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OugeHKa ynpyronaacTMyecKoro napamMmeTrpa CMeLlaHHOCTW Ha OCHOBe
pasNMuYHbIX KpuTepmeB pocTa TpewmHbl. CoobweHne 1. MNpenBapu-
Te/lbHbIN aHanu3

B. H. W naHHnkoB, X. M. CaxabyTanHoB

Ka3aHCKuiA rocyaapCTBEHHbI SHEPreTUUecKuiA YHBEpPCUTET, KasaHb, Poccus

Wcxogs 13 paccMOTPeHUs JOMUHUPYIOLLErO MeXaHu3Ma pPaspyLleHns Ans OLEHKM NOBEAEHNs MaTe-
puana npu manomacliTabHOW TeKydeCTW B 06M1acTU BepLUMHbI TPELMHLI CHOPMYNUPOBaHbI
aCUMNTOTUYECKNE YNPABNAOLME YPABHEHWUS W WX TpaHUYHble YCNOBUA [ CNyyaes MIOCKON
[edhopmMaLmmn U NIOCKOTO HAMPSIXKEHHOTO COCTOSHUSA. YPaBHEHUs OCHOBaHbl Ha Ae(hOopMaLMOHHOI
TEeopun NNacTUYHOCTU CO CTENeHHbIM YNpouHeHeM. AHanM3 6ansne>kaliux nonei Hanpsi>KeHuit
BbIMOMHEH [ KPUTEPUEB MaKCUMasbHbIX HOPMalbHbIX W KacaTeNbHbIX Hanps>KeHuid, MNoaHoro
[manasoHa cMellaHHbIX (opM AehOpPMUPOBAHNS U PA3NNYHBIX YPOBHEH NoKazaTens ynpouHeHus.
Mpefno>keHa HOBas CXemMa PelueHus 3ajay CMellaHHbIX (hopM paspylleHus. YcTaHOBNEHHble
COOTHOLWIEHNS Me>KAYy OnpefensiownMu ynpyrumn 1 nnacTUYecKUMU napameTpami CMellaH-
HOCTM MPeACTaBNeHbl Kak (PYHKUMM BUAA KpUTEpPUs pocTa TPeLWmHbl U nokasaTens Aedopma-
LMOHHOTO YNPOUHEHUs MaTepuana.

KnioueBble cnoBa: NOBeAEHUE TPELMH NPU CMELIAHHOM Tune LeopMMpOBaHMs,
ManomacliTaGHas TEKY4YecTb, CMeHa MexXaHW3Ma paspyLlleHus, pocT TPeLWuHbl,
napameTpbl CMeLaHHOCTW.

Introduction. Fatigue crack growth can be controlled by a mixture of
processes (ductile and brittle), mechanisms (static, fatigue, creep) and loading
modes (tension, torsion, biaxial/multiaxial) [1]. Additionally, mixed-mode crack-
extension can be affected by many other considerations such as artefact geometry
(thin plates, thick shells, and the size, shape and orientation of the defect),
environmental effects (temperature, gaseous and liquid environment), material
state (crystallographic structure, heat treatment and route of manufacture), and
stress conditions (out-of-phase and random loading effects).

One of the important issues is that, for a large number of known mixed-mode
crack growth problems there are two fundamentally distinct classes of growth:
maximum principal stress-dominated and shear-dominated ones. This is true
regardless of whether we consider static or cyclic loading conditions. Another
issue is the intimate connection of the crack tip displacement concept to
mixed-mode elastic-plastic fracture and fatigue processes. Several elastic-plastic
finite element analyses [2-13] showed non-uniform deformation and damage
fields near an initially smooth notch tip under mixed mode loading.
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Aoki et al. [2] predicted that two competing process zones may be associated
with the tip of crack; one process zone dominated by tensile stress and the other
one dominated by shear stress. The side of the notch, dominated by tensile stress,
blunts, while the other side, dominated by shear strains, sharpens. It was shown in
[10] and [14] that the stable crack under mixed-mode loading conditions
propagates either as a Mode | crack approximately in the direction normal to the
maximum tangential stresses (that is referred as “tensile crack”) or as a Mode Il
crack in the maximum shear strain direction (that is referred as “shear crack”). It
is clear from the preceding discussion that there are two competing fracture
mechanisms that are operative near the sharpened and blunted part of the notch,
respectively, in a ductile material under mixed-mode loading. The dominant
mechanism (between the two considered) establishes the stable crack growth
direction. Furthermore, under mixed-mode loading crack growth would no longer
take place in self similar manner, that is, it will grow along a curvilinear path. The
principal feature of such crack growth is that the stable crack propagates either as
dominating by tensile crack fracture mechanism approximately in the direction
normal to the maximum tangential stresses or as dominated by shear crack
fracture mechanism in the maximum strain direction.

Several analytical and numerical studies have been undertaken to analyze
stress-strain state at the tip in order to understand elastic-plastic mixed-mode
crack behavior. For example, Shih [15] has examined the line crack subjected to
combined Mode | and Mode Il loading using a “small-scale yielding” analysis of
an elastic-plastic body under plane strain conditions (i.e., extending the HRR-
solution [16, 17] on Mode | fracture to the mixed mode case). Shih [15] has
shown that two parameters, the /-integral and the mixity parameter M p,
completely define the near-tip asymptotic stress field. The analysis was only
related to the plane strain tensile crack fracture mechanism (boundary conditions)
for small scale yielding. In [15], the plane stress crack behavior and the fracture
mechanism associated with shear crack were not taken into consideration.

All the above analytical and numerical analyses on the effect of the dominant
fracture mechanism under mixed-mode loading are focused on Mode | boundary
conditions. A similar investigation for both tensile and shear cracks in elastic-
plastic solids has not been carried out in the past. In the present paper, a
steady-state crack in elastic-plastic solids is simulated using a dominant
singularity solution governing the asymptotic behavior at the crack tip. Our
investigation is carried out within the framework of mixed-mode (combining
Mode | and Mode 11), both plane strain and plane stress, and small scale yielding
conditions.

Most of the developed theories concerning the mechanisms of fracture are
based naturally on microscopic structure of materials. The theories dealing
primarily with the mechanism of ductile fracture implicate the influence of the
voids, creating at the core region around the crack tip, on the mode of initiation
and propagation of a crack. The macroscopic effect of this mechanism of
nucleation, growth and coalescence of voids is an increment of crack length in
direction of initial crack propagation 0 , which is apparent in various degrees in

all materials from the quasi-brittle to the quasi-plastic. The simultaneous presence
of yielding and fracture implies that several failure mechanisms are interfering in
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fracture of ductile materials, and the zone of influence of these mechanisms is
quite extended. Since it includes a plastic zone around the crack tip and an elastic
layer adjacent to it containing the voids. These zones may be large or insignificant,
depending on the particular properties of the material.

In brittle or quasi-brittle materials, the plastic zone developed before the
final fracture remains rather small with respect to the crack length and therefore
linear elastic fracture mechanics theory vyields satisfactory results. Ductile
materials under plane strain and plane stress conditions also respond in small
scale yielding fracture as those for example, which exhibit a discontinuous mode
of fracture in which some of the grains cleave ahead of the main crack, and the
bridging regions between them then break in a ductile manner, and for which the
extent of the plastic zones may also be very limited. Then for this type of fracture,
the singular elastic solution may also be considered as a true representation of the
stress and strain fields outside the plastic zone.

Elastic Stress-Strain State. Let us consider a crack in a general mixed-
mode stress field and examine the extension of the crack from the tip. All the
geometric configurations, characterizing the loaded cracked plate as well as the
stress field, are shown in Fig. 1.

W 0 fr D
ya
AS’
A
TG<p . fer
4- £ &
a

*
Fig. 1 The biaxially loaded inclined crack and the direction 9 of propagation.

For an elastic and isotropic plate, under conditions of plane strain, containing
an inclined internal crack of length 2a and obliqueness y3 which is submitted at
infinity to a biaxial stressed state, defined by the stress oyn =0 and oxn =
along two adjacent sides of the plate, the components of stresses at the tip crack
are given by relations [18-20]

K1 9( 9 39 K2 9( 9 39)
oxx= /& F cosil’—smi smT j—A& F smil2+* si “ sT j+Tm
K, 9]3 .9 . 39? K2 9 9 39
oWwW= - cos- U1+ sin—sin--—-—-1+ ;-----Sin—C0S—C0S-—--, (1)
W V2rr 2\ 2 2) vrT o 2 2 27 w
K1 9 9 39 K?2 9 .9 39}
oOXy = - sin —c0s —C0S------ + F---cos —11—sin —sin---1,
Xy V2Ar 22 2 2\ 2 2y

62 ISSN 0556-171X. npo6éeMbi npounocmu, 2005, N9 1



Evaluation of the Elastic-Plastic Mixity Parameters

where the stress intensity factors K1 and K2 as well as the nonsingular term T
are given by

o4na " o”lna .
Ki= 2 [1+ V—(1—")cos2y3], K2= 2 (I-~)sm2f (2)

T =0(1—v)cos2f.

In these relations, V is the biaxiality factor of the stresses oyn and oxn at
infinity, v=oxnjo yn, and f is the angle subtended by the axis of loading and
the crack plane, a is the half of the crack length. The crack orientation angle f
(Fig. 1) is measured positive clockwise and is reckoned from vertical direction or
the direction of major tension. For the case of the oblique crack, the crack-field
mode mixity parameter M E expressed by relation (1) and (2), is given by

1 (0=0 2 4

2 11+ V—(1—V)cos2f
—tan = —tan
o O0rg(0=0) n n

(1—v)sin2f
©)

A number of criteria is available for the prediction of direction of the initial
crack extension 0 . All these are defined using either some aspects of the

stress-strain field existing prior to the start of propagation or some modification
thereof occurring as a consequence of the extension. The criteria belonging to the
first category are the prior stress field criteria. The local symmetry criterion [21,
22] belongs to the second group and the predictions of 0 are based on changes

in the crack tip stress-strain field arising out of an infinitesimal extension of the
main crack. This criterion predicts the extension in the direction given by either
F2 =0 (where F2 isthe crack extension force at the tip normal to its own plane),
or K2 (where K 2 is the Mode Il stress intensity factor at the tip of a propagating
crack). Note that for an inclined crack under remote uniform biaxial tension, the
prediction based on the local symmetry criterion is close to those due to some of
the prior field criteria [23, 24]). The present paper deals with an application of the
maximum tangential stress and the maximum shear stress criteria, because, as it is
clear from above discussion, they are corresponding to the two main dominant
fracture mechanisms. The criteria of maximum tangential stress and the maximum
shear stress are the examples of the prior stress field criteria. They directly use
certain functions of stress or strain components in an element ahead of the crack
tip to specify the basis for the determination of fracture angle 0 . In all cases, the

crack is considered to extend in the radial direction for which the basis function
has an extremum, and the propagation begins when the function reaches a critical
value.

In the case of the maximum tangential stress (MTS) criterion [23], the crack
is considered to extend from the crack tip in the radial direction given by the
point of maximum tangential stress on a circle of finite radius from the point of
fracture initiation. The crack propagation angle 0* is measured negative

clockwise from the crack axis and passing through the point of fracture initiation.
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In the case of the maximum shear stress (MSS) criterion [24, 25], the initial
extension occurs along the plane of the maximum shear stress around the crack
tip. Both MTS and MSS criteria were further used by Williams and Ewing [26],
Eftis et al. [20] and Chrysakis [24, 25] who incorporated in the analysis the
second (non-singular) term in the series expansion of the crack tip stress field.
This idea improved considerably the fit of the theoretical predictions to the
experimental data.

The mathematical formulation ofthe above criteria is expressed as follows.

The Maximum Tangential Stress Criterion. Let r and 0 denote the polar

coordinates centered at the crack tip. Then, adopting the notation

0 30.
Fki = 1+ tf- (1-)cos23, Fxt=cos—11- smz—an]—l
F 2 =sin—12+ 30 I
= (1-")sj = sin— cos —cos— |,
Fk2 = (1-")sin23, 50
. 0/ . .30, =0 0 30
Fyi = cos-11 + sin- sin— '\, Fxyl=sin2 cos2cosy, (4)
0 0 30 0/ 0 30
Fy2 =sin2 cos2 cosy ’ Fxy2 = cos211- sin2”~ T
0 30 0 30
FOL = 3cos—+ cos— , FO2=sm—+sm --,
it is for the biaxially loaded crack
K1 [/ 0 30\ K2 [ . .
70 =—;~=1 3cos—+ cos— I- —;~=1 3sin—+ 3sin— |+
00 472*7V 2 2) 4a& V 2 2
+ 7yn(1-")cos2y3sin O, (5)
or in dimensionless form
700 1 )
7y ga/2 Y R 7 [FKIFOL - 3Fk2F02]+ Tsin2 0. (6)
The derivative of 700 = 700/7 yn is
7 1
d700 + 2Tsin0cos ( @)
8-JI'

Now the maxima of 700 are determined by certain solutions of the equation

407 [FMFOL- 3Fk2F02] + 17AV2 Tsin0cos0 = 0. 8)

where ()' = d/dO.
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The Maximum Shear Stress Criterion. Similarly, from [19, 20]

T mx_ 40y xx)2+0% )

and taking into account Egs. (1)-(4):

2

111 a
[FKi(Fyi —Fxi) + Fk2(Fy2 + Fx2)]—T\ +

Oyn

1"
+ 8r [FkIFxyl+ Fk2Fxy2 ]2 (10)

The equation dx dQ (rrQ=xrdjo yn), after some algebra, takes the form
Pi
1 FK1(Fyl—FX1) + Fk2(Fy2 + FX2)]+ P2[FkIFXyl+ Fk2Fxy2]= 0, (11)

where

P1 V8r [FkI(Fyl Fx1)+ Fk2(Fy2+Fx2)] T
and

P2=  [FfclFxyl + Fk2Fxy2].

It is expedient to study the positions of the maxima for both criteria for
different inclinations of the crack axis. These positions are defined by their angle

Q subtended between the direction of the respective oee- and Xrd-maximum
*

and the crack axis. In order to define angle of crack propagation Q we zero the
first derivative [Egs. (8) and (11), respectively], examining also the sign of its
second derivative, that is

d 2o,
2 <0 and 2 <0. (12)

Both criteria (5) and (9) are based on singular solutions, the point of view
being that the stress-strain characteristics are not determined at the crack tip itself,
but at some distance r from it. Sih [15] considered that this radius must be
constant and greater than the radius of a so-called core region defined by the
limits of continuum mechanics, or by the curvature of the crack-tip. Theocaris
and Andrianopoulos [27] consider that the radius of the curve, which is suitable
for each criterion, must be, at least, equal to the elastic-plastic boundary, which,
in general, is not circular. This is valid also for brittle materials because all
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materials present some kind of non-linearity in their stress-strain curves before
fracture. Thus, we must define the elastic-plastic boundary before applying any
fracture criteria. The need to introduce the elastic-plastic boundary as the limiting
curve when evaluating each criterion can also be seen, if one accepts that crack
propagation is the consequence of the transition of a generic elementary volume
in the vicinity of the crack-tip, from the elastic to the fracture state by passing
obligatorily through a non-linear or plastic state. Since, stresses in each
elementary volume depend strongly on the distance from the crack-tip, it is
obvious that this distance is extremely important.

Hence, taking into account the singular character of stress components
included in Eqgs. (5) and (9) it is necessary to obtain the elastic-plastic boundary
contour. For isotropic power-law hardening materials the plane-strain yield
condition can be written [28] as

0 /loxx- 0
W 4?2 13
¢ - 2. 0y (13)
while for plane stress it is
Oe OX+°yy Oxx0yy 30xy, (14)

where 0e is the generalized effective tensile stress, re is the generalized
effective shear stress. Replacing 0 e in Egs. (13) and (14) by the yield stress 00
and substituting Egs. (1) into it, one can determine the elastic-plastic boundary
around the crack tip.

Calculations for the max000 and the maxr rd criteria, modified so that the
influence of the non-singular (second) term in the expression of stresses be taken
into account. Behavior of the non-singular term T as a function of the crack
angle 0 and the elastic mixity parameter M E are shown in Fig. 2 for different
biaxial ratio ~ and fixed value of normalized nominal stress 0 —0 ynj 0 0 —0.5. It
is clear that the same value of the T-term can be obtained by various combinations
of the crack angle and the biaxial ratio. Our numerical results (Fig. 3) for each
criterion are given for three types of the stressed state: uniaxial tension (» —0),
biaxial tension (* —0.5) and equibiaxial tension-compression (* — 1)

It is interesting first to point out in Fig. 3 the differences between the values
of 0 corresponding to each criterion under pure shear (pure Mode Il) loading

conditions, i.e., »—1 and 0 —45° Indeed, the maximum tangential stress
criterion gives the value of 0° —76 for plane strain and 0% —73 for plane
stress, while the maximum shear stress criterion predicts 0* —0. These differences
in the 00/(3values relate to the different dominant fracture mechanisms, lying in

the basis of each criterion. Furthermore, it should be kept in mind that influence
of orientation ofthe crack 0 and the mode of biaxiality in loading of the plate *
on the direction 0 of crack growth can be directly specified by the elastic mode
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mixity parameter M E with help of Eq. (3). Thus, using any fracture criterion, in
particular, the maximum tangential stress and the maximum shear stress criteria in

the form of Egs. (6) and (10), the fracture initiation angle 0 can be transformed

into a function of the elastic mode mixity parameter M e for given values of
both the biaxiality factor ], and the crack angle p (Fig. 4). In other words, the

crack propagation angle 0 is defined in terms of the tensile and shear stresses at

the crack tip V|C|n|ty as a function of the elastic far-field mixity parameter Me,
|e 0 =f (Me, crlterlon) Note that, at the same values of ] and p, different

criteria will predict different values of 0*. Besides, as it can be seen in Figs. 3

and 4 there is strong dependence for both criteria on the non-singular term. The
results which are shown in Figs. 3 and 4 by solid lines are related to constant
value of the core region radius r/a = 0.01 in singular solutions (6) and (10) while
the dashed lines represent the crack growth direction criteria when the crack
distance is defined as elastic-plastic boundary contour rpja. From the point of
view of the elastic-plastic analysis the use of the plastic zone boundary is
preferable.

Fig. 2. Non-singular term T versus crack angle p and elastic mixity parameter Me under biaxial
loading.

Small-Scale Yielding. Here we briefly discuss the boundary conditions for
symmetric pure Mode I, anti-symmetric pure Mode Il and mixed mode stress
fields.

Mode | Crack-Tip Field (Tensile Crack). We first examine the Mode |
crack-tip stress field for power-law hardening materials. The stress distribution of
the Mode | plane-strain near-tip field under small-scale yielding conditions was
presented in [16, 17]. The stress-free boundary on the upper and lower faces of
the crack requires that oro = <*00=0 at 0 = —180° and 180°. For the symmetric
Mode | stress field, we consider the case where orr > 0 on the stress-free crack
faces. In front of the crack tip (the macrocrack growth direction), the shear stress
oro at 0= 0 must vanish, while the normal stresses orr and 000 have a local
minimum and maximum, respectively for the symmetric Mode | stress field.
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Fig. 3. Directions of initial crack extension 0 according to the maximum tangential stress and the
maximum shear stress criteria.

Mode Il Crack-Tip Field (Shear Crack). Now we examine the anti-
symmetric Mode 11 stress field. The stress distribution of the Mode Il plane-strain
small-scale yielding conditions for strain-hardening materials was presented in
[15, 16].

As for Mode | solution, the stress-free boundary conditions on the crack
faces require that oro = ooo = 0 at 0 = —180° and 180°. We consider the loading
conditions which produce the anti-symmetric Mode |1 stress field near the crack
tip with orr >0 at 0= —180° and orr <0 at 0= 180° Directly ahead of the
crack tip (0 = 0), the normal stresses orr and 000 should vanish, while the shear
stress or0 has a local maximum for the anti-symmetric Mode 1l stress field.
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Fig. 4. Relations between Q and Me based on the MTS and MSS criteria in the cases of constant

core region radius r/a = 0.01 and elastic-plastic boundary pja under uniaxial tension = 0) and
equibiaxial tension-compression (* = —.

The following analytical results of the solution of the nonlinear compatibility
equation attract our attention. From our analytical solutions for plane strain and
plane stress conditions to be discussed later we find the Airy crack-tip stress
function and their derivatives which are plotted in Fig. 5 for both the predominant
shear crack (Fig. 5a and 5d) and tensile crack (Fig. 5b and 5e) loading conditions,
respectively. As shown in Fig. 5a and 5d the boundary conditions corresponding
to the shear crack is given at point 0 —0, that is pure Mode Il. On the other

hand, the predominant loading related to the tensile crack is given at point
0 —76.7°(plane strain) and 0 —73.3° (plane stress) for n—9, as it shown
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Fig. 5. Angular variation (g, b, d, €) of the Airy stress function and their derivatives (c, f) of the
crack-tip stress fields for pure Mode I, n=9 (a b, c) - plane strain, (d, e, f) - plane stress.

%
in Fig. 5b and 5e. It is interesting to note that in this case when Q °= —76.7° the

Q-distributions of the Airy stress function and their derivatives in Fig. 5b with
respect to Q is similar to that of the plane strain pure Mode Il crack-tip fields in
Fig. 5a. The characteristics of the Airy stress function fields for each of the
corresponding shear crack solution (Fig. 5a) and the tensile crack solution (Fig. 5b)
are the same and both lead to the stress state that corresponds to the pure Mode Il
(Fig. 5c). Similar results for plane stress crack behavior are represented in Fig. 5d-
5f. The results shown in Fig. 5c are the crack-tip stresses for pure Mode Il and
agree well with the results [15, 16]. As shown in Fig. 5c for plane strain, the
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general features of the crack-tip stress field are two equally possible crack growth
directions, that are 0 =0 and 0 = —76.7 , while for plane stress they are
0 =0and 0 =-—733°

Mixed-Mode Crack-Tip Field. On the both lower and upper crack faces,
the stress-free condition requires that o = 000 =0 at 0= £180°. We consider
the loading condition which produces orr > 0 at 0= —180°. At this moment we
will use, for instance, the Mode | stress field boundary conditions as the basis to
construct the mixed Mode | and 1l stress field. We consider the loading conditions
which alone would produce a Mode | crack-tip field. To generate a possible plane
strain mixed mode solution we displace point 0=0 (which specifies the
boundary conditions and corresponds(%o the crack growth dirg}o:tion) on the 0-axis
to the left to a position of points 0 = —17.1° (Fig. 6b), 0 = -—39.9° (Fig. 6¢),
0* = —57.2° (Fig. 6d), 0* = —68.7° (Fig. 6e), and 0* = —76.7° (Fig. 6f). The
displacement value depends upon the ratio of the Mode Il load to the Mode |
load. In Fig. 6 are shown our numerical results determined from singularity
analysis, to be given later, concerning the stress fields for intermediate mixed
mode state for strain-hardening exponent n = 9. The point, which corresponds
to the crack growth direction at the crack tip, consequently has to be moved from
the position 0 = 0 (pure Mode I) to the position 0 = —76.7 (pure Mode Il), in
order to cover the complete mixed mode range. Hence, the intermediate point

0=0 of setting the boundary conditions governs of the stress fields under mixed
mode loading. For each point, which is the crack growth direction and defined by

angle 0=0 (Fig. 6a-6f), the dimensionless stress component ~00(0 ) has the
local maximum, ~rr(0 *) has the local minfmum, while ~~ (0 ) is equal to

zero, that corresponds to main postulates of both the maximum tangential stress
and the local symmetry criteria. Since the stressed state at 0 =0 has to

correspond to the pure Mode | (the tensile crack), while at 0 = —76.7° we have

the pure Mode Il (the shear crack) stressed state, we therefore expect that a
change of the dominant fracture mechanism would occur. When point 0=0

moves to the position of 0 = —76.7 where the normal stresses orr and o00g

are anti-symmetric with respect to the vertical line, the general crack-tip stress
state reach the anti-symmetric pure Mode Il crack-tip field. Our analytical results
concerning the dimensionless stresses distributions under plane strain, which are
presented in Fig. 6, in general, confirm the study of Shih [15].

In summary, by moving point (Fig. 6a-6f) from the position of 0 =0 to the

position 0 =—76.7 for n=9 we can generate a complete range of mixed
mode crack-tip field. The solutions for the stress field can be obtained for the
corresponding crack growth direction criterion (or the dominant  fracture
mechanism). The study of this case suggests that, when point 0 =0 of
application of the predominant tensile (shear) crack boundary conditions goes
from pure Mode | (Mode Il) to the mixed mode loading, there is indeed an
intermediate stressed state where the crack tip field changes from the tensile
(shear) crack dominant fracture mechanism to the shear (tensile) one.
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Fig. 6. The solutions of the mixed mode crack-tip stress field for tensile crack predominant loading
conditions with n=9 (1) orr; (2) ~00; (5) drG; (4) oe.

*
Then, taking into account the equation M E =f (0 , criterion, dominant

fracture mechanism), which obtained earlier, we can formulate a new scheme of
mixed mode problem solution:

criterion 0 =f (p, rg, dominant fracture mechanism)

\ ~ (15)
(p " "MEAO* ijr" MP.
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The relationship between ME and Mp is now known in terms of the
inclined crack angle p,obiaxiality factor  and the fracture initiation angle 0

The elastic far-field and the plastic near-field can be regarded as completely
identified for mixed-mode plane strain small-scale yielding. Thus, we found new
method, which has enabled us to directly connect the near-field to the far-field
throughout the fracture initiation angle.

Unlike the investigation [15], where the finite-element approach [29] was
used to calculate the relationship between M E and M p, in the present paper,
the near-field mixity parameter M p was obtained directly from the compatibility
equation solution as 0-distribution of the dimensionless stresses ~00 and ~ro
ranging from pure Mode | to pure Mode Il and including an intermediate mixed
mode fields. In particular, Mp was obtained at 0 = 0 when additional boundary

condition in form of the crack growth direction was specified at 0=0 . This

addition boundary condition, when we are solving the non-linear compatibility
equation, is given a definite meaning by setting the maximum value of the
O-variation of the tangential (shear) stress in an intermediate point, which is
defined by the fracture initiation angle value 0 .Hence complete specification of

the boundary conditions for the non-linear mixed mode problem includes both the
stress-free boundary condition on the upper (0= 180°) and lower (0= -180°)
crack faces and the conditign maximum tangential (shear) stress in the crack
propagation direction (0=0 ) depending on the fracture criterion.
Conclusions. The results of both numerical and analytical investigations
show that each type of boundary conditions correspond to a definite crack growth
direction criterion, in particular, in present paper, these are the maximum
tangential and shear stress criteria. The satisfaction of one or another crack
propagation criterion at 0=0 implies that in this direction one or another

dominant fracture mechanism will take place. Consequently, our approach makes
it possible to obtain stress fields corresponding to one or another dominant
fracture mechanisms. In the present work, these are the mechanisms that are
discussed above and referred to as tensile and shear crack dominant fracture
mechanisms.
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Pesome

Ha OCHOBi JOMiIHYHUYOro MexaHi3amy pyiHyBaHHS NS OLIHKM NOBeAiHKM MaTe-
piany 3a manomacwTabHOT TeKy4OCTi B 06/1acTi BicTpsA TPIWMUHN CHOPMY/TbOBAHO
aCUMNTOTUYHI Kepyloui PiBHAHHA Ta 1X rpaHW4YHi yMOBM A15 BMNafkKiB naockoi
fedopmanii i NNOCKOro Hanpy)eHoro crtaHy. PiBHAHHA 6a3yloTbCcs Ha fdedop-
MaLiliHiA Teopil NAacTMYHOCTI 3i CTeneHeBMM 3MiLHEHHAM. AHani3 6113bKo
nexauymx MofiB HanpyXeHb BUMKOHAHO A8 KpUTepiiB MakCUManbHUX HOpPMasb-
HUX | JOTUYHUX Hanpy>XXeHb, MOBHOr0 AianasoHy 3miwaHux Qopm gedopmy-
BAHHA Ta PI3HMX pIiBHIB MNOKa3HWKa 3MiLHEHHS. 3anporoHOBaHO HOBY CXeMY
pO3B’A3KY 3afjay 3MillaHnx (opM pyliHYyBaHHA. Y CTaHOB/MEHI CMIiBBifHOLIEHHS
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MK BM3HAYanbHUMMW NPY>XHUMW | NNACTUMHUMM NapaMeTpamu 3milLaHoCTi npeg-
CTaBNeHO AK (YHKLUiT BUAY KpWUTepito pocTy TPiWwWHW i MokasHWKa fedopma-
WiiHOTrO 3MiLHEHHA maTtepiany.
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