УДК 621.793:539.319

Определение напряжений в двухслойном покрытии

Н. А. Долгов

Институт проблем прочности им. Г. С. Писаренко НАН Украины, Киев, Украина

Предложен подход, позволяющий аналитически определить распределение нормальных и касательных напряжений в пластине с двухслойным покрытием. Показано, что благодаря оптимальному выбору конструктивных и технологических параметров системы основапокрытие можно снизить уровень напряжений в покрытиях. Отмечено, что научно обоснованные рекомендации по снижению напряжений в системе основа-покрытие необходимы как конструкторам, так и технологам.

Ключевые слова: покрытие, основа, касательные напряжения, нормальные напряжения, теплозащитные покрытия, деформации, перемещения, дифференциальные уравнения, упругие задачи.

Введение. Для установления причин разрушения покрытий в процессе эксплуатации и прогнозирования их ресурса необходимо знать напряженное состояние (HC). Кроме того, для корректного и достоверного экспериментального определения прочностных характеристик системы основа–покрытие следует учитывать напряжения, возникающие в покрытии, основе и плоскости адгезионного контакта.

В настоящее время широкое применение находят двухслойные теплозащитные покрытия, состоящие из внешнего керамического слоя и металлического подслоя. При воздействии нагрузки из-за разных упругих свойств двухслойного покрытия и основы возникает неоднородное HC. Эта особенность многослойных материалов должна учитываться при разработке различных типов деталей с покрытиями. Исследование напряжений, вызывающих отслоение и растрескивание двухслойных покрытий, – весьма актуальная научная задача.

Известны различные подходы для оценки HC в покрытии при нагружении основы внешними силами. Аналитические модели рассматривают только однослойные покрытия, в то время как широкое применение получили двухслойные покрытия.

Для изучения HC рассмотрим плоскую пластину с покрытием, растягивающуюся под действием одноосной нагрузки [1]. Покрытие наносится на верхнюю и нижнюю поверхности пластины [1]. Пластина с покрытием имеет некоторые толщину и конечную ширину. Длина покрытия меньше длины пластины, которая используется в качестве основы. Покрытие нанесено симметрично оси основы. Предполагается идеальное сцепление между слоями. Задача решается в упругой постановке. Растягивающая нагрузка прикладывается к торцам пластины. Вдали от свободных краев покрытия HC системы однородно. Определяются нормальные и касательные напряжения, возникающие в покрытии при нагружении основы.

В работе [2] построена мембранная модель для тонких пленок. С помощью модели можно описывать только касательные напряжения в плен-

[©] Н. А. ДОЛГОВ, 2005 ISSN 0556-171Х. Проблемы прочности, 2005, № 4

ке, в то время как нормальные напряжения в пленке и основе определить нельзя. В [3] построены балочная и мембранная модели для участка покрытия, соединенного с упругим полупространством. Балочная модель в отличие от мембранной учитывает изгибную жесткость.

В плоскости адгезионного контакта основы и покрытия предполагается проскальзывание, вследствие чего величина касательных напряжений постоянна в зоне проскальзывания [4].

Для определения напряжений в покрытии получено интегрально-дифференциальное уравнение [5]. Эти напряжения зависят от расстояния до свободного края покрытия (x = 0):

$$\sigma_{f,x}(x) = \sigma_0 - \frac{2h}{\pi} \frac{E_f(1-\nu_s^2)}{E_s(1-\nu_f^2)} \int_0^\infty \frac{\partial \sigma_{f,s}(u)}{\partial u} \frac{du}{x-u},$$

где h – толщина покрытия; x – расстояние от свободного края покрытия; σ_0 – однородные напряжения в покрытии; $\sigma_{f,x}$ – напряжение в покрытии; E_s , E_f и v_s , v_f – модули упругости и коэффициенты Пуассона основы и покрытия соответственно.

Установлено [6], что покрытия растрескиваются после нагружения. Напряжения в покрытии между двумя трещинами находятся из выражения

$$\sigma_{xx}^{f}(x) = \frac{\sigma_{0}^{s}}{K} + \sigma_{r}^{f} - \frac{2h}{\pi K} \int_{-L/2}^{L/2} \frac{\partial \sigma_{xx}^{f}(u)}{\partial u} \frac{du}{x-u},$$

где σ_0^s – напряжения, приложенные к основе; σ_r^f – остаточные напряжения в покрытии; K – отношение модулей упругости основы и покрытия; L – длина покрытия между двумя трещинами (длина нетреснутого сегмента покрытия); u – расстояние в продольном направлении, в середине сегмента покрытия оно равно нулю, на краях: – L/2 и L/2. В этом выражении первая составляющая соответствует нетреснутому покрытию и идеальной передаче напряжений вдоль поверхности адгезионного контакта основы и покрытия при их упругой деформации. Интегральные составляющие соответствуют взаимодействию, вызванному близостью свободных поверхностей, и снижению уровня напряжений. Уравнение решается конечно-разностным методом в предположении, что оба материала деформируются упруго.

Цель работы заключалась в выводе аналитических зависимостей, позволяющих определить нормальные и касательные напряжения в двухслойном покрытии при приложении растягивающей нагрузки к основе.

Анализ напряженного состояния пластины с двухслойным покрытием. Рассмотрим пластину с покрытием, нанесенным на верхнюю и нижнюю поверхности основы. Растягивающая нагрузка прикладывается к основе l (рис. 1). Покрытие состоит из подслоя 2 и наружного слоя 3. В двух плоскостях адгезионного контакта между основой l и подслоем 2 (I), а также между подслоем 2 и наружным слоем 3 (II) при растяжении возникают касательные напряжения τ_1 и τ_2 соответственно.

Рис. 1. Расчетная схема образца с двухслойным покрытием.

Аналогично работам [1, 7] полагаем, что касательные напряжения в плоскостях I и II пропорциональны разности перемещений в соседних слоях материалов, составляющих систему основа-покрытие:

$$\begin{aligned} \tau_1 &= S_1(u_1 - u_2); \\ \tau_2 &= S_2(u_2 - u_3), \end{aligned} \tag{1}$$

где S_1, S_2 – некоторые постоянные системы основа–покрытие; u_1, u_2, u_3 – перемещения центров тяжести основы, подслоя и наружного слоя соответственно.

Разница между удлинениями соседних слоев системы основа-покрытие для плоскостей I и II зависит как от внешней растягивающей нагрузки, так и от поперечных сил, эквивалентных воздействию соответствующих слоев:

$$\frac{\partial}{\partial z}(u_1 - u_2) = C_{11}Q_1 + C_{12}Q_2 + \varepsilon_0;$$

$$\frac{\partial}{\partial z}(u_2 - u_3) = C_{21}Q_1 + C_{22}Q_2,$$

(2)

где C_{11}, C_{21} и C_{12}, C_{22} – податливости поперечного сечения, на которые действуют поперечные силы Q_1 и Q_2 соответственно в плоскостях I и II; ε_0 – удлинение при действии внешней нагрузки на основу без покрытия.

Величина ε_0 равна:

$$\varepsilon_0 = -\frac{P_1}{E_1 F_1},\tag{3}$$

где P_1 – внешняя сила, приложенная к основе; E_1 – модуль упругости основы; F_1 – площадь поперечного сечения основы. Величины C_{11} , C_{12} , C_{21} и C_{22} равны соответственно:

$$C_{11} = \frac{2}{E_1 F_1} + \frac{1}{E_2 F_2}; \qquad C_{12} = -\frac{1}{E_2 F_2};$$
 (4a)

ISSN 0556-171Х. Проблемы прочности, 2005, № 4

$$C_{21} = -\frac{1}{E_2 F_2}; \qquad C_{22} = \frac{1}{E_2 F_2} + \frac{1}{E_3 F_3},$$
 (46)

где E_2, E_3 – модули упругости подслоя 2 и слоя 3 (рис. 1) соответственно; F_2, F_3 – площади поперечного сечения подслоя 2 и слоя 3 соответственно.

Площади поперечных сечений вычисляются из следующих выражений:

$$F_1 = 2Ht; (5)$$

$$F_2 = h_2 t; (6)$$

$$F_3 = h_3 t, \tag{7}$$

где 2H – толщина основы (такое обозначение принято аналогично работам [1, 7, 8], где рассматривалось симметрично нанесенное покрытие); h_2 , h_3 – толщина подслоя 2 и слоя 3 (рис. 1) соответственно; t – ширина основы и покрытия.

Продифференцировав выражения (1) и подставив в них (2), получим

$$\frac{1}{S_1} \frac{\partial \tau_1}{\partial z} = C_{11}Q_1 + C_{12}Q_2 + \varepsilon_0;$$

$$\frac{1}{S_2} \frac{\partial \tau_2}{\partial z} = C_{12}Q_1 + C_{22}Q_2.$$
(8)

Касательные напряжения τ_1 и τ_2 в плоскостях I и II определяются по выражениям

$$\tau_1 = \frac{1}{t} \frac{\partial Q_1}{\partial z};$$

$$\tau_2 = \frac{1}{t} \frac{\partial Q_2}{\partial z}.$$
(9)

Таким образом, систему дифференциальных уравнений для определения поперечных сил в плоскостях I и II можно преобразовать следующим образом:

$$\frac{1}{S_{1}t} \frac{\partial^{2}Q_{1}}{\partial z^{2}} = C_{11}Q_{1} + C_{12}Q_{2} + \varepsilon_{0};$$

$$\frac{1}{S_{2}t} \frac{\partial^{2}Q_{2}}{\partial z^{2}} = C_{12}Q_{1} + C_{22}Q_{2}.$$
(10)

Решение неоднородной системы дифференциальных уравнений (10) состоит из частного решения этой системы и общего решения соответствующей однородной системы.

С помощью линейного преобразования функций Q_1 и Q_2 введем такие функции Q_1^* и Q_2^* , при которых система дифференциальных уравнений (10) преобразуется в два независимых дифференциальных уравнения:

Определение напряжений в двухслойном покрытии

$$Q_{1} = \alpha_{11}Q_{1}^{*} + \alpha_{12}Q_{2}^{*};$$

$$Q_{2} = \alpha_{21}Q_{1}^{*} + \alpha_{22}Q_{2}^{*},$$
(11)

где α_{11} , α_{12} , α_{21} , α_{22} – некоторые постоянные множители.

Если решение однородной системы уравнений отыскивать в виде

$$Q_1^* = A_1 \operatorname{sh} k_1 z + B_1 \operatorname{ch} k_1 z;$$

$$Q_2^* = A_2 \operatorname{sh} k_2 z + B_2 \operatorname{ch} k_2 z,$$
(12)

где A_1 , B_1 , A_2 , B_2 – постоянные, определяемые из граничных условий, то для нахождения корней характеристического уравнения k_1 и k_2 получим уравнение вида

$$\begin{vmatrix} S_1 t C_{11} - k^2 & S_1 t C_{12} \\ S_2 t C_{21} & S_2 t C_{22} - k^2 \end{vmatrix} = 0,$$
 (13)

откуда

$$k^{4} - k^{2}(S_{1}tC_{11} + S_{2}tC_{22}) + S_{1}S_{2}t^{2}(C_{11}C_{22} - C_{12}^{2}) = 0.$$
(14)

Уравнение (14) имеет корни k_1 и k_2 :

$$k_{1}^{2} = \frac{1}{2} (S_{1}tC_{11} + S_{2}tC_{22} + \sqrt{(S_{1}tC_{11} - S_{2}tC_{22})^{2} + 4C_{12}^{2}S_{1}S_{2}t^{2}}); \quad (15)$$

$$k_{2}^{2} = \frac{1}{2} (2S_{1}tC_{11} + 2S_{2}tC_{22} - 2\sqrt{(S_{1}tC_{11} + S_{2}tC_{22})^{2} - 4S_{1}S_{2}t^{2}(C_{11}C_{22} - C_{12}^{2})}). \quad (16)$$

Коэффициенты α_{11} , α_{12} , α_{21} , α_{22} определяются из однородных систем линейных уравнений, определитель которых равен нулю:

$$(S_{1}tC_{11} - k_{i}^{2})\alpha_{1i} + S_{1}tC_{12}\alpha_{2i} = 0;$$

$$S_{2}tC_{21}\alpha_{1i} + (S_{2}tC_{22} - k_{i}^{2})\alpha_{2i} = 0, \quad i = 1, 2.$$
(17)

При *i*=1 получим

$$(S_{1}tC_{11} - k_{1}^{2})\alpha_{11} + S_{1}tC_{12}\alpha_{21} = 0;$$

$$S_{2}tC_{21}\alpha_{11} + (S_{2}tC_{22} - k_{1}^{2})\alpha_{21} = 0,$$
(18)

откуда

$$\frac{\alpha_{21}}{\alpha_{11}} = \frac{k_1^2 - S_1 t C_{11}}{S_1 t C_{12}} = \frac{S_2 t C_{12}}{k_1^2 - S_2 t C_{22}}.$$
(19)

ISSN 0556-171Х. Проблемы прочности, 2005, № 4

Чтобы решение уравнений (18) было нетривиальным, положим условие нормированности коэффициентов α_{i1} :

$$\sum_{i=1}^{2} \frac{\alpha_{i1}^2}{S_i t} = 1.$$
 (20)

Нормируем коэффициенты α_{11} и α_{21} , введя обозначение:

$$\frac{\alpha_{21}\sqrt{S_1}}{\alpha_{11}\sqrt{S_2}} = \frac{\sqrt{S_1S_2}tC_{12}}{k_1^2 - S_2tC_{22}} = \lg\beta,$$
(21)

откуда

$$\alpha_{21} = \alpha_{11} \sqrt{\frac{S_2}{S_1}} \, \mathrm{tg} \,\beta. \tag{22}$$

В соответствии с выражением (20) получим

$$\frac{\alpha_{11}^2}{S_1 t} + \frac{\alpha_{21}^2}{S_2 t} = \frac{\alpha_{11}^2}{S_1 t} + \frac{\alpha_{11}^2}{S_1 t} \operatorname{tg}^2 \beta = 1.$$
(23)

Тогда

$$\frac{\alpha_{11}^2}{S_1 t} = \frac{1}{1 + \text{tg}^2 \beta} = \cos^2 \beta.$$
(24)

Окончательно запишем:

$$\alpha_{11} = \sqrt{S_1 t} \cos \beta;$$

$$\alpha_{21} = \sqrt{S_2 t} \sin \beta.$$
(25)

Аналогично при *i* = 2 имеем

$$\alpha_{12} = -\sqrt{S_1 t} \sin \beta;$$

$$\alpha_{22} = \sqrt{S_2 t} \cos \beta.$$
(26)

Выражения для неизвестных Q_1^* и Q_2^* представим в виде

$$Q_{1}^{*} = \frac{\alpha_{11}}{S_{1}}Q_{1} + \frac{\alpha_{21}}{S_{2}}Q_{2} = \sqrt{\frac{t}{S_{1}}}Q_{1}\cos\beta + \sqrt{\frac{t}{S_{2}}}Q_{2}\sin\beta;$$

$$Q_{2}^{*} = \frac{\alpha_{12}}{S_{1}}Q_{1} + \frac{\alpha_{22}}{S_{2}}Q_{2} = -\sqrt{\frac{t}{S_{1}}}Q_{1}\sin\beta + \sqrt{\frac{t}{S_{2}}}Q_{2}\cos\beta.$$
(27)

Тогда система уравнений (10) преобразуется следующим образом:

$$\frac{\partial^2 Q_1^*}{\partial z^2} = k_1^2 Q_1^* + \varepsilon_{01}^*;$$

$$\frac{\partial^2 Q_2^*}{\partial z^2} = k_2^2 Q_2^* + \varepsilon_{02}^*,$$
(28)

где

$$\varepsilon_{01}^{*} = \alpha_{11}\varepsilon_{0} = \sqrt{S_{1}t} \varepsilon_{0} \cos\beta;$$

$$\varepsilon_{02}^{*} = \alpha_{12}\varepsilon_{0} = -\sqrt{S_{1}t} \varepsilon_{0} \sin\beta.$$
(29)

Решение системы уравнений (28) отыскиваем в виде

$$Q_1^* = A_1 \operatorname{sh} k_1 z + B_1 \operatorname{ch} k_1 z + Q_{01}^*;$$

$$Q_2^* = A_2 \operatorname{sh} k_2 z + B_2 \operatorname{ch} k_2 z + Q_{02}^*,$$
(30)

где Q_{01}^* , Q_{02}^* – частные решения системы (28),

$$Q_{01}^{*} = -\frac{\varepsilon_{01}^{*}}{k_{1}^{2}};$$

$$Q_{02}^{*} = -\frac{\varepsilon_{02}^{*}}{k_{2}^{2}}.$$
(31)

Ввиду симметричности функции Q_1^* относительно оси z=0 следует, что $A_1 = 0$. Из граничного условия $Q_1^*(l) = 0$ получим $B_1 \operatorname{ch} k_1 l - \frac{\varepsilon_{01}}{k_1^2} = 0$, откуда $B_1 = \frac{\varepsilon_{01}^*}{k_1^2 \operatorname{ch} k_1 l}$. Аналогично найдем, что $A_2 = 0$ и $B_2 = \frac{\varepsilon_{02}^*}{k_2^2 \operatorname{ch} k_2 l}$.

Поперечные силы Q_1 и Q_2 определим по выражениям

$$Q_{1} = \sqrt{S_{1}t} Q_{1}^{*} \cos\beta - \sqrt{S_{1}t} Q_{2}^{*} \sin\beta;$$

$$Q_{2} = \sqrt{S_{2}t} Q_{1}^{*} \sin\beta + \sqrt{S_{2}t} Q_{2}^{*} \cos\beta.$$
(32)

В соответствии с (9) касательные напряжения τ_1 и τ_2 вычислим по следующим выражениям:

$$\tau_{1} = \frac{1}{t} \sqrt{S_{1}t} B_{1}k_{1} \cos\beta \sinh k_{1}z - \frac{1}{t} \sqrt{S_{1}t} B_{2}k_{2} \sin\beta \sinh k_{2}z;$$

$$\tau_{2} = \frac{1}{t} \sqrt{S_{2}t} B_{1}k_{1} \cos\beta \sinh k_{1}z + \frac{1}{t} \sqrt{S_{2}t} B_{2}k_{2} \sin\beta \sinh k_{2}z.$$
(33)

ISSN 0556-171Х. Проблемы прочности, 2005, № 4

После соответствующих преобразований получим

$$\tau_{1} = \frac{S_{1}\varepsilon_{0}\cos^{2}\beta \operatorname{sh}k_{1}z}{k_{1}\operatorname{ch}k_{1}l} + \frac{S_{1}\varepsilon_{0}\sin^{2}\beta \operatorname{sh}k_{2}z}{k_{2}\operatorname{ch}k_{2}l};$$

$$\tau_{2} = \frac{\sqrt{S_{1}S_{2}}\varepsilon_{0}\sin\beta\cos\beta \operatorname{sh}k_{1}z}{k_{1}\operatorname{ch}k_{1}l} - \frac{\sqrt{S_{1}S_{2}}\varepsilon_{0}\sin\beta\cos\beta \operatorname{sh}k_{2}z}{k_{2}\operatorname{ch}k_{2}l}.$$
(34)

Постоянные S_1 и S_2 определим в соответствии с подходом, предложенным ранее [8].

Аналогично работам [1, 8] полагаем, что касательные напряжения в плоскостях адгезионных контактов I и II линейно затухают в основе на толщине H и в слоях покрытия. Кроме того, в слоях покрытия распределение нормальных напряжений равномерно по толщине.

Уравнения связи между деформациями и перемещениями для подслоя 2 и основы 1 (рис. 1) запишем в виде

$$\gamma_1 = \frac{u_1 - u}{H/2};\tag{35}$$

$$\gamma_2 = \frac{u - u_2}{h_2/2},$$
 (36)

где γ_1 – деформация основы 1; γ_2 – деформация подслоя 2; u – смещение в плоскости адгезионного контакта I.

В плоскости I касательные напряжения будут

$$\tau_1 = G_1 \gamma_1 = G_2 \gamma_2 \,, \tag{37}$$

где G₁, G₂ – модули сдвига основы *1* и подслоя *2* (рис. 1) соответственно. После некоторых преобразований из выражений (35) и (36) получим

$$u_1 - u_2 = \frac{\tau_1(H/G_1 + h_2/G_2)}{2}.$$
(38)

Из первого выражения (1) с учетом (38) запишем

$$S_{1} = \frac{2}{\left(\frac{H}{G_{1}} + \frac{h_{2}}{G_{2}}\right)}.$$
(39)

После аналогичных преобразований для постоянной S_2 получим

$$S_{2} = \frac{2}{\left(\frac{h_{2}}{G_{2}} + \frac{h_{3}}{G_{3}}\right)}.$$
 (40)

ISSN 0556-171Х. Проблемы прочности, 2005, № 4

Нормальные напряжения σ_2 в подслое 2 и нормальные напряжения σ_3 в слое 3 (рис. 1) равны соответственно:

$$\sigma_2 = \frac{N_2}{F_2};\tag{41}$$

$$\sigma_3 = \frac{N_3}{F_3},\tag{42}$$

где N₂ – продольная сила в подслое 2; N₃ – продольная сила в слое 3. В покрытии продольные силы таковы:

$$N_2 = Q_1 - Q_2; (43)$$

$$N_3 = Q_2, \tag{44}$$

где Q_1 и Q_2 – поперечные силы,

$$Q_1 = \frac{S_1 t \varepsilon_0 \cos^2 \beta}{k_1^2} \left(\frac{\operatorname{ch} k_1 z}{\operatorname{ch} k_1 l} - 1 \right) + \frac{S_1 t \varepsilon_0 \sin^2 \beta}{k_2^2} \left(\frac{\operatorname{ch} k_2 z}{\operatorname{ch} k_2 l} - 1 \right);$$
(45)

$$Q_{2} = \frac{\sqrt{S_{1}S_{2}}t\varepsilon_{0}\sin\beta\cos\beta}{k_{1}^{2}} \left(\frac{\operatorname{ch}k_{1}z}{\operatorname{ch}k_{1}l} - 1\right) - \frac{\sqrt{S_{1}S_{2}}t\varepsilon_{0}\sin\beta\cos\beta}{k_{2}^{2}} \left(\frac{\operatorname{ch}k_{2}z}{\operatorname{ch}k_{2}l} - 1\right).$$
(46)

Характер распределения нормальных и касательных напряжений в системе основа-покрытие не зависит от внешних растягивающих нагрузок, приложенных к пластине. Поэтому от абсолютных значений напряжений можно перейти к относительным. Относительные касательные и нормальные напряжения вычисляются по формулам

$$\tau_{1rel} = \frac{\tau_1}{\sigma_{sub}}; \qquad \tau_{2rel} = \frac{\tau_2}{\sigma_{sub}}; \qquad \sigma_{2rel} = \frac{\sigma_2}{\sigma_{sub}}; \qquad \sigma_{3rel} = \frac{\sigma_3}{\sigma_{sub}}, \quad (47)$$

где σ_{sub} – напряжение, приложенное к пластине, $\sigma_{sub} = P_1/F_1$.

Определение нормальных и касательных напряжений в системе основа-покрытие. Поскольку расчетные модели систем основа-покрытие учитывают упругие характеристики основы и покрытия, их необходимо точно и корректно экспериментально определять. Для определения модуля упругости покрытия используется предложенная ранее методика [9].

Сравним напряжения, получаемые по разным моделям. На рис. 2 показаны распределения касательных напряжений τ в соответствии с моделью для однослойного покрытия [1] и τ_1 , τ_2 в соответствии с предложенной моделью для двухслойного покрытия. При расчетах принимали следующие

значения упругих характеристик основы и покрытия: модуль упругости основы 209 ГПа; модуль упругости однослойного покрытия 50 ГПа. Для двухслойного покрытия полагали $E_2 = E_3 = 50$ ГПа. Коэффициент Пуассона основы равен 0,3, покрытия – 0,28. Касательные и нормальные напряжения рассчитывали при деформации основы 0,1%. Толщина основы составляла 1,5 мм. Для однослойного покрытия толщина h = 0,31 мм. Ширина основы и покрытия равна 5 мм. Для двухслойного покрытия положим $h_2 = 0,001$ мм, $h_3 = 0,309$ мм, т.е. $h_2 + h_3 = h$.

Рис. 2. Распределение касательных напряжений τ в соответствии с моделью для однослойного покрытия [1] и предложенной автором моделью для двухслойного покрытия при $h_2 = 0,001$ мм и $h_3 = 0,309$ мм: $1 - \tau$; $2 - \tau_1$; $3 - \tau_3$.

Анализ данных на рис. 2 показал, что при соотношении $h_2/h_3 <<1$ касательные напряжения, рассчитанные по разным моделям, совпадают с точностью до 5%. Расчет нормальных напряжений в покрытии по различным моделям свидетельствует, что различие между ними составляет менее 1%.

Рассмотрим растяжение пластины вдоль оси z ($E_1 = 209$ ГПа, толщина 2H = 1,5 мм, ширина t = 5 мм), к которой прикладывается растягивающая деформация $\varepsilon_0 = 0,1\%$ (рис. 1). На пластину напыляется металлический подслой толщиной $h_2 = 0,3$ мм ($E_2 = 198$ ГПа) и керамический внешний слой толщиной $h_3 = 0,2$ мм ($E_3 = 50$ ГПа). Для наглядности на рис. 3 графики распределения относительных нормальных и касательных напряжений в двухслойном покрытии построены как функции безразмерной длины $\xi = x/l$. Видно, что максимальные касательные напряжения возникают в сечения $\xi = \pm 1$. Дифференцирование выражений для определения нормальных напряжений показало, что максимальные нормальные напряжения возникают в сечении $\xi = 0$. В результате экспериментальных исследований образцов с покрытиями установлено, что верхний керамический слой растрескивается при $\xi = 0$, а отслаивается при $\xi = \pm 1$.

С целью исследования влияния толщины слоев на напряженное состояние определяли относительные касательные и нормальные напряжения в системе при изменении соотношения толщин h_2/h_3 от 49 до 0,25. Толщина двухслойного покрытия $(h_2 + h_3)$ при этом оставалась постоянной: 0,5 мм. При расчетах полагали, что модуль упругости металлического подслоя $E_2 = = 198$ ГПа, керамического внешнего слоя – $E_3 = 50$ ГПа. Анализ результатов расчетов (таблица) свидетельствует, что при уменьшении соотношения толщин h_2/h_3 касательные напряжения τ_1 понижаются, а напряжения τ_2 , σ_2 и σ_3 увеличиваются.

$h_2/h_3,$ мм	$ au_{1\mathit{rel}}$	τ_{2rel}	σ_{2rel}	σ_{3rel}
$\frac{0,49}{0,01}$	0,42	0,002	0,584	0,147
0,45 0,05	0,419	0,010	0,598	0,151
$\frac{0,4}{0,1}$	0,416	0,020	0,616	0,156
$\frac{0,3}{0,2}$	0,407	0,041	0,657	0,166
0,2 0,3	0,388	0,065	0,703	0,177
$\frac{0,1}{0,4}$	0,345	0,10	0,756	0,191

Относительные касательные и нормальные напряжения при различных соотношениях h_2/h_3

Рис. 3. Распределение относительных нормальных и касательных напряжений в двухслойном покрытии: $1 - \tau_{1rel}$; $2 - \tau_{2rel}$; $3 - \sigma_{2rel}$; $4 - \sigma_{3rel}$.

Заключение. Проанализировано напряженное состояние системы прямоугольной пластины, на верхнюю и нижнюю поверхность которой нанесено двухслойное покрытие. Получены аналитические зависимости для определения величины и распределения касательных и нормальных напряжений в двухслойном покрытии, зависящих как от упругих свойств основы и покрытия, так и от их геометрических размеров. Изменение упругих свойств и геометрических размеров покрытий может привести как к понижению, так и к повышению уровня напряжений в них. Оптимальный выбор конструк-

тивных и технологических параметров системы основа-покрытие является актуальной научно-технической задачей, а также представляет научный и практический интерес. Научно обоснованные рекомендации по снижению напряжений в системе основа-покрытие необходимы как конструкторам, так и технологам.

Резюме

Запропоновано підхід, що дозволяє аналітично визначити розподіл нормального і дотичного напруження у пластині з двошаровим покриттям. Показано, що завдяки оптимальному вибору конструктивних і технологічних параметрів системи основа–покриття можна знизити рівень напруження у таких покриттях. Відзначено, що науково обгрунтовані рекомендації щодо зниження напруження у системі основа–покриття необхідні як конструкторам, так і технологам.

- 1. Уманский Э. С., Ляшенко Б. А. Условия адгезионной и когезионной равнопрочности жаростойких покрытий // Косм. исследования на Украине. – 1975. – Вып. 6. – С. 58 – 64.
- Erdogan F. and Joseph P. F. Mechanical modeling of multilayered films on elastic substrate. Pt. 1, 2 // J. Electr. Pack. – 1990. – 112, No. 4. – P. 309 – 326.
- Shield T. W. and Kim K. S. Beam theory models for thin film segments cohesively bonded to an elastic half space // Int. J. Solids Struct. 1992. 29, No. 9. P. 1085 1103.
- 4. *Hu M. S. and Evans A. G.* The cracking and decohesion of thin films on ductile substrates // Acta Met. 1989. **37**, No. 3. P. 917 925.
- Hu S. M. Film-edge-induced stress in substrates // J. Appl. Phys. 1979. 50, No. 7. P. 4661 4666.
- Harry E., Rouzaud A., Ignat M., and Juliet P. Mechanical properties of W and W(C) thin films: Young's modulus, fracture toughness and adhesion // Thin Solid Films. – 1998. – 332, No. 1-2. – P. 195 – 201.
- 7. Долгов Н. А., Ляшенко Б. А., Рущицкий Я. Я. и др. Влияние различия характеристик упругости основы и покрытия на напряженно-деформированное состояние композиции. Сообщ. 1. К оценке напряжений растяжения в покрытии // Пробл. прочности. 1995. № 9. С. 37 43.
- 8. Долгов Н. А., Ляшенко Б. А., Рущицкий Я. Я. и др. Влияние различия характеристик упругости основы и покрытия на напряженно-деформированное состояние композиции. Сообщ. 2. Распределение напряжений растяжения в покрытии // Там же. – 1996. – № 5. – С. 63 – 67.
- 9. Долгов Н. А. Метод определения модуля упругости газотермических покрытий // Порошк. металлургия. 2004. № 7/8. С. 110 115.

Поступила 26. 05. 2003