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Представлены математические зависимости, описывающие результаты исследований 
металлических полусферических оболочек при статическом нагружении внешним давлением. 
При этом исследовались поведение и условия потери устойчивости как пустотелых, так и 
заполненных пенопластом оболочек с геометрическими несовершенствами. Получены урав
нения регрессии в виде неполных кубических полиномов. В плоскостях определяющих пара
метров построены изолинии, анализ которых позволяет сделать качественные и количест
венные выводы о поведении оболочек в условиях нагружения внешним давлением.
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Introduction. Despite extensive research and application of powerful 
numerical techniques to the problem of mechanical behavior of spherical shells, 
the knowledge on the latter is still limited. This lack of knowledge is due to two 
main difficulties. Firstly, in contrast to beams or plates, buckling of shells is 
generally sensitive to initial geometric imperfections induced during fabrication 
process or operation. Secondly, experimental data are available only for a limited 
number of cases. Indeed, in [1] it is pointed out that there is a great need for more 
experimental data in the area of shell buckling.
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Important experimental results have been obtained during the last few years 
and, in principle, there are two ways in which this data could be utilized. In the 
first approach, experiments are used to benchmark the numerical calculations. For 
example, Blachut and Galletly [2] examined the load-carrying capacity of spun 
steel hemispheres under static external pressure. The effects of both thickness and 
shape imperfections on the collapse strength were discussed. Experimental and 
numerical results were given for seven spun hemispheres and comparisons with 
design codes were also provided. The ratios of the experimental to the numerical 
collapse pressures varied between 0.56 and 1.21. In the second approach, the 
experimental data is used to construct analytical expressions which subsequently 
could allow the design of spherical shells without resorting to numerical methods. 
Gupta et al. [3], for example, studied the response of shallow spherical shells 
under axial compression between two rigid plates. An analytical model for the 
load-compression path and for the mean collapse loads was developed. The model 
uses the concept of stationary and rolling plastic hinges. The authors emphasized 
that the analytical predictions match well the experimental observations. Using 
this methodology, Gupta et al. [4] have also developed an analytical expression 
for the prediction of load-deformation and energy-compression behavior of 
glass/polyester composite hemispherical shells under quasi-static and dynamic 
axial compression.

Thus, there are some particular cases of research which may be considered 
very useful. However they are limited to cases with a small range of 
imperfections and/or to very specific loading. This is particularly true for 
composite shells. The classic buckling theory and numerical methods are usually 
unapplicable to these structures: mechanical properties of composite shells made 
from a variety of composite materials are often unknown. These properties 
strongly depend on the technology of material fabrication and, in turn, on 
component manufacturing route. Therefore, it is expedient to design thin-walled 
structures using analytical expressions derived from experiments on specimens 
similar to structures which are to be designed.

To this end it is possible to use different methods for construction of 
analytical expressions describing the available experimental data. One of possible 
tools here is a regression method. The method has already been used by 
Karmishin et al. [5, 6] to design thin-walled structures.

The aim of this paper is to extend the regression method to the design of 
empty, foam filled and geometrically imperfect shells under an external pressure.

1. Geom etrical Im perfections and Investigation Techniques. It is well 
known that even small level of initial geometric imperfections can significantly 
affect the behavior of thin-walled structures. Thin-walled structures carry loads 
transverse to their mid-surface by a very efficient membrane action, in which the 
shape is the most important design factor. Whenever the shape is modified (due to 
imperfections produced by an external cause), then the way the equilibrium is 
satisfied also changes. As a result, a small modification of shell’s geometry can 
produce a large reduction in the buckling load of the shell. But not only the 
buckling capacity is modified. The second important consequence is the elastic 
stress re-distribution that occurs. As a result, the thin-walled structure is required
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to develop bending stresses to compensate for the loss of membrane resistance to 
the loads.

Let us define a geometric imperfection as a permanent change in the ideal 
shape of a structure. This could be caused either by fabrication process or this 
could occur during exploitation of an existing structure. No matter how accurately 
one tries to construct or how carefully one exploits a thin-walled structure, there 
is always a possibility of imperfections’ occurrence. Also, due to operational 
procedures one should, for example, be able to predict the strength of existing 
thin-walled structures which have accumulated imperfections over the time. One 
may need to renew and/or repair the existing structures which have developed 
imperfections. An urgent need to support a thin-walled component in order to 
eliminate the possibility of its catastrophic collapse might also arise. These are 
just a sample of situations which can occur in practice. Thus, there is a need to 
understand the behavior of thin-walled structures with imperfections, in order to 
be able to predict an altered load-carrying capacity envelope.

This work is focused on buckling of spherical shells. This shape is the 
simplest one but it is very sensitive to initial geometrical imperfections. For 
example, using the linear theory R. Zoelly [7] and L. S. Leibenson [8] showed 
that the buckling load of thin elastic spherical shell is
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where P  is the external pressure, E  is Young’s modulus, h is wall thickness of 
the shell, v is Poisson’s ratio, R  is mean radius of the spherical shell. In 
particular, the critical stress o  c becomes o  c = 0.606 Eh/R  for v = 0.3. However, 
experiments have shown that the true critical pressure consists of only 0.25% of 
the theoretical value given by Eq. (1) [9]. There are several assumptions aimed to 
explain discrepancies between experimental buckling loads and predictions 
obtained from the classic theory. For example, in [9], this discrepancy is 
attributed to the influence of geometrical non-linearity of a spherical shell. Later, 
Mushtary and Syrkin [10] corrected formula (1), and the following expression for 
the buckling load was proposed

On the other hand, it was considered that small initial geometric 
imperfections were mainly responsible for these discrepancies. Indeed, it was 
found that thin shells having the true spherical shape have the critical loads close 
to the theoretical prediction according to Eq. (1) (up to 90% or more [11]).

Subsequently a large number of papers devoted to buckling of spherical 
shells has been published. The current paper does not intend to review them. Only 
some key and relevant publications are mentioned. Publications [12-14] 
discussed important experiments and their correlation with the classical theory. 
Also, 249 papers devoted to experimental investigations of behavior of spherical 
shells loaded by static or dynamic loads were reviewed in [15]. More recent 
entries can be found in [16-19].

(1)

(2)
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1.1. The Regression M ethod [20, 21]. Many variables contribute to the 
structural response of shells subjected to loads, which cause large deformation 
and buckling phenomena. It is not feasible to investigate the influence of every 
variable. Therefore a designer usually selects dimensional groups of variables 
which govern the structural response. These groups are naturally represented in 
dimensionless analytical equation which approximates the experimental data. As 
it has already been mentioned, there are several methods available for derivation 
of such analytical equation. In particular, the relationship between the dependent 
variable y, and i independent variables x t may be written in the form of 
nonlinear algebraic equation (usually in the form of a polynomial). Let us use the 
nonlinear multiplicative model written, for the case of i = 2 , as

y  = bo + biX 1 + b2x  2  + bi iX 2  + b22x  2  + bi2X iX 2  +

+ bi i ix i3 + bi i 2  x i2  x 2  + bi2 2  x ix L  (3)

where bo , b i , b 2 , . . . ,  bi2 2  are unknown coefficients. The nonlinear combinations
2 2of x t may be taken as distinct variables, i.e., as x 3 = x i , x 4 = x ix 2, x 5 = x 2, 

..., x 8 = x ix 2 . In this case, results of j  experiments can be described by the 
following set of linear algebraic equations:

y (j) = bo + b ix p ) + b 2  x 2j) x 2  + bn x  3 j) + b 2 2  x 4j) +

+ bi2 x ) + bii 2 x ) + bi2 2 x 7 ). (4)

If j  = 8 , then it is possible to find b0, bi , b2, ..., b i 2 2  from Eqs. (4). The 
system of linear equations can be written as

y = Xb, (5)

where y is a column vector of known and dimensionless values defined by 
experiments, X is a matrix of variables, and b is a column vector of unknown 
coefficients. It needs to be emphasized that each element of y and X is 
determined from experiments. Next, the principle of least squares is used in order 
to find the best approximation fit. An approximation according to this principle 
gives us the following expression for elements of vector b:

b = (X T X ) - 1 X t  y , (6 )

T t  _1 Twhere X is the transposed matrix and (X X) denotes the inverse of X X.
1.2. Application of the Regression M ethod to the Spherical Shell 

Buckling Problem . Let us use the theory of planning of experiments and the 
dimensional analysis to construct equation (5). It has already been mentioned that 
variables x 1 and x 2, in Eq. (3), are coded variables. The values of: _1, 0, 1 have
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been adopted in this paper. The coded variables are related to natural, and 
dimensionless variables X 1 and X 2. The latter variables are determined by 
shell’s geometry and by loading. The coding is made according the following 
scheme:

x, =  (X x — X 0i ) / A X ,,

X0i =  0.5(X xmax + X xmin), AXi =  0.5(X , max -  X , mn ), i =  1,2, (?)

where X ,• is a current value of natural variable, X ,• max and X ,• are thei i max i min
maximum and the minimum values of natural variables, X 0i are values of 
natural variables at the centre of the experimental plane, and AX, is an interval 
of variation of X ,  . Expressions for X ,  are determined next for several 
experimental cases. For each set of buckling experiments nine shell specimens 
were used. Every experiment/test was repeated three times and then the average 
values were used. A typical experimental shell specimen is sketched in Fig. 1. 
Details about experimental test equipment are given elswehere [5, 6, 22].

Fig. 1. Typical empty hemispherical shell used in experiments.

Let us now illustrate how values of x , are calculated. Assume that 
50 < X i < 550, 0.2 < X 2  < 1, and the centre of experimental plane is prescribed by 
X 01  =  300, and X 02 = 0.6. Then, using Eq. (7) one finds AX1 = 250, AX2 = 0.4, 
x 1 =  (X 1 — 300)/250, and x 2 = (X 2 — 0.6)/0.4. Thus, at the ends of the intervals 
one has x ,  =1 or x , = —1, and at the centre, x , =  0.

The next section provides details about experiments which form the basis for 
the proposed design equations given later in the paper.

2. Buckling of Em pty or Supported Hem ispherical Shells Having a Local 
C ircu lar Dent under Static External Pressure. Hemispherical shells from 
titanium alloy (E = 110.0 GPa) were tested in order to establish a sample of their 
buckling characteristics. Shells were manufactured by spinning technology. Then 
they were welded to thick base plate containing a number of holes. The holes 
were used to bolt shells to motionless equipment (see Fig. 1). All shells were 
annealed before testing. A radius of these shells was 0.05 m and the wall 
thickness varied.

These metallic shells were either empty inside or supported by elastic media. 
In the ensuing experimental tests it was aimed to study the influence of the depth 
and of the elastic media (styrofoam) on the buckling strength of shells. The 
styrofoam was glued to the shell. The initial imperfections (circular dents) were 
localized at the pole of these shells. The dent geometry was characterized by its 
depth W  and angular dimension a. The angle a  is related to the dimensionless 
thickness ratio and depth W0 as follows:

102 ISSN 0556-171X. npodxeMbi npounocmu, 2004, N9 5



Experimental and Theoretical Design Methodology

a  = 144(( h /R  ) 0 1 2 (W0/  R  ) 0-08, (8 )

where R  is the mean radius of the perfect shell. Tested shells had different wall 
thickness and different stiffness of the styrofoam. Depth of the indent at the pole 
was formed with the help of a shock wave generated by a small shock tube -  see 
[5, 6 ] for further details. After formation of the imperfection at the pole, the shell 
was loaded by external pressure using either oil or gas as working bodies. In the 
first case (stiff loading), shells experienced dynamic snap-buckling. In the second 
case (soft loading), no dynamic snap-buckling was observed. However, the 
magnitude of the buckling load was the same in both cases.

After the snap-buckling, the depth of the dent increased and its magnitude 
was comparable with R. Sometimes, the depth did not increase but instead small 
dents were formed around the initial dent as a result of buckling.

The experimental values of critical buckling stress and pressure were 
determined for a wide range of shells. Using these values, the regression equation 
was constructed. It related the critical stress with the initial dent depth Wo and 
the ratio h/R. For supported shells we have h/R  = 250, and the regression 
equation relates a  c to mechanical properties of the styrofoam and the dent depth 
W0 -

2.1. Buckling of Em pty or Supported Hem ispherical Shells.
2'1'1' Empty Shells. In this case, X 1 = R /h , X 2  = W 0/R  and the 

experimental test data are shown in Table 1, where y  Tp t = 100a c. According to 
these data, the following regression equation was obtained

y * = 0.11222- 0.017x 1 -  0.0195x2 + 0.00466x2 -  0.00283x2 +

+ 0.0065x 1x 2  -  0.0025x2x  2  -  0.000499x 1x 2. (9)

Critical loads y  * calculated according to Eq. (9), and the difference,

A = are given in Table 2. Curves y  * are depicted in Fig. 2. Using

these curves it is possible to determine critical values of the ratio Rjh, the initial 
imperfection W0 / R, or the loading P  (since the stress a  = P R 2/E h 2).

2'1'2' Styrofoam-Filled Hemispherical Shells. In this case, X 1 = W 0 /R, 
X 2  = kR /E , while k  characterizes the stiffening characteristic of the foam. Using 
the experimental data given in Table 3 the following regression equation was 
obtained

y * = 0 .43924- 0.08333x 1 + 0.20975x2 -  0.00416x2 -  0.09372x2 -

-  0.09372x2 -  0.03475x 1 x 2  + 0.00099x2x 2  + 0.02005x 1 x 2. (10)

A =

Critical loads y  * calculated according to Eq. (10) and the difference, 

y  * -  y  Tpt , are given in Table 4. Curves y  * are shown in Fig. 3. Using
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T a b l e  1
Dimensionless Experimental Data for Buckling of Empty Titanium Hemispheres 

and Values of Coded Variables x1 and x2

Test No. 1 2 3 4 5 6 7 8 9

x1 + 1 +1 -1 -1 +1 -1 0 0 0

x2 + 1 - 1 +1 -1 0 0 +1 -1 0

8. 1 11.2 10.3 16.0 10.0 13.4 9.0 12.0 11.2

T a b l e  2
Dimensionless Buckling Load Predicted by the Regression Model 

and the Resulting Errors (from Eq. (9))

y* 8.105 11.205 10.305 16.005 9.988 13.388 8.988 111.888 11.222

1000A 5 5 5 5 12 12 12 12 22

(x2) 1000WV«

2 5 0  5 0 0  750  tf// ,
|-------------------------------------------------------- ,-------------------------------------------------------- ,

(-V  (0) M )  (*,)
Fig. 2. Set of design curves to aid design of empty imperfect hemispheres (P is the static pressure).

these curves it is possible to determine critical values of the initial imperfection 
W0 / R , the loading P, or the foam stiffness k.

3. Sum m ary and Conclusions. Buckling of the spherical shells subjected to 
the external pressure has been investigated with a view of producing design 
charts/equations. The influence of imperfections and the core material on the 
static buckling was considered (Figs. 2 and 3).

With the help of the theory of planning of experiments an influence of initial 
imperfections, filling (core) and loading on buckling performance of shells was 
analyzed. The adopted method has allowed us to derive regression equations of 
the form

y  ~  b 0 +  b 1x  1 + b2x 2 + b11x 2 + b22x 2 + b12x 1x 2 + b112x 1 x 2 + b122x 1x 2
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T a b l e  3
Experimental Data for Buckling of Imperfect Titanium Hemispheres Filled with Styrofoam 

and Values of Coded Variables x1 and x2

Test No. 1 2 3 4 5 6 7 8 9

xi + 1 + 1 —1 —1 +1 —1 0 0 0

x2 + 1 — 1 +1 —1 0 0 +1 —1 0

P 0.4550 0.1030 0.6519 0.1600 0.3500 0.5166 0.5535 0.1340 0.4428

T a b l e  4
Dimensionless Buckling Load Predicted by the Regression Model 

and the Resulting Errors (from Eq. (11))

y 0.4541 0.1021 0.6501 0.1591 0.3520 0.5183 0.5550 0.1357 0.4428
1000A 0.88 0.88 0.88 0.88 1.77 1.77 1.77 1.77 3.55

(x2) 1000kR/E

і ___________________ ________________________  4 ю о о и уя

('1) <°> (+VM

Fig. 3. Set of graphs for designing of imperfect hemispheres filled with styrofoam.

Coefficients of the nonlinear (cubic) regression equations were determined 
from experiments in 9 points of x  1 — x  2  plane. It is noteworthy that every test was 
repeated three times and then the average values were adopted in this paper. Using 
the regression equations and graphs depicted in Figs. 2-3 the different 
hemispherical elements of structures could be designed with ease.

Р е з ю м е

Представлено математичні залежності, що описують результати досліджень 
металевих напівсферичних оболонок при статичному навантаженні зовніш
нім тиском. При цьому досліджувалися поведінка й умови втрати стійкості
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як пустотілих, так і заповнених пенопластом оболонок із геометричною 
недосконалістю. Отримано рівняння регресії у вигляді неповних кубічних 
поліномів. У плоскостях визначальних параметрів побудовано ізолінії, аналіз 
яких дозволяє зробити якісні і кількісні висновки щодо поведінки оболонок 
в умовах навантаження зовнішнім тиском.

1. L. S. Beedle, Stability o f  Metal Structures: A World View, 2nd Edition, 
Stability Research Council, USA. (1991).

2. J. Blachut and G. D. Galletly, “Buckling strength of imperfect steel hemi
spheres,” Thin-Walled Structures, 23, 1-20 (1995).

3. N. K. Gupta, G. L. E. Prasad, and S. K. Gupta, “Axial compression of 
metallic spherical shells between rigid plates,” Thin-Walled Structures, 34, 
21-41 (1999).

4. N. K. Gupta and G. L. E. Prasad, “Quasi-static and dynamic axial 
compression o f glass/poliester composite hemispherical shells,” Int. J. 
Impact Eng., 22, 757-774 (1999).

5. A. V. Karmishin, E. D. Skurlatov, V. G. Startsev, and V. A. Fel’shtein, 
Transient Aeroelasticity o f  Thin Structures [in Russian], Mashinostroenie, 
Moscow (1982).

6. A. V. Karmishin, A. I. Zhukov, V. G. Kolosov, et al., Methods o f  Dynamic 
Design and Tests o f  Thin-Walled Structures [in Russian], Mashinostroenie, 
Moscow (1990).

7. R. Zoelly, Promotionarbeit, Zurich, Technische Hochschule(1915).
8. L. S. Leibenson, Proceedings of Tartu University (Yurjevskij Universitet),

25, No. 5, 1-22 (1917).
9. Th. Karman and H. S. Tsien, “The buckling of spherical shells by external 

pressure,” J. Aeronaut. Sci., 7, No. 2, 43-50 (1939).
10. X. M. Mushtary and R. G. Syrkin, “About nonlinear theory of buckling of 

elastic equilibrium of thin spherical shell under action o f uniformly 
distributed normal external pressure,” Appl. Math. Mech., 14, 573-586 
(1950).

11. A. V. Pogorelov, Geometric Theory o f  Shell Stability [in Russian], Nauka, 
Moscow (1966).

12. R. L. Carlson, R. L. Sendelbeck, and N. J. Hoff, “Experimental studies of the 
buckling of complete spherical shells,” Exp. Mech., 7, No. 7, 281-288 
(1967).

13. N. Jones and C. S. Ahn, “Dynamic elastic and plastic buckling of complete 
spherical shells,” Int. J. Solids Struct., 10, 1357-1374 (1974).

14. G. D. Galletly, “On the buckling of shallow spherical caps subjected to 
uniform external pressure,” AIAA J., 14, 1331-1333 (1974).

15. E. I. Grigolyuk and V. I. Mamai, Mechanics o f  Deformation o f  Spherical 
Shells [in Russian], Institute of Mechanics of the Moscow State University, 
Moscow (1983).

106 ISSN 0556-171X. Проблеми прочности, 2004, №  5



Experimental and Theoretical Design Methodology

16. E. I. Grigolyuk and V. I. Shalashilin, Problems o f  Nonlinear Deformation [in 
Russian], Nauka, Moscow (1988).

17. J. Singer, J. Arbocz, and T. Weller, Buckling Experiments, Vol. 2, John 
Wiley & Sons, New York (2002).

18. A. H. Guz’, I. Yu. Babich, D. V. Babich, et al., Buckling o f  Structural 
Elements [in Russian], “A.C.K,” Kiev (2001).

19. J. Arbocz and J. H. Starnes Jr., “Future directions and challenges in shell 
stability analysis,” Thin-Walled Structures, 40, 729-754 (2002).

20. F. N. Kerlinger and E. J. Pedhazur, Multiple Regression in Behavioral 
Research, Holt, Rinehart, and Winston, New York (1973).

21. W. D. Berry and S. Feldman, Multiple Regression in Practice, Sage 
Publications, Beverly Hills, California (1985).

22. Sh. U. Galiev, “Experimental observations and discussion of counterintuitive 
behavior of plates and shallow shells subjected to blast loading,” Int. J. 
Impact Eng., 18, 783-802 (1996).

Received 23. 03. 2004

ISSN 0556-171X. npoöxeMbi npounocmu, 2004, N  5 107


