as functions of the near-tip mode-mixity Mp
and strain-hardening exponent, (a, b, c) - plane strain, (d, e, f) - plane stress.
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Similarresults under plane stress conditions are shown in Fig. 3d. Unlike the
plane strain conditions, under the plane stress despite the presence of some
discontinuity areas on the upper crack surface, the trend to achieve the maximal
magnitude ofthe tensile stress for MP G (0.65 —0.90) is clear. This is connected
with omitting the elastic terms in a complementary potential energy functional.
As can be seen, this uncertain behavior area comes into existence at N> 5 and its
size increases as the strain-hardening exponent value increases. Note that the
behavior of the shear crack under plane stress is more sensitive to the variation of
the strain-hardening coefficient than under plane-strain conditions.

The method developed by Li [11] allows a simple evaluation of the plastic
mixity parameter without analysis of the near tip field by decomposing the In-
integral into sym metrical and anti-symmetrical parts with respect to the crack
axis. By considering these decompositions, two sets of the integral parameters

*| *11
In and In were obtained which are functions of the power hardening

coefficient N and mixity parameter MP. Here INn is the corresponding
integration constant defined in [3] and by the proposed Eq. (28). However, as was
mentioned earlier, MP is not univocal parameter that is necessary for

identification of the near-tip asymptotic fields. In contrast to this, the integration
*

constant 1N obtained from Eq. (28) through the crack growth direction angle 6

is a strong function of the dominant fracture mechanism as is shown in Fig. 3b
and 3e for plane strain and plane stress, respectively. Moreover, I N is an essential
parameter allowing the determination of the plastic stress intensity factor by Eq.
(24). According to our approach, the relationship between the plastic mixity
parameter M P and the integration constant |IN is established for both the
dominant fracture mechanisms and shown in Fig. 3c and 3f in plane strain and
plane stress, respectively, for different hardening coefficient N. It can be seen that
Fig. 3c is in good agreement with the Shih’s data [3] who carried out an
intermediate field analysis by the finite element calculations to obtain the
Mp — ME relationship for small-scale yielding. The principal advantage of our
approach is that the mixity parameter MP can be evaluated immediately from
the stress field solution by Eqgs. (10) and (11) taking into account Eqs. (12)-(16)

with any types ofthe boundary conditions. The results ofthe present work plotted
in Fig. 3c and 3f support the argument that KM is the general plastic stress

intensity factor (instead of the elastic K1 and K2) in mixed-mode small-scale
yielding conditions even though there are two different type of the dominant
fracture mechanism.

In order to determine whether both the maximum tensile stress and the
maximum shear stress crack propagation direction criteria are appropriate to

directly connect the near-field to the far-field, the scheme of [(14), Part 1] is
*

applied. Following the scheme (14), by using the ME versus 6 curves of Fig. 4
*

(Part 1) as well as the 6 wversus Mp curves of Fig. 3a, d, Mp can be translated

into a function of M E for small-scale yielding as shown in Fig. 4, for instance,
under equibiaxial tension-compression (* = —1). The plots clearly show that the
computed values of Mp for a given M e forthe tensile crack differed from the

results for the shear crack for the same stressed state and the same value of n. Itis
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concluded that the relation of Mp to ME depends primarily on the crack
growth direction criterion and the non-singular term and secondary on the
strain-hardening exponent N It is not surprising that the strain-hardening
behaviour exhibited in the shear crack case, where the plastic strain is less
constrained, could be different from that exhibited in the tensile crack case. The
computed range of Mp —M e -variation under plane strain calculated by scheme
(14) coincides, in general, with finite element study of Shih [3], however, our
approach permits the clear identification of the nominal biaxial stress state with

respect to parameter governing plastic mixed-mode crack behavior.

Fig. 4. Near-field mixity Mp versus far-field mixity Me by the maximum tensile (tensile crack)
and shear stress (shear crack) criteria for equibiaxial tension-compression (» = —).

In Fig. 5 are shown dependencies between Mp —M e according to both
considered criteria for the compact-tension-shear specimen developed by Richard
and Benitz [12] which allows to realize in a full range of mixed mode loadings

from the pure Mode | to pure Mode II.
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Fig. 5. Near-field mixity Mp versus far-field mixity ME for compact-tension-shear specimen.

Some experimental results [9, 10, 13] give arough empirical estimate of the
critical applied mixed mode ratio characterizing the usual change in fracture
mode. As follows from these experimental data, which are shown in Fig. 6 for
various ferritic steels, the transition of the fracture mode occurs at a relatively
constant elastic mixity parameter Me value 0f0.68. In mixed mode loading, this
Me-value corresponds to the plastic mixity parameter, approximately
Mp :0.75 - 0.85 depending on the strain-hardening exponent N. These
experimental results are exactly confirmed by our numerical data that are
represented for plane strain in Fig. 3a. Itis clear that the crossing area of separate
curves, corresponding to each (between two considered) dominating mechanism,
form a small zone of the truly mixed mode fracture. The position of this zone of
unstable equilibrium corresponds to the change of the Ieading fracture
mechanism. As is shown in Fig. 3a, the mixed transition angle (0 ~ 35— 45°)

could be influenced also by the strain-hardening exponent.

10.
tensile crack growth
0.8
shear crack growth
ferritic steels: Al-alloys:
* A508-3 B=20mm O A 7075-T6 B*9.5mm
0.3- + HY130B=20mm O A 5083-0 B=8mm
m SWM4L, -75'C B=flmm @ A 6061-T651B=20mm
¢ SWMIA B=2mm  © A 2024-T3B"Imm
r SIE 550 B=5mm Al 2024-T3 B-2.3mm
Al 2024-T3 B=6mm
0.0
0.0 0.2 0.4 0% 0.8 1.0

(/iJE)ON af [mu
Fig. 6. Mixed mode ratios ME characterizing the change in fracture mode (reproduced from [9]).
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Another complicating background of our analytical results can be found by
comparison with experimental data [14] related to the Stage I-Stage Il transition
under low cycle fatigue failure. They have used the expression of Tanaka [15] for
effective elastic stress intensity factor, KeT, to find the fastest mode on crack
growth, Stage | or Stage Il under biaxial loading with an applied normal stress
da,and a shear stress r. Solution [14] gives a condition for the state of stress at

9/ 9
the Stage I-Stage Il transition, i.e., fx=4r"7aa= 1.077, when the shear to tensile

strain ratio for plastic fracture is 2= 156 while for elastic crack behavior 2= 1.35.
M aking use ofthe expressions [14] for stress intensity factors, giving Mode | and

M ode Il crack opening
K1= (aal/a)dna and Ka=(~(aa/9)a+ ra)dna, (31)

we may obtain the elastic mixed mode parameter as follows

2 i Kio2 0 (x al12)2 2
— tan — tan ) (32)

n n K aly2+r2 N -yIT+

)
I
—
@
=1
1

Substituting N = 1.077 into previous equation, one obtains ME = 0.611.
Thus, although our analysis is only applicable to small-scale yielding around
crack tips, the theoretical transition values ME = 0.60-0.75 for plane strain
agree surprisingly well with experimental values for structural steels with
different properties of [14], ME =061, and [9], ME =0.68. Authors [14]
consider that the cause of the Stage I-Stage Il transition has been associated with
microstructural features such as grain boundaries and also with the stress-strain
state and the strain amplitude because higher ranges making a transition more
likely. As the tensile strain component was increased, reducing 2, Stage Il cracks
appeared, becoming dominant in fatigue fracture.

As is seen in Fig. 6 the transient area for aluminum alloys takes range on
Me from 0.a5 to 0.75. Note that the specimen thickness for both the ferritic
steels and the aluminum alloy AI16061-T651 is 5-3a mm that assumes the
realization of the plane strain conditions under tests. In contrast, for aluminum
m aterial A12024-T3 the thickness is 1-6 mm that corresponds to the plane stress
state. These experimental results for aluminum alloy Ala0a4-T3 agree well with
our analytical predictions indicating for the plane stress the range ofthe dominant
fracture mechanism change on Mp as 0.5-0.95.

Conclusions. Unlike the well-known approach of Shih to calculate the
relationship between ME and Mp, in the present paper, the near-field mixity
parameter Mp was obtained directly from the compatibility equation with
accordance to proposed new scheme of the solution [by the Part 1 through the
equation (14)]. The results of both numerical and analytical investigations given
in the present work demonstrate that mode mixity parameters as ME, Mp, and
I N are sensitive to the crack growth direction criteria. One of the main results is
also the establishment of the distinction in the crack behavior under the plane

strain and the plane stress. Besides the qualitative characteristics corresponding to
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each fracture mechanism in the whole range of the mixed mode loading such as
the constant of integration 1n are found. This will enable us to use the 1 n—B
0,

% . .
locus andthe B —Mp locus, a more reasonable approach in the physical sense,

rather than the presently used In—Mp locus as fracture criteria in the
elastic-plastic mixed mode fracture investigations. The present solutions suggest
that outside the transition zone dominates only one leading fracture mechanism:
either the tensile crack or the shear crack. Strictly speaking, the presence of traces
of another fracture mechanism almost always is found on the fracture surface,
therefore we should speak about the domination of a mechanism, but not of its
certain existence.
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Pestome

3anponoHoBaHO HOBWI Mifgxid 00 PO3B’A3aHHA 3afay 3MillaHuUX BUAIB PYMHY-
BaHHS, L0 6a3yeTbCsl Ha fAedhopMaLiliHiii Teopii NNacTUYHOCTI 3i CTeneHeBMM
3MiLHEHHSIM Ta BUKOPUCTaHHI NPY>XHOr0o i N1acTUYHOro napameTpiB 3MiLLIaHOCTI.
Y 3a71eXHOCTI Bif YMOB 3MiLLIAHOCTI HaBaHTAXEHHS i BUXIAHOro Hanpas/eHHs
NiHIT TPIWWHM Uei nigxig A03BOSE OLHUTY LUMPOKUIA CAEKTP MOX/TMBUX TPaEK-
TOpili PO3MOBCIOMAXKEHHS TPILUMHKL: 33 MexaHi3mamu 3cyBy i Bigpusy. Ans aBo-
BMMIpHOI 3afa4i B MONSAPHIA CUCTEMI KOOPAUHAT BUKOPUCTOBYETLCA PIBHAHHSA
piBHOBaru 3 oyHKuieto Epi, gna martepiany 3i cTeneHeBUM 3MiLHEHHAM - MOJE/b
Pamb6epra-Ocryga. 3a AOMOMOro MeTOAY CKIHYEHHUX Pi3HWULb OTPUMAHO YmC/Io-
BMIN PO3B’A30K 3ajayi 3MilLIAHOCTi HaBaHTaXKEHHSI AN FPaHUYHMX YMOB, LLO
BignoBifaloTb ABOM BUMagKam pPO3MOBCIOMKEHHS TpilwmHW. Ha ocHoBi 3anpo-
NMOHOBAHOI0 MigX04y BU3HAYEHO 3a/1eXXHOCTI NapameTpiB 3MiLLAaHOCTI Bif Pi3HMX
napameTpiB HaBaHTaKEHHA Ta HaxXw/y TPIWMHA 3a Pi3HMX 3Ha4YeHb MOKa3HUKa
3MiLHEHHSA, WO Ao6pe Y3rofKylTbCA 3 eKCNepUMEHTAIbHUMN JaHUMMU.
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