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HennHenHbI AMHAMWYECKNIA KOHEYHO3/1eMEHTHbI aHanu3 rmokoii B
nonepe4yHoOM HanpaB/ieHUN TONACTOA MHOFOC/AOMHOW MNaHenn Ha
yNpyrom OCHOBaHWUW C y4eTOM pPa3BUTUS MOBPEXAEHUS BO BPEMEHMW.
CoobuieHne 1. TpexmepHaa (GopmMynMpoBKa 3afayun U ABYXMepHas
Teopusi NAacTUH

B. KO. Mepenb

TexHonornyeckuiA MHCTUTYT BBC CLUA, OTgeneHve aspoHaBTUKM U aCTPOHABTVIKW,
Xo6coH bait, Oraiio, CLLUA

C Ue/blo passuTUA TEOpMM MIaCTWH A TONCTbIX MHOMOCNOMHbIX MaHeNed, COKUMaeMbIX B
MOMEPEYHOM HarpaBfieHy, C Hapy>KHbIMX CosMW B BUAEe KOMMO3UTHbIX NaMUHATHBIX MCTOB
MpeLoXKeHa YNPOLLEHHas CxeMa pacrpeseneHus nonepeyHbix AethiopMaLiii Mo TOMLLMHe NaHenu.
MpesnonaraeTces, YTO rnonepeyHble aedopmaumn Be, Bz 1 ez He V3MEHSIOTCA M0 TO/LLUMHE
MaHenn B Mpedenax ee Hapy>KHbIX MCTOB W CepALEBUHb], HO MOTYT OMMCHbIBATBLCA PasIHHbIMA
(PYHKUMOHAbHBIMA 33BUCMMOCTSIMU OT KOOPAVHAT B MVIOCKOCTSX PasHbiX CybnamnHaToB (Ha-
PY>KHble MCTbI U CepALeBMHA NaHem). ATrOpUTM, YUMTbIBAIOLLMIA pa3BUTIE MOBPEXKIEHNA [yiA
JOVHAMMYeCKVX 3afad, WCMOMb3yeTCs B PacyeTHOW cxeme, GasvpyloOLLEiics Ha reoMeTPUYECKU
HE/IMHEAHOM (HOPMY/MPOBKE, MPUMEHUTENBHO K aHa/M3y paspyLUEH st MHOTOCTONHOM MMacTyHb! 0T
YAAPHOTO COMPVKOCHOBEHWA C FPyHTOM. Mogenb MHOrOCMOVMHOW MacTVHbl XapaKTepusyeTcs
Ma/bIM KOMM4eCTBOM CTereHell CBOGO/bI B KOHEUHO3MIEMEHTHbIX pacieTax W LLMPOKVM CMeKTPOM
MPUMEHEHVS: [4NA MIACTVH C TOHKMW WM TONCTbIMA Hapy>KHbIMA CosiMv (N0 CPABHEHUIO C
TOMLLUMHONA CepaUeBnHbl), 1A CMy4aeB COKUMAEMOCTU WM HECHKUMAEMOCTY HapY>KHbIX COEB W
(ww) cepaueBMHbI B MOMEPeYHOM HarpagieHm.

Knwouyesble cnoBa: CXWMaeMble B nonepeyHoMm HanpaBAeHUN MHOTOC/OliHbIE
naHenun, ynpyroe oCHoBaHwue, HennmHenHas ANHaMWKa, TOEXMEPHOE HanpAXXeHHOE
COCTOAHNKE.

Introduction. Sandwich structures are used in a variety of load-bearing
applications. Sandwich plates have a well pronounced zigzag variation of the
in-plane displacements in the thickness direction, due to their high thickness-
to-length ratios and large difference of values of elastic moduli of the face sheets
and the core. Such characteristics of the sandwich plates make it necessary to use
a layerwise approach in their analysis, the idea of which is to introduce separate

© V. Y. PEREL, 2005
92 ISSN 0556-171X. Mpo6nembl npoyHocTu, 2005, No 2



Nonlinear Dynamic Finite Element Analysis

simplifying assumptions regarding the through-thickness wvariation of
displacements, strains or stresses within each face sheet and the core. Many
researchers studied the sandwich plate with thick, light-weight, vertically stiff
cores and thin rigid face sheets, using discrete-layer (or layerwise) models. Most
of the layerwise models of such structures are based on the piecewise linear
through the thickness in-plane displacement approximations in addition to
constant (through the thickness) transverse displacements [1-9].

The modern cores are usually made of plastic foams and non-metallic
honeycombs, like Aramid and Nomex. These cores have properties similar to
those used traditionally (for example, metallic honeycombs), but due to their
transverse compressibility (i.e., ability of such cores to change height under
applied loads) the direct transverse strain ezz becomes important. Therefore, the
models of the sandwich plates with the cores made of plastic foams or
non-metallic honeycombs must not exclude the change of height of the core.
Frostig and Baruch [10] developed a theory of a sandwich beam with thin face
sheets in which account is taken of transverse compressibility of the core, and the
longitudinal displacement in the core varies nonlinearly in the thickness direction.
In this theory the longitudinal displacement in the face sheets varies linearly in
the thickness direction, and the transverse displacement of the face sheets does
not vary in the thickness direction, that is, the transverse direct strain ez in the
face sheets is assumed to be equal to zero in the expression for the strain energy.
The transverse shear strain exz in the face sheets is also considered to be
negligibly small in the expression for the strain energy that is used for variational
derivation of the differential equations for the unknown functions. The transverse
shear stress in the face sheets can be computed by integration of the pointwise
equilibrium equations axxx + axzz = 0.

Under certain circumstances, when the face sheets are thick, when the plate
is loaded by a concentrated or partially distributed load or when the plate is on an
elastic foundation, taking account of the direct transverse strain ezz in the face
sheets and the transverse shear strain exz in the face sheets in the expression for
the strain energy allows one to obtain a higher accuracy of the stress computation.
Besides, in order to achieve a high accuracy of stress computation in the thick
face sheets, a model for such a plate must assume or lead to the nonlinear
through-the-thickness variation of the in-plane displacements not only in the core,
but also in the face sheets.

Construction of a computational scheme that satisfies these requirements can
be approached, for example, with the help of the layerwise laminated plate theory
of Reddy [11], which is a generalization of many other displacement-based
layerwise theories of laminated plates. In this theory the displacement field in the
kth layer is written as

m

u(k)(x.y,z,t)=2 uj )(x.y,1)0j )(z),
j=t
m

VR xy,z,t)=2 vj)(x,y,1)0 ] )(z),
j=1
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n

w(kKKx,y,z,t)= 2 wf\ x,y,t)Vf)(z),
j=i

where uf \ x,y,t), v(k)(x,y,t), and w(k)(x,y,t) are the unknown functions and

~ )(z) and V )(z) are chosen to be Lagrange interpolation functions of the

thickness coordinate, to provide the required continuity of displacements and
discontinuity of the transverse strains across the interface between adjacent
thickness subdivisions.

This theory allows one to achieve a high accuracy of the transverse stress
computation in the composite laminates, but for this purpose it requires a large
number of thickness subdivisions of the laminate. This leads to a large number of
the unknown functions and degrees of freedom in a finite element model. In
effect, the finite element model, based on this generalized layerwise laminated
plate theory is equivalent to the three-dimensional finite element model. To
reduce the number of the unknown functions in the layerwise model of a
laminated plate, one can use the concept of a sublaminate (i.e., make the number
of thickness subdivisions less than the number of material layers) and deal with
the material properties, averaged through the thickness of a sublaminate. In a
model of the sandwich plate, it is natural to choose three sublaminates: the two
face sheets and the core. With such a small number of the sublaminates, the nature
of assumptions on the through-the-thickness variation of displacements can have
a large effect on the accuracy of the computed stresses. Besides, the actual
through-the-thickness variation of displacements can depend on the character of
applied loads and boundary conditions. Therefore, in a layerwise model of the
sandwich plate with only three sublaminates, it is desirable to have a flexibility in
the choice of the functions that represent through-the-thickness variation of
displacements. Of course, the Lagrange interpolation polynomials, which
represent the thickness variation of the displacements within a sublaminate in the
Reddy’s [11] layerwise theory, can be chosen to be of any desired degree, but
such an increase of the degree of the Lagrange interpolation polynomials leads to
the increase of the number of the unknown functions.

In the present paper, a computational scheme for analysis of the sandwich
plate is constructed in which the simplifying assumptions that lead to a plate-type
theory are made with respect to the variation of the transverse strains in the
thickness direction of the face sheets and the core of the sandwich plate. The
displacements are then obtained by integration of these assumed transverse
strains, and the constants of integration are chosen to satisfy the conditions of
continuity ofthe displacements across the borders between the face sheets and the
core. In such a method, the required continuity of displacements in the thickness
direction is satisfied regardless of the assumed type of through-the-thickness
distribution of the transverse strains, and the transverse flexibility of the plate can
be taken into account. This leads to a larger number of choices of simplifying
assumptions about the variation of strains (and, therefore, displacements) in the
thickness direction, and, therefore, allows a better adjustment of the computational
scheme to the conditions under which the sandwich plate is analyzed by a
layerwise method with only three sublaminates (being the face sheets and the
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core). The transverse stresses are computed by integration of the pointwise
equilibrium equations that leads to satisfaction of conditions of continuity of the
transverse stresses across the boundaries between the face sheets and the core and
satisfaction of stress boundary conditions on the upper and lower surfaces of the
plate.

In the present paper, the model is considered on the basis of the simplest of
such assumptions that do not ignore, in the expression for the strain energy, the
transverse shear and normal strains in the face sheets. It is assumed here that the
transverse strains do not vary in the thickness direction within the face sheets and
the core, but can be different functions of the in-plane coordinate in the face
sheets and the core. In the post-process stage of analysis, these first
approximations of the transverse strains can be improved by substituting the
transverse stresses, obtained by integration of the pointwise equations of motion
(Appendix) into the strain-stress relations. These improved values of the
transverse strains vary in the thickness direction and are sufficiently accurate as
compared to those of the known exact solutions, based on the linear three-
dimensional theory [12]. In the theory, discussed in this paper, the transverse
displacement, obtained by integration of the assumed transverse normal strain,
varies linearly in the thickness direction within a sublaminate (therefore,
transverse compressibility of the plate is taken into account), and the in-plane
displacement, obtained by integration of the assumed transverse shear strains,
varies quadratically within the thickness of a sublaminate. The developed theory
does not require many degrees of freedom in finite element models, despite its
ability to capture the transverse flexibility of the plate and non-linear through-
the-thickness variation of the in-plane displacements.

Three-Dimensional Formulation. The sandwich plate is divided into three
conventional layers (sublaminates): the two face sheets and the core. Within each
sublaminate, the simplifying assumptions of the plate theory are made separately.
In the following text, the superscript k denotes the number of a sublaminate:
k =1 denotes the lower face sheet, k=2 denotes the core, and k= 3 denotes the
upper face sheet (Fig. 1).

*k_ «-

upper face sheet, k=3

2~2
core, k=2
X*
t4n
2 2
lower face sheet, k=I
h

Fig. 1 The coordinate system and notations for the sandwich plate. (Axis z is in the thickness
direction, h is a thickness of the whole plate, and t is the core thickness.)
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In the subsequent text, both index and non-index notations for the
displacements will be used interchangeably without a preliminary notice, the
correspondence between them being established as follows: ul=u, u2=v,
u3=w.

As energy-conjugate measures of strain and stress, the Green-Lagrange
strain tensor and the second Piola-Kirchhoff stress tensor are used. The analysis
is limited to the important case of small strains, moderate displacements (of the
order of thickness of the plate) and moderate rotations (10-15 degrees). This
means that of all the higher order terms in the Green-Lagrange strain-
displacement relations

1
£ij =2 (uij + uji + us,ius,j) (1)

only usau3/g (a,y8=1,2) are not negligible compared to uai (a=1,2; i=1 2,
3) [11, 13]. Therefore, the strain-displacement relations become

1 2
«XK=Uux+ 2(wx) , (2)
1 2

« Ay 2wy ©)

1
Xy =2 (Uy + VX+ wxw,y)> (4)
X =2(u2+ WX)’ ®)
B =54 ®
«Z  W,Z. )

Now one needs to find the simplified equations of motion and boundary
conditions, such that their accuracy corresponds to the accuracy of the adopted
von Karman strain-displacement relations. These equations of motion are used
for computation of the transverse stresses in the post-processing stage of the finite
element analysis. The equations of motion and boundary conditions, consistent
with the von Karman [13] strain-displacement relations (2)-(7), are received
using the virtual work principle (see Appendix). The equations of motion are
written for each of the three conventional layers: the upper and lower face sheets
and the core. The boundary conditions are applied to the upper and lower surfaces
of the plate and to the interfaces between the face sheets and the core, with the
result that
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Al = i -
OXZ 0, o \]] 0, o ( ) (8)

at the lower surface,

=0 8a@=% o0z=q ©)
at the upper surface, and
° Xz(z2) = "R)(z2). ffB(z2)="°¢z(z2). NZ(z2) @)(z2X  (10)

"™2)(z3) = "XP(z3)  o(yz(z3)=°%)(z3).  "g)(z3)  [)(z3). (11)

at the interfaces.
In the laminate coordinate system (X, Yy, z), whose axes are aligned with the
sides of the plate, the stress-strain relations for an orthotropic material have the

form [11]
«

Oxx cn cr c O 0 c1 “xx

&«

o CR cz cxy3 O 0 c»® «y

«

oz cCB cn cx O 0 ¢ “z

0yz 0 0 C#4 cos 0 2«yz (12)
© m 0 0 ¢cs cs 0 2x
o« Cs C» C3x» O 0 C66. 2«xy
or
{o}= [C){«}, (13)

where Cj are the elastic coefficients, referred to the laminate coordinate system.
In addition, the displacements must be continuous at the interfaces between
the faces and the core:

W pg=U? . u® zm =0 (14)

Two-Dimensional Plate Theory.

Simplifying Assumptions ofthe Plate Theory. To construct a two-dimensional
plate theory, simplifying assumptions regarding a distribution of the transverse
strain components in the thickness direction are made. It is assumed that within
the face sheets and the core the transverse strains do not depend on the
z-coordinate, but they can be different functions of coordinates x,y , and time t
in different face sheets and the core:

«fz] = X (x,y ,tX

« =«2(x.y,0> (15)
«fz] = «§)(X,y ,tX
(z =1,2,3),
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where the superscript k denotes the number of a sublaminate: k = 1 denotes the
lower face sheet, k = 2 denotes the core, and k = 3 denotes the upper face sheet.
An accuracy of the theory, based on these assumptions, is studied in [12].

The assumed transverse strains of equations (15), together with displacements
of the middle surface of the plate

ul(x,y,t) = u(2)|z=0,
vO(x,y,t)=v(21 z=0, (16)
wo(x,y,t) = w(2)|z=0

are the unknown functions of the problem that will be computed by the finite
element method. Therefore, all displacements, strains and stresses must be
expressed in terms of these functions.

Displacements in Terms of the Unknown Functions. In order to obtain
expressions for the displacements in terms of the unknown functions e%\ ek ,

e%\ wuo, vo, and wO0, the strain-displacement relations (5)-(7) are integrated
with the following result:

w(@(x,y,z,t) = wo(x,y,t) + efz(x,y,t)z2+ ez(x,y ,t)(z - z2)

17
(z1< z< z22),
w(2)(x,y,z,t) = Wo(x,y,t) + e (x,y,t)z, (18)
w(3)(x,y,z,t) = wO(x,y,t) + e2)(x,y,t)z3 + ez3)(x,y,t)(z - 23)
(19)

(z3< z< z4),

ul) = u0+ (2ex} - wOx)z2- 2e@@xz2 + (2exz - wOx-e @xz2)(z- z2)-
-nhefdx(z- z2)2 (zl< z< z2X (20)
ui2) = u0 + (2ex- wox)z - ~el2xz2 (z2<z< 23X (21)

"(SL: uo *Il(\%’ég%) - WO,x§z3 - Aé(zzz),ng +

+ (2eB¥- wOx-e 2xz3)(z- z3)- 2eSx(z- z3)2 (z3<z<2z4), (22
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V@ =vo + {2e¢Z - woy)Z2 - 2 £fzyz2 + (2£8 - wo,y -

-£ER)yz2)(z- 22)—2£Sy(z- 22)2 (z1Nhz"Nz22X (23)

v( =vo+ (2682 - Wo,¥)z- 1 E£ER)yz2 (z2™Mz”"™z23X (24)

v =vo+ (2E¢z] - wo,y)z3- 1 £¢l)yz3+ 2E¢! - wo,y - £22y)(z - z3)-

- 18B)(z - 23)2 (z3"™ zN z4). (25)

It can be verified easily that these expressions for the displacements are
continuous across the boundaries between the faces and the core, that is, at
z=122 and z = z3.

Strains in Terms of the Unknown Functions. Expressions for the in-plane

strains £X , £Xy), and £(/* in terms of the unknown functions are obtained by

substituting expressions (17)-(25) for displacements in terms of the unknown
functions into the strain-displacement relations (2), (3) and (4). The transverse
strains £(k\ £k ,and £ ) are the unknown functions themselves.

Extended Hamilton’ Principle, Writtenfor This Specific Problem. In order
to derive either differential equations for the unknown functions with boundary
conditions, or the finite element formulation, one can use the extended Hamilton’s
principle

h h
(5/(T- n)dt+/ dWnedt=0, (26)
t

where T is a kinetic energy of the system, n is a total potential energy of the
system, and d'Wnc is a virtual work of external non-conservative forces.
Therefore, the extended Hamilton’s principle for the sandwich plate on an elastic
foundation can be written as follows:

of [(kinetic energy of plate) —(strain energy of plate) -
h
—(strain energy of elastic foundation) —

—(potential energy of plate in gravity field)]Jt +

t2
+ f (virtual work of damping forces)dt +

ti
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2
+ f (virtual work of surface forces)dt =o. (27)
t

In order to derive the differential equations for the unknown functions with the
boundary conditions, or to obtain a finite element formulation, all terms in the
Hamilton’s principle (27) need to be written in terms of the unknown functions

uo, v0, wo, i@* *92> *92> 7\((2"2 ﬁ@’ C@>§@’ ﬁ@' F@.and £©

Kinetic Energy ofthe Sandwich Plate. Considering that the mass density of
the face sheets is constant, kinetic energy of the lower face sheet, core and the
upper face sheet can be written as follows:

uk - ' uk)
vk * ®v(k) dv (k=1,2,3), (28)
*®W o vk

where dots over the letters denote partial derivatives with respect to time. The
displacements in equation (28) are expressed in terms of the unknown functions
by formulas (17)-(25). The Kinetic energy of the sandwich plate is the sum of
kinetic energies of the face sheets and the core:

T=TQ+TE@ + T(3). (29)

Strain Energy of the Sandwich Plate. The face sheets of a sandwich plate
are made from composite laminates, which are built up of fiber-reinforced plies.
The orientation of the fibers can vary from ply to ply, and, therefore, values of the
stiffness coefficients Cf in the Hooke’s law (referred to the laminate coordinate
system) can vary from ply to ply in the face sheets. Let us introduce the following
notation for a stiffness coefficient in the Hooke’s law for a ply of the lower face
sheet, in the laminate coordinate system:

aC f, (30)

where the right superscript (1) denotes that a stiffness coefficient is associated
with the first sublaminate (i.e., the lower face sheet), the left superscript a is a
number of aply in a lower face sheet, subscripts i and denote a position of the
stiffness coefficient in the stiffness matrix. The stiffness matrix with components

aC f will be denoted as [CO(1)]. So, the strain energy of a lower face sheet’s
ply with a number a is

ul :szf{£(]{ [chQ "ldv, (31)

2 (V&)
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where V~ is volume of a ply with number a, of the lower face sheet, and the
column-matrix of strains {£(1)} is defined as follows:

(32)

Unlike the material coefficients acij\ the strains do not have a subscript a,

which denotes a number of a ply of the lower face sheet, because assumptions
about through-the-thickness variation of strains are made for the whole lower face
sheet, not for each individual ply of the lower face sheet. Therefore, each strain in
the lower face sheet, as a function of z-coordinate, is represented with a single
expression through the thickness of the lower face sheet.

The strain energy U (1) of the whole lower face sheet is a sum of strain
energies of the plies of the lower face sheet:

n

U (1) i 1)- (33)
a=1

Similarly, one can write an expression for the strain energy of the upper face
sheet, U (3). The core of the sandwich plate is considered to be a homogeneous

orthotropic medium. But the failure in the core can be distributed non-uniformly
in the thickness direction. As a result of this, in the presence of failure, the
coefficients Cj of the stress-strain relation of the core can vary in the thickness
direction. To take account of this, the core is nominally divided into layers
parallel to the x —y-plane, such that within each layer the coefficients of the
stress-strain relation can be considered approximately constant in the thickness
direction. Thus, the core is treated as a laminated plate, the same way as the face
sheets. The strain energy of the sandwich plate is the sum of the strain energies of
the core and the face sheets

U=U@D+UQ +UQ(@Q). (34)

Potential Energy of the Sandwich Plate in the Gravity Field. The potential
energy of the sandwich plate in the gravity field, n g, is equal to the sum of

where
B L zk#

ng)=pKgf f f w(Kdzdxdy. (36)
00 zk
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Strain Energy of Elastic Foundation. The strain energy of the elastic
foundation, modeled as a Winkler foundation, is defined by the expression

,BL
U =~ff sx)(w@ z=z) dxdy, (37)
00

where s(x) is a modulus of the foundation.

Virtual Work of Surface Forces. It is assumed that the upper and lower
surfaces of the plate are loaded by distributed forces in the transverse direction
(along z-axis). Let qu(x,y,t) and qgt(x,y,t) be forces per unit area in the
transverse direction, acting on the plate’s upper and lower surfaces respectively.
Then the virtual work &'W of these forces is

BL BL
0'Ws=f f qu(x,y,t)6w(3) z=z4dxdy +f f qi(x,y,t)0w() z=zldxdym (38)
00 00

Virtual Work of Damping Forces. The damping force per unit volume will
be denoted as O. It will be considered, as it is generally accepted, that the
damping force is proportional to the velocity. Then, for the kth sublaminate, one

can write the following expression for the column-matrix of components of the
damping force per unit volume:

o >
o = _LEp el )

—a, @
<]

where (kand p” are, respectively, a damping parameter and mass density of

the kth sublaminate. The virtual work of the damping force in the kth sublaminate
can be written as follows:

A T
BLd U0 T 0K
o'W<le= ff f jov(k) mmo () dzdxdy (40)
00 & owlk)  ° Py

The virtual work of the damping forces in the whole sandwich plate is the sum of
the virtual works in the face sheets and the core:

d'Wd =d'w f +6'wd2) + d' wd3). (41)

The extended Hamilton’s principle, written in terms of the unknown functions,
can be used for deriving either differential equations and boundary conditions for
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the unknown functions, or it can be used for a finite element formulation. In the
following section, a finite element formulation for the sandwich plate in cylindrical
bending will be developed.

Appendix.

Pointwise Equilibrium Equations Variationally Consistent with the von
Karman Strain-Displacement Relations. In the equations of this Appendix, the
upper superscripts (k), which denote the numbers of the sublaminates, will not be
used, because these equations have a very general character and their validity is
not limited to the layerwise plate theory, presented in this paper.

In order to derive pointwise equations of motion, consistent with the von
Karman strain-displacement relations, let us substitute variations of the von
Karman strain-displacement relations, written with the us of index notations,

eafi= 2 (ua/J + ufi,a + u3,au3/J) («,£=12X (A1)

gis=  Uis+ W) (i=1>2,3), (A2)

into the virtual work principle

/11 0ijrijdV =/ / [ (Fi - Pui) dut dV +/ / ttdutds,

V) V) S) (A3)

where Fi are components of the body force per unit volume, p is density, and
ft are components of the surface traction. The variations of these strains of
equations (A.1) and (A.2) have the form

~eaB=2(6ua,b+ 6ul3a+ u3,a6ulfi + u3dfidu3a) (a=212 £=12), (A4

®i3=1(&i3+"u3i)  (i=12 3) (A5)

Expression oj i j can be presented in the form

o0ijij =oa}™a} 20a3”a3 oI B

(A.6)
(a=12;y8=12;i=12,3j=1223).
Substitution of Egs. (A.4) and (A.5) into Eqg. (A.s) produces the result
0ij& ij = 0ij<4-j + o0 a}u3,adu3,
j& ij = 0ij<4-] } } A7)

(a=12;}=12,i=12,3j=1273).
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If one substitutes expression (A.7) into the left-hand side of equation (A.3), one
receives

/ (\/; aijseijdVv = /(/) [aajnj5ua + (a3jnj + aalu3,an0)5u3]dS -
5

-/ 1/ ajj5ua+[a3),] + (aalu3a),0]su3}dV
\Y) (A.8)
(a=12;0=12;i=123j=12.3),

where «1, n2,and n3 are components of the outward unit normal vector to the
surface. The substitution of expression (A.8) into the virtual work principle (A.3)
yields

/11 aj&ijdV -/ /| (Fi- Ppi)5uidV - // ti5uidS =
% % (S)

=// [(°ajnj - ta)suadS + (a3jnj + aalu3,an0 - t3)5u3]dS -
(S)

-/1/ {(aajj Fa Pua)5ua [a3j,j (aalu3a),0 F3 Pu3]5u3}dVv
\%

(a=12;0=12;j =1,2,3). (A.9)

If one equates to zero the coefficients of variations of displacements, one obtains
the equations of motion

aaj,j Fa= Pua; aj,j (aaou3a),0 F3=pu3 (a 10)
(a=12;0=12;j=1,2.3) '

and natural boundary conditions

aajnj = ta; a3jnj aau3ano =13 at Sa . )
(@a=12;,0=12;]j =12, 3),

where Sa is a part of the surface on which displacement constraints are not
imposed. Equations of motion (A.10) in expanded form are

a8, +axyy+axzz+Fx=Pu, (A-12)
ayxx awy ayzz Fy pV, (A.13)
d

axx azyy azzz dx(axxWx ayxw.y)
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(A.14)
The boundary conditions (A.11) in expanded form are
(A.15)
(A.16)
+ xy(wxny + w,ynx) = t (A.17)

In the postprocessing stage of the finite element analysis, the computation of
the transverse stresses is done with the use of the pointwise equations of motion
(A.12), (A.13) and (A.14), variationally consistent with the von Karman strain-
displacement relations (2)-(7).

Pe3some

I3 MeTo PO3BUTKY Teopil MacTMH A/ TOBCTMX GaraTollapoBUX MaHesen, Lo
CTUCKYBaHi y MonepeyHoOMy HanpsMy, i3 30BHILUHIMY LLapaMun y BUrNSLi KOMMNO-
3UTHUX NTaMiHATHUX SIUCTIB 3arponoHOBaHO CrpOLLEeHY CXemy po3nogisy none-
peyHuX gedopmaliii Mo TOBLUMHI NaHeni. MpunycKaeTbes, L0 nonepeyHi gedop-
Mauii exz, £yz Ta £2z He 3MIHIOIOTbBCA MO TOBLUMHI NaHeni B iHTepBani ii
30BHILUHIX NIACTIB i CepueBUHK, aie MOXYTb OMWUCYBaTUCA PISHUMWU PYHKL-
OHa/TbHUMW 3a1EXKHOCTAMW Bif KOOPAMHATU B NMOLWMHAX Pi3HMX CcybnamiHaTiB
(30BHILLUHI MCTW | cepueBMHa MaHeni). ANFOPUTM, L0 YpaxoBYE PO3BUTOK Mo-
LUKOMKEHHSA ANs AMHAMIYHUX 3afa4, BUKOPUCTOBYETLCA B PO3PaxXyHKOBIM CXeMi,
O 6a3yeTbCA HAa FeOMETPUYHO HeMiHiMHOMY (hOpMy/tOBaHHI, CTOCOBHO [0 aHa-
ni3y pyiiHyBaHHA 6GaraToLlapoBoi NAaCTUHW Bif YAAPHOIO0 CTUKAHHS 3 FPYHTOM.
Mogenb 6araToLapoBoi MIaCTUHN XapaKTepu3yeTbCA Masiold KifbKICTIO cTere-
Held BIifIbHOCTi Y CKIHYEHHOE/IEMEHTHMX pPO3paxyHKax Ta LUMPOKUM BUKOPUC-
TaHHAM: ANS NAACTUH i3 TOHKMMU abo TOBCTMMM 30BHILUHIMUY Lapamun (y nopis-
HSAHHI 3 TOBLUWHOK CepLEBUHN), ANs BUNAAKIB CTUC/IMBOCTI abo HeCTUCNNBOCTI
30BHILUHIX LWapiB Ta (abo) cepueBMHM B MOMNEPeHHOMY HarpsiMy.
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