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KntoueBble cnoBa: cTaTUYeckoe BbiNnyynBaHWe, BHELWIHEE OaB/ieHNE, perpeccud.

Introduction. Despite extensive research and application of powerful
numerical techniques to the problem of mechanical behavior of spherical shells,
the knowledge on the latter is still limited. This lack of knowledge is due to two
main difficulties. Firstly, in contrast to beams or plates, buckling of shells is
generally sensitive to initial geometric imperfections induced during fabrication
process or operation. Secondly, experimental data are available only for a limited
number of cases. Indeed, in [1] it is pointed out that there is a great need for more
experimental data in the area of shell buckling.
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Important experimental results have been obtained during the last few years
and, in principle, there are two ways in which this data could be utilized. In the
first approach, experiments are used to benchmark the numerical calculations. For
example, Blachut and Galletly [2] examined the load-carrying capacity of spun
steel hemispheres under static external pressure. The effects of both thickness and
shape imperfections on the collapse strength were discussed. Experimental and
numerical results were given for seven spun hemispheres and comparisons with
design codes were also provided. The ratios of the experimental to the numerical
collapse pressures varied between 0.56 and 1.21. In the second approach, the
experimental data is used to construct analytical expressions which subsequently
could allow the design of spherical shells without resorting to numerical methods.
Gupta et al. [3], for example, studied the response of shallow spherical shells
under axial compression between two rigid plates. An analytical model for the
load-compression path and for the mean collapse loads was developed. The model
uses the concept of stationary and rolling plastic hinges. The authors emphasized
that the analytical predictions match well the experimental observations. Using
this methodology, Gupta et al. [4] have also developed an analytical expression
for the prediction of load-deformation and energy-compression behavior of
glass/polyester composite hemispherical shells under quasi-static and dynamic
axial compression.

Thus, there are some particular cases of research which may be considered
very useful. However they are limited to cases with a small range of
imperfections and/or to very specific loading. This is particularly true for
composite shells. The classic buckling theory and numerical methods are usually
unapplicable to these structures: mechanical properties of composite shells made
from a variety of composite materials are often unknown. These properties
strongly depend on the technology of material fabrication and, in turn, on
component manufacturing route. Therefore, it is expedient to design thin-walled
structures using analytical expressions derived from experiments on specimens
similar to structures which are to be designed.

To this end it is possible to use different methods for construction of
analytical expressions describing the available experimental data. One of possible
tools here is a regression method. The method has already been used by
Karmishin et al. [5, 6] to design thin-walled structures.

The aim of this paper is to extend the regression method to the design of
empty, foam filled and geometrically imperfect shells under an external pressure.

1 Geometrical Imperfections and Investigation Techniques. It is
known that even small level of initial geometric imperfections can significantly
affect the behavior of thin-walled structures. Thin-walled structures carry loads
transverse to their mid-surface by a very efficient membrane action, in which the
shape is the most important design factor. Whenever the shape is modified (due to
imperfections produced by an external cause), then the way the equilibrium is
satisfied also changes. As a result, a small modification of shell’s geometry can
produce a large reduction in the buckling load of the shell. But not only the
buckling capacity is modified. The second important consequence is the elastic
stress re-distribution that occurs. As a result, the thin-walled structure is required
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to develop bending stresses to compensate for the loss of membrane resistance to
the loads.

Let us define a geometric imperfection as a permanent change in the ideal
shape of a structure. This could be caused either by fabrication process or this
could occur during exploitation of an existing structure. No matter how accurately
one tries to construct or how carefully one exploits a thin-walled structure, there
is always a possibility of imperfections’ occurrence. Also, due to operational
procedures one should, for example, be able to predict the strength of existing
thin-walled structures which have accumulated imperfections over the time. One
may need to renew and/or repair the existing structures which have developed
imperfections. An urgent need to support a thin-walled component in order to
eliminate the possibility of its catastrophic collapse might also arise. These are
just a sample of situations which can occur in practice. Thus, there is a need to
understand the behavior of thin-walled structures with imperfections, in order to
be able to predict an altered load-carrying capacity envelope.

This work is focused on buckling of spherical shells. This shape is the
simplest one but it is very sensitive to initial geometrical imperfections. For
example, using the linear theory R. Zoelly [7] and L. S. Leibenson [8] showed
that the buckling load of thin elastic spherical shell is

)

where P is the external pressure, E is Young’s modulus, h is wall thickness of
the shell, v is Poisson’s ratio, R is mean radius of the spherical shell. In
particular, the critical stress oc becomes oc=0.606Eh/R for v = 0.3. However,
experiments have shown that the true critical pressure consists of only 0.25% of
the theoretical value given by Eq. (1) [9]. There are several assumptions aimed to
explain discrepancies between experimental buckling loads and predictions
obtained from the classic theory. For example, in [9], this discrepancy is
attributed to the influence of geometrical non-linearity of a spherical shell. Later,
Mushtary and Syrkin [10] corrected formula (1), and the following expression for
the buckling load was proposed

%)

On the other hand, it was considered that small initial geometric
imperfections were mainly responsible for these discrepancies. Indeed, it was
found that thin shells having the true spherical shape have the critical loads close
to the theoretical prediction according to Eq. (1) (up to 90% or more [11]).

Subsequently a large number of papers devoted to buckling of spherical
shells has been published. The current paper does not intend to review them. Only
some key and relevant publications are mentioned. Publications [12-14]
discussed important experiments and their correlation with the classical theory.
Also, 249 papers devoted to experimental investigations of behavior of spherical
shells loaded by static or dynamic loads were reviewed in [15]. More recent
entries can be found in [16-19].
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1.1. The Regression Method [20, 21]. Many variables contribute to the
structural response of shells subjected to loads, which cause large deformation
and buckling phenomena. It is not feasible to investigate the influence of every
variable. Therefore a designer usually selects dimensional groups of variables
which govern the structural response. These groups are naturally represented in
dimensionless analytical equation which approximates the experimental data. As
it has already been mentioned, there are several methods available for derivation
of such analytical equation. In particular, the relationship between the dependent
variable y, and i independent variables xt may be written in the form of
nonlinear algebraic equation (usually in the form of a polynomial). Let us use the
nonlinear multiplicative model written, for the case of i=2, as

y = bo + biX:1 + ba2x2 + biiXz + b22x2 + bi2XiX2 +
+ biiixe + bii2Xbx2 + bizz2XixL (3)

where bo, bi, b2,..., biz2 are unknown coefficients. The nonlinear combinations
of xt may be taken as distinct variables, i.e., as x3 = xf, x4 = xiX2, xs = x2,
.., X8 =Xix2. In this case, results of j experiments can be described by the
following set of linear algebraic equations:

y (J) = bo + bixp) + b2xzj)x2 + bnxsj) + baax4j) +

+ bizx )+ biiax )+ bi22x7). 4)

If j =s, then it is possible to find b0, bi, b2, ..., bi2z from Eqgs. (4). The
system of linear equations can be written as

y = Xb, (%)

where y is a column vector of known and dimensionless values defined by
experiments, X is a matrix of variables, and b is a column vector of unknown
coefficients. It needs to be emphasized that each element of y and X is
determined from experiments. Next, the principle of least squares is used in order
to find the best approximation fit. An approximation according to this principle
gives us the following expression for elements of vector b:

b= (XTX)-:Xty, (6)

where XT is the transposed matrix and (XtX)—1 denotes the inverse of XTX.

1.2. Application of the Regression Method to the Spherical Shell
Buckling Problem. Let us use the theory of planning of experiments and the
dimensional analysis to construct equation (5). It has already been mentioned that
variables x: and x2, in Eq. (3), are coded variables. The values of: _1, 0, 1 have
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been adopted in this paper. The coded variables are related to natural, and
dimensionless variables X : and X 2. The latter variables are determined by
shell’s geometry and by loading. The coding is made according the following
scheme:

X, = (X x—X 0i)/AX,,

X0i = 0.5(X xmax + X xmin), AXi =0.5(X ,mx- X,mn), i=1.2, (?)

where X p is a current value of natural variable, X prgx and X pyin are the
maximum and the minimum values of natural variables, X 0i are values of
natural variables at the centre of the experimental plane, and AX, is an interval
of variation of X,. Expressions for X, are determined next for several
experimental cases. For each set of buckling experiments nine shell specimens
were used. Every experiment/test was repeated three times and then the average
values were used. A typical experimental shell specimen is sketched in Fig. 1
Details about experimental test equipment are given elswehere [5, 6, 22].

Fig. 1 Typical empty hemispherical shell used in experiments.

Let us now illustrate how values of x, are calculated. Assume that
50< X i <550, 0.2< X 2 < 1,and the centre of experimental plane is prescribed by
X o1 = 300, and X 02 = 0.6. Then, using Eq. (7) one finds AX1= 250, AX2= 0.4,
X1 = (X1 —300)/250, and x2 = (X 2—0.6)/0.4. Thus, at the ends of the intervals
one has x, =1 or x, = —1, and at the centre, x, =0

The next section provides details about experiments which form the basis for
the proposed design equations given later in the paper.

2. Buckling of Empty or Supported Hemispherical Shells Having a Local
Circular Dent under Static External Pressure. Hemispherical shells from
titanium alloy (E = 110.0 GPa) were tested in order to establish a sample of their
buckling characteristics. Shells were manufactured by spinning technology. Then
they were welded to thick base plate containing a number of holes. The holes
were used to bolt shells to motionless equipment (see Fig. 1). All shells were
annealed before testing. A radius of these shells was 0.05 m and the wall
thickness varied.

These metallic shells were either empty inside or supported by elastic media.
In the ensuing experimental tests it was aimed to study the influence of the depth
and of the elastic media (styrofoam) on the buckling strength of shells. The
styrofoam was glued to the shell. The initial imperfections (circular dents) were
localized at the pole of these shells. The dent geometry was characterized by its
depth W and angular dimension a. The angle a is related to the dimensionless
thickness ratio and depth WO as follows:
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a = 144((h/R )o12 (WO/R ) 008, (2)

where R is the mean radius of the perfect shell. Tested shells had different wall
thickness and different stiffness of the styrofoam. Depth of the indent at the pole
was formed with the help of a shock wave generated by a small shock tube - see
[5, 6] for further details. After formation of the imperfection at the pole, the shell
was loaded by external pressure using either oil or gas as working bodies. In the
first case (stiff loading), shells experienced dynamic snap-buckling. In the second
case (soft loading), no dynamic snap-buckling was observed. However, the
magnitude of the buckling load was the same in both cases.

After the snap-buckling, the depth of the dent increased and its magnitude
was comparable with R. Sometimes, the depth did not increase but instead small
dents were formed around the initial dent as a result of buckling.

The experimental values of critical buckling stress and pressure were
determined for a wide range of shells. Using these values, the regression equation
was constructed. It related the critical stress with the initial dent depth Wo and
the ratio h/R. For supported shells we have h/R =250, and the regression
equation relates a ¢ to mechanical properties of the styrofoam and the dent depth
Wo -

2.1. Buckling of Empty or Supported Hemispherical Shells.

2'1'1" Empty Shells. In this case, X:=R/h, X2=WO0/R and the

experimental test data are shown in Table 1, where y Tpt = 100ac. According to
these data, the following regression equation was obtained

y*=0.11222- 0.017x: - 0.0195x2 + 0.00466x2 - 0.00283x2 +

+ 0.0065x Ix2 - 0.0025x2x 2 - 0.000499x Ix 2. 9)

Critical loads y* calculated according to Eqg. (9), and the difference,
A= are given in Table 2. Curves y * are depicted in Fig. 2. Using
these curves it is possible to determine critical values of the ratio Rjh, the initial
imperfection Wo/R, or the loading P (since the stress a = PR2/Eh2).

2'1'2" Styrofoam-Filled Hemispherical Shells. In this case, X 1=Wo/R,
X2 = KR/E,while k characterizes the stiffening characteristic of the foam. Using
the experimental data given in Table 3 the following regression equation was
obtained

y*=0.43924- 0.08333x: + 0.20975x2 - 0.00416x2 - 0.09372x2 -

- 0.09372x2 - 0.03475x1x2 + 0.00099x2x 2 + 0.02005x1X 2. (10)

Critical loads y* calculated according to Eq. (10) and the difference,
A= y*- yTpt ,are given in Table 4. Curves y * are shown in Fig. 3. Using
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Table 1
Dimensionless Experimental Data for Buckling of Empty Titanium Hemispheres
and Values of Coded Variables x1 and x2

Test No. 1 2 3 4 5 6 7 8 9
1 +1 +1 -1 -1 +1 -1 0 0 0
0 +1 1 +1 -1 0 0 +1 -1 0
8.1 1.2 103 16.0 10.0 134 9.0 120 112
Table 2

Dimensionless Buckling Load Predicted by the Regression Model
and the Resulting Errors (from Eq. (9))

¥ 8105 11205 10305 16005 9988 13388 8988 111888 11222
1000A 5 5 5 5 12 12 12 (V] 2

(x2 1000WV«

250 500 750 tf//,

(-v © m) (%)

Fig. 2. Set of design curves to aid design of empty imperfect hemispheres (P is the static pressure).

these curves it is possible to determine critical values of the initial imperfection
Wo /R, the loading P, or the foam stiffness k.

3. Summary and Conclusions. Buckling of the spherical shells subjected to
the external pressure has been investigated with a view of producing design
charts/equations. The influence of imperfections and the core material on the
static buckling was considered (Figs. 2 and 3).

With the help of the theory of planning of experiments an influence of initial
imperfections, filling (core) and loading on buckling performance of shells was

analyzed. The adopted method has allowed us to derive regression equations of
the form

y ~ b0+ bix 1+ b2x2+ b1Ix2 + b22x2 + b12x1x2 + b112 1x2 + b122X 1x 2
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Table 3
Experimental Data for Buckling of Imperfect Titanium Hemispheres Filled with Styrofoam
and Values of Coded Variables x1 and x2

TestNo. 1 2 3 4 5 6 7 8 9
g +1 +1 4 a4 # 4 0 0 0
o +1 4 o+ 4 0 0 +1 —1 0

o 04550 01030 0.6519 01600 03500 0.5166 05535 0.1340 0.4428

Table 4
Dimensionless Buckling Load Predicted by the Regression Model
and the Resulting Errors (from Eg. (11))

y 04541 01021 06501 01591 03520 0.5183 05550 0.1357 0.4428
1000A  0.88 0.88 0.88 0.88 177 177 177 177 355

(x2 1000kR/E

i 4000Mnys

1 & (+VM

Fig. 3. Set of graphs for designing of imperfect hemispheres filled with styrofoam.

Coefficients of the nonlinear (cubic) regression equations were determined
from experiments in 9 points of x: —x 2 plane. It is noteworthy that every test was
repeated three times and then the average values were adopted in this paper. Using
the regression equations and graphs depicted in Figs. 2-3 the different
hemispherical elements of structures could be designed with ease.

Pesome

MpefctaBfeHoO MaTeMaTUYHI 3a1€XHOCTI, WO ONUCYIOTb pesynbTaTu AOCNIIKEHb
MeTaneBMx HaniBcepmyHMX 060IOHOK NMPU CTAaTUYHOMY HaBaHTaXXEHHI 30BHiLU-
HiM Tuckom. Mpy UbOMY AOCNIAKYBaNUCA NOBELIHKA /i YMOBM BTpaTu CTINKOCTI
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AK NyCTOTININX, TaK i 3anmoBHEHMX MEHOMacTOM O6O0/IOHOK i3 FeOMEeTPUYHOK
HefoCKOHanicTio. OTPUMAHO PIBHAHHA perpecii y BUrNa4i HEMOBHUX KYOIUHUX
NONIHOMIB. Y M/IOCKOCTAX BM3HaYanbHUX napameTpiB nobyAoBaHO i30MiHiT, aHani3
AKNX [03BOJIAE 3p0OUTM AKICHI | KiSIbKICHI BUCHOBKM WOA0 MOBeLiHKM 06010HOK
B YMOBAX HaBaHTa)X€HHA 30BHILIHIM TUCKOM.
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