Устойчивость цилиндрических оболочек с учетом рассеянного трещинообразования в материале

Д. В. Бабич

Институт механики им. С. П. Тимошенко, Киев, Украина

Выполнены постановка и решение задач о бифуркационной устойчивости цилиндрических оболочек с учетом поврежденности материала в докритическом напряженном состоянии. Поврежденность материала обусловлена неоднородностью его микропрочности и моделируется системой плоских эллиптических и круговых трещин, статистически однородно изотропно распределенных по объему оболочки. Математическая постановка задачи осуществлена в рамках гипотез Кирхгоффа–Лява с использованием концепции продолжающегося нагружения. Построено решение задачи при всестороннем сжатии оболочки.

Ключевые слова: поврежденность материала, эллиптические и круговые микротрещины, устойчивость, цилиндрическая оболочка.

Задачи устойчивости оболочек из поврежденных материалов рассматривались ранее [1, 2]. Поврежденность отождествлялась со статистически однородно изотропно распределенными дефектами типа плоских эллиптических и круговых трещин постоянной концентрации. При решении задач устойчивости учитывалось, что изотропный материал с подобного рода повреждениями при сложном напряженном состоянии, сопровождающемся растяжением и сжатием, ведет себя как анизотропная физически нелинейная среда [1, 2]. Механизм физической нелинейности в этом случае обусловлен различием в характере взаимодействия поверхностей разориентированных микротрещин. Известен также другой механизм нелинейного деформирования повреждающейся среды, связанный с изменением концентрации трещин в зависимости от уровня нагружения ввиду неоднородности прочностных свойств структурных элементов материала.

Один из способов описания совместного деформирования и повреждаемости материала предложен в [3, 4], где разрушенные микрообъемы моделируются структурными микроэлементами в виде микропор.

В работе рассматривается континуальная модель деформирования упругохрупких материалов с накоплением повреждений в виде плоских микротрещин, случайным образом расположенных на всевозможных плоскостях сечений представительного объема, в котором заданы средние однородные напряжения. Полагаем, во-первых, что определяющие размеры и формы микротрещин близки к таковым характерных сечений структурных элементов материала и, во-вторых, что в процессе деформирования микротрещины не растут и не взаимодействуют между собой, а объемная плотность (концентрация) микродефектов изменяется с ростом уровня средних напряжений ввиду неоднородности микропрочности материала и определяется относительной долей разрушенных структурных элементов, содержащихся в единичном объеме.

© Д. В. БАБИЧ, 2004 36

Устойчивость цилиндрических оболочек ...

Модель используется для постановки задач о бифуркационной устойчивости цилиндрических оболочек в рамках гипотез Кирхгоффа-Лява. Нелинейность уравнений состояния из-за зависимости концентрации микротрещин в материале от уровня нагружения усложняет решение задач устойчивости тонкостенных элементов конструкций. При обсуждении данной проблемы аналогом могут служить задачи устойчивости для упругопластических тел [5]. Подобно ситуации при исследовании устойчивости за пределом упругости в случае трещиноватых оболочек имеют место два варианта потери устойчивости, а именно: потеря устойчивости при продолжающемся нагружении (касательно-модульная нагрузка) и при постоянном (приведенно-модульная нагрузка). Во втором случае вследствие искривления оболочки возмущения напряжений изменяют знак по толщине, т.е. возникают участки разгрузки и догрузки основного напряженного состояния. На участках разгрузки концентрация трещин не меняется, поэтому деформирование происходит по линейному закону. При догрузке материал деформируется нелинейно за счет увеличения концентрации трещин. В случае деформирования оболочки при постоянном нагружении характерным является то, что приведенно-модульная нагрузка выше касательно-модульной.

Учитывая, что теоретические значения критических напряжений, как правило, выше экспериментальных, по-видимому, вариант теории устойчивости при продолжающемся нагружении – наиболее приемлемый подход к исследованию устойчивости оболочек с рассеянной по объему трещиноватостью как с точки зрения точности результатов, так и простоты постановки и решения задачи устойчивости, поскольку нет необходимости определять области разгрузки и догрузки.

Связанное деформирование и трещинообразование материала. Ранее [1, 2] с использованием энергетического метода [6] получены уравнения состояния для поврежденного материала с постоянной концентрацией плоских микродефектов. Связь между средними напряжениями и деформациями для изотропного трещиноватого материала при всестороннем сжатии либо растяжении имеет вид

$$\sigma_{11} = \frac{E\nu}{(1+\nu)(1-2\nu)}\Theta + \frac{E}{(1+\nu)}\varepsilon_{11}, \quad \sigma_{12} = G\varepsilon_{12}, \quad (1)$$
$$\Theta = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}.$$

Соотношения для других напряжений получаются круговой перестановкой индексов 1, 2, 3. В отличие от сплошного материала, выражения для технических постоянных в (1) при растяжении ($\sigma_{ii} > 0$, i = 1, 2, 3) и сжатии ($\sigma_{ii} < 0$) с учетом трения скольжения поверхностей микротрещин определяются через постоянные упругости сплошной среды E_0 , G_0 , ν_0 и параметры микротрещин [1, 2]

$$\frac{1}{E} = \frac{1}{E_0} + a'_{11}, \qquad -\frac{\nu}{E} = -\frac{\nu_0}{E_0} + a'_{12}, \qquad \frac{1}{G} = \frac{1}{G_0} + a'_{66}, \tag{2}$$

ISSN 0556-171Х. Проблемы прочности, 2004, № 5

37

где слагаемые a'_{ij} в случае изотропного материала, поврежденного дефектами в виде эллиптических трещин с полуосями a, b, которые статистически однородно изотропно распределены по объему, в зависимости от наводимого в теле напряженного состояния и характера взаимодействия поверхностей трещин будут определяться по следующим соотношениям [1, 2]:

1) всестороннее растяжение, сопровождающееся раскрытием трещин ($\sigma_{ii} > 0$):

$$\begin{cases}
a'_{11} = \varepsilon \left[\frac{2}{15} (A_1 + A_2) + \frac{2}{5} A_3 \right], \\
a'_{12} = \varepsilon \left[-\frac{1}{15} (A_1 + A_2) + \frac{2}{15} A_3 \right], \\
a'_{66} = \varepsilon \left[\frac{2}{5} (A_1 + A_2) + \frac{8}{15} A_3 \right];
\end{cases}$$
(3)

2) всестороннее сжатие с учетом трения скольжения ($\sigma_{ii} < 0$):

$$\begin{cases} a_{11}' = \varepsilon \left[\frac{2}{15} (1 - 3f^2) (A_1 + A_2) \right], \\ a_{12}' = \varepsilon \left[-\frac{1}{15} (1 + 2f^2) (A_1 + A_2) \right], \\ a_{66}' = \varepsilon \left[\frac{2}{15} (3 - 4f^2) (A_1 + A_2) \right]. \end{cases}$$
(4)

В (3), (4) приведены такие обозначения:

$$A_{1} = \frac{(1 - \nu_{0})}{E_{0}} R(k, \nu_{0}); \quad A_{2} = \frac{(1 - \nu_{0})}{E_{0}} Q(k, \nu_{0}); \quad A_{3} = \frac{(1 - \nu_{0})}{E(k)E_{0}};$$

$$R(k, \nu_{0}) = k^{2} [(k^{2} - \nu_{0})E(k) + \nu_{0}k_{1}^{2}K(k)]^{-1};$$

$$Q(k, \nu_{0}) = k^{2} [(k^{2} + \nu_{0}k_{1}^{2})E(k) - \nu_{0}k_{1}^{2}K(k)]^{-1};$$
(5)

 ε – малый параметр, определяющий концентрацию трещин, $\varepsilon = -\frac{4\pi}{3} \int \int ab^2 F(a,b) dadb = \frac{4\pi}{3} N_0 \langle ab^2 \rangle$; F(a,b) – плотность распределения микротрещин по размерам; f – коэффициент трения скольжения; N_0 – количество трещин в единичном объеме; $k^2 = 1 - b^2/a^2$, $k_1^2 = 1 - k^2$, K(k), E(k) – полные эллиптические интегралы первого и второго рода.

Приведенные выражения получены в предположении образования в материале трещин с одинаковыми отношениями полуосей *a*, *b*. Для среды, ослабленной круговыми трещинами радиуса *a*, имеют место соотношения:

$$A_1 = A_2 = \frac{4(1 - \nu_0^2)}{\pi(2 - \nu_0)E_0}, \qquad A_3 = \frac{2(1 - \nu_0^2)}{\pi E_0}, \qquad \varepsilon = \frac{4\pi}{3} N_0 \langle a^3 \rangle.$$
(6)

При $\varepsilon <<1$ постоянные упругости при всестороннем растяжении и сжатии соответственно будут определяться формулами

$$E = E_0 \left[1 - \frac{4}{15\pi} (10 - 3\nu_0) \frac{(1 - \nu_0^2)}{(2 - \nu_0)} \varepsilon \right],$$

$$\nu = \nu_0 \left[1 - \frac{4}{15\pi} (3 - \nu_0) \frac{(1 - \nu_0^2)}{(2 - \nu_0)} \varepsilon \right],$$

$$G = G_0 \left[1 - \frac{4}{15\pi} \frac{(10 - 2\nu_0)}{(1 + \nu_0)} \frac{(1 - \nu_0^2)}{(2 - \nu_0)} \varepsilon \right];$$

$$E = E_0 \left[1 - \frac{16}{15\pi} (1 - 3f^2) \frac{(1 - \nu_0^2)}{(2 - \nu_0)} \varepsilon \right],$$

$$\nu = \nu_0 + \frac{8}{15\pi} \left[1 - 2\nu_0 + 2f^2 (1 + 3\nu_0) \frac{(1 - \nu_0^2)}{(2 - \nu_0)} \varepsilon \right],$$

$$G = G_0 \left[1 - \frac{8}{15\pi} (3 - 2f^2) \frac{(1 - \nu_0^2)}{(2 - \nu_0)} \varepsilon \right].$$
(8)

В случае одноосного сжатия характер поведения изотропной трещиноватой среды аналогичен таковому трансверсально изотропной с плоскостью изотропии, нормальной к направлению сжатия. Приращения податливостей при этом будут определяться комбинацией второго и третьего соотношений из (3) и первого из (4).

Для описания процесса совместного деформирования и трещинообразования упругохрупких материалов с использованием приведенных выше соотношений необходимо найти зависимость объемной концентрации микротрещин ε от уровня нагружения. Приемлемой в этом случае является структурная модель накопления повреждений Даниэлса [7]. Изменение объемной концентрации микротрещин ε зависит от механизма микроразрушений в материале, распределения прочностных свойств по объему, а также от истории нагружения. Ниже в качестве примера рассматривается микроразрушение типа отрыва. Аналогично может быть рассмотрено и разрушение, связанное со сдвигом. За критерий разрушения структурных элементов материала принимаются соотношения первой теории прочности [8]:

$$\sigma_n \ge \sigma, \tag{9}$$

где σ – случайная величина, которая может обозначать предельные значения растягивающих либо сжимающих напряжений, вызывающих разрушение структурных элементов материала. Предполагается, что по достижении истинными растягивающими напряжениями σ_n значения σ на соответствующей площадке образуется микротрещина с плоскостью, нормальной к

направлению их действия. В случае сжимающих напряжений σ_n микротрещины ориентируются преимущественно параллельно их направлению [8].

Если в качестве представительного объема выбрать шар некоторого радиуса, в котором заданы средние напряжения σ_{ij} (*i*, *j* = 1, 2, 3), то нормальное напряжение σ_n на площадке, ориентация нормали к которой задана сферическими координатами θ (широта) и φ (долгота), будет определяться выражением

$$\sigma_n = \sigma_{11} \cos^2 \varphi \sin^2 \theta + \sigma_{22} \sin^2 \varphi \sin^2 \theta + \sigma_{33} \cos^2 \theta + \sigma$$

 $+2\sigma_{12}\sin\varphi\cos\varphi\sin\theta+2\sigma_{13}\cos\varphi\sin\theta\cos\theta+2\sigma_{23}\sin\varphi\sin\theta\cos\theta.$ (10)

Истинное растягивающее напряжение σ'_n на этой площадке в результате уменьшения несущей площади сечения определяется по соотношению

$$\sigma'_n = \sigma_n / [1 - P_n(\sigma'_n)], \tag{11}$$

где $P_n(\sigma'_n)$ – относительная часть площади пересечения разрушенных структурных элементов. Концентрация плоских микродефектов в случайном сечении представительного объема определяется вероятностью $P_n(\sigma'_n \ge \sigma)$ того, что значения нормального напряжения σ'_n будут не меньше прочности частиц микроструктуры σ , являющейся случайной величиной. При сжатии ($\sigma_n < 0$) несущая площадь не изменяется ($\sigma'_n = \sigma_n$). Для аппроксимации распределения прочностных свойств кристаллитов и зерен различной ориентации по аналогии с моделью Даниэлса [7] используется степенной закон:

$$P(\sigma) = \begin{cases} 0 & (\sigma < \sigma_0); \\ (\sigma - \sigma_0)^{\alpha} / (\sigma_c - \sigma_0)^{\alpha} & (\sigma_0 \le \sigma \le \sigma_c); \\ 1 & (\sigma > \sigma_c), \end{cases}$$
(12)

где параметры распределения определяются с помощью метода моментов [9] приравниванием выборочных моментов и моментов распределения (12), зависящих от σ_0 , σ_c и α . Основные моменты (средняя микропрочность $\langle \sigma \rangle$ и дисперсия D^2) для распределения (12) имеют вид

$$\langle \sigma \rangle = \frac{\alpha}{\alpha + 1} (\sigma_c - \sigma_0) + \sigma_0; \tag{13}$$

$$D^{2} = \frac{\alpha}{\alpha+2}\sigma_{c}^{2} - \frac{2\alpha\langle\sigma\rangle\sigma_{c}}{\alpha+1} + \langle\sigma\rangle^{2}.$$
 (14)

С учетом (11) средняя вероятность разрушения элементов структуры, пересекающих единицу поверхности представительного объема, определяется по соотношению

Устойчивость цилиндрических оболочек ...

$$p = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} P_n \sin\theta d\theta d\varphi, \quad P_n = P(\sigma'_n).$$
(15)

Физический смысл величины p заключается в том, что она представляет относительную долю единицы площади поверхности шара, на которой нормальные напряжения σ_n превышают предел прочности σ пересекаемых поверхностью шара микрочастиц. При этом в случае растяжения частицы растрескиваются по поверхностям, нормальным к σ_n , при сжатии – в направлении действия σ_n . Объемная концентрация плоских микродефектов ε в (3), (4), (6)–(8) определяется отношением количества разрушенных микрочастиц N_p к их общему количеству N в представительном объеме. При этом $\varepsilon = p$. Такой результат можно получить с помощью приема, который применяется в петрографии для анализа тонких срезов осадков [10].

Пусть в случайном шаре единичного объема имеется в среднем N микроструктурных элементов среднего объема $\langle V \rangle$, из которых N_0 – разрушены. Введем следующие обозначения: λ , λ_p – среднее количество пересечений на единицу площади поверхности шара соответственно всех и разрушенных структурных элементов; $\langle S \rangle$ – средняя площадь пересечений. Тогда согласно [10] получим

$$\lambda \langle S \rangle = N \langle V \rangle, \qquad \lambda_{\rm p} \langle S \rangle = N_0 \langle V \rangle,$$

откуда с учетом $\lambda = 1/\langle S \rangle$ и $\lambda_p / \lambda = p$ следует

$$\varepsilon = N_0 \langle V \rangle = p. \tag{16}$$

Таким образом, связанный процесс деформирования и дисперсного разрушения в виде образования системы стохастически ориентированных плоских микротрещин моделируется замкнутой системой нелинейных уравнений (1)–(4), (9)–(12), (15), (16).

Отметим, что параметр P_n существенно зависит от характера нагружения тела. В частности, при однократном нагружении сплошного тела растягивающими усилиями указанный параметр находится по формуле (12) при $\sigma'_n = \sigma_n$. При пошаговом нагружении для определения σ'_n в качестве P_n используется значение, соответствующее предшествующему этапу нагружения. Следует также иметь в виду, что при сжатии изменение эффективной площади случайных сечений представительного объема не влияет на значения нормального напряжения σ_n .

Для постановки задач об устойчивости оболочек с учетом микроповреждаемости материала в дальнейшем необходимо использовать приведенные выше уравнения состояния для плоского напряженного состояния

$$(\sigma_{33} = \sigma_{23} = \sigma_{23} = 0)$$
. С учетом равенства $\varepsilon_{33} = -\frac{1}{1-\nu}(\varepsilon_{11} + \varepsilon_{22})$ уравне-

ния (1) принимают вид

$$\sigma_{11} = \frac{E}{1 - \nu^2} (\varepsilon_{11} + \nu \varepsilon_{22}); \quad \sigma_{22} = \frac{E}{1 - \nu^2} (\varepsilon_{22} + \nu \varepsilon_{11}); \quad \sigma_{12} = G \varepsilon_{12}; \\ \varepsilon_{11} = \frac{1}{E} (\sigma_{11} - \nu \sigma_{22}); \quad \varepsilon_{22} = \frac{1}{E} (\sigma_{22} - \nu \sigma_{11}); \quad \varepsilon_{12} = \frac{1}{G} \sigma_{12},$$
(17)

где E, G, ν – секущие характеристики упругости, зависящие от наводимого в теле напряженного состояния.

Устойчивость оболочек из поврежденного материала. С целью упрощения выкладок рассматривается оболочка средней длины [5] толщиной hи длиной L, отнесенная к системе координат $0x_1x_2x_3$, связанной со срединной поверхностью радиуса R. Координаты x_1 , x_2 , x_3 отсчитываются соответственно в осевом, окружном и нормальном к срединной поверхности направлениях. Перемещения точек срединной поверхности в указанных направлениях обозначаются соответственно u, v, w. При решении задач устойчивости данного типа оболочек можно воспользоваться аппаратом теории пологих оболочек [5]. Тогда в рамках гипотез Кирхгоффа–Лява в произвольной точке цилиндрической оболочки деформации будут определяться по соотношениям

$$\varepsilon_{ij} = e_{ij} + x_3 \chi_{ij} \qquad (i, j = 1, 2),$$
(18)

где e_{ij} , χ_{ij} – соответственно деформации, кривизна и кручение срединной поверхности,

$$e_{11} = u_{,1}, \qquad e_{22} = v_{,2} - \frac{w}{R}, \quad e_{12} = u_{,2} + v_{,1}; \\ \chi_{11} = -w_{,11}, \quad \chi_{22} = -w_{,22}, \qquad \chi_{12} = -2w_{,12}.$$
(19)

Уравнения равновесия в возмущенном состоянии в смешанной форме представляются следующим образом [5]:

$$M_{11,11} + 2M_{12,12} + M_{22,22} - \left(\sigma_{11}^{0}w_{,11} + 2\sigma_{12}^{0}w_{,12} + \sigma_{22}^{0}w_{,22} - \frac{\Phi_{,11}}{R}\right)h = 0;$$

$$\overline{e}_{11,22} + \overline{e}_{22,11} - \overline{e}_{12,12} = -\frac{1}{R}w_{,11},$$
(20)

где $M_{ij} = \int_{-h/2}^{h/2} x_3 \overline{\sigma}_{ij} dx_3$, $\overline{\sigma}_{ij}$, \overline{e}_{ij} , χ_{ij} , w – приращения моментов и напря-

жений в оболочке вследствие изгиба, а также мембранных деформаций, кривизн, кручения срединной поверхности и прогибов в возмущенном состоянии; σ_{ij}^0 – напряжения в основном безмоментном напряженном состоянии. К этим уравнениям необходимо добавить выражения для возмущений мембранных напряжений через функцию напряжений Ф:

$$\overline{\overline{\sigma}}_{11} = \Phi_{,22}, \qquad \overline{\overline{\sigma}}_{22} = \Phi_{,11}, \qquad \overline{\overline{\sigma}}_{12} = -\Phi_{,12}.$$
 (21)

ISSN 0556-171Х. Проблемы прочности, 2004, № 5

42

Устойчивость цилиндрических оболочек ...

Приращения полных напряжений $\overline{\sigma}_{ij} = \sigma_{ij} - \sigma_{ij}^0$ и деформаций $\overline{\varepsilon}_{ij} = \varepsilon_{ij} - \varepsilon_{ij}^0$ определяются путем варьирования в окрестности основного напряженно-деформированного состояния уравнений (17), связывающих конечные значения напряжений и деформаций для повреждающейся среды, с учетом зависимости секущих модулей от концентрации микротрещин ε . В результате возмущения напряжений и деформаций представляются в виде

$$\overline{\sigma}_{11} = a_{11}\overline{\varepsilon}_{11} + a_{12}\overline{\varepsilon}_{22} + a_{13}\overline{\varepsilon}_{12},
\overline{\sigma}_{22} = a_{21}\overline{\varepsilon}_{11} + a_{22}\overline{\varepsilon}_{22} + a_{23}\overline{\varepsilon}_{12},
\overline{\sigma}_{12} = a_{31}\overline{\varepsilon}_{11} + a_{32}\overline{\varepsilon}_{22} + a_{33}\overline{\varepsilon}_{12};$$
(22)

$$\overline{\epsilon}_{11} = A_{11}\overline{\sigma}_{11} + A_{12}\overline{\sigma}_{22} + A_{13}\overline{\sigma}_{12},
\overline{\epsilon}_{22} = A_{21}\overline{\sigma}_{11} + A_{22}\overline{\sigma}_{22} + A_{23}\overline{\sigma}_{12},
\overline{\epsilon}_{12} = A_{31}\overline{\sigma}_{11} + A_{32}\overline{\sigma}_{22} + A_{33}\overline{\sigma}_{12},$$
(23)

где коэффициенты a_{ij} , A_{ij} , определяемые по соотношениям

$$a_{11} = \frac{\partial \sigma_{11}}{\partial \varepsilon_{11}}, \quad a_{12} = \frac{\partial \sigma_{11}}{\partial \varepsilon_{22}}, \quad \dots, \quad A_{11} = \frac{\partial \varepsilon_{11}}{\partial \sigma_{11}}, \quad A_{12} = \frac{\partial \varepsilon_{11}}{\partial \sigma_{22}}, \quad \dots,$$

имеют вид

$$\begin{cases} a_{11} = \frac{E}{1 - \nu^2} - \alpha_{11} \frac{\partial \varepsilon}{\partial \varepsilon_{11}}, & a_{12} = \frac{\nu E}{1 - \nu^2} - \alpha_{11} \frac{\partial \varepsilon}{\partial \varepsilon_{22}}, & a_{13} = -\alpha_{11} \frac{\partial \varepsilon}{\partial \varepsilon_{12}}, \\ a_{21} = \frac{\nu E}{1 - \nu^2} - \alpha_{22} \frac{\partial \varepsilon}{\partial \varepsilon_{11}}, & a_{22} = \frac{E}{1 - \nu^2} - \alpha_{22} \frac{\partial \varepsilon}{\partial \varepsilon_{22}}, & a_{23} = -\alpha_{22} \frac{\partial \varepsilon}{\partial \varepsilon_{12}}, \\ a_{31} = -\alpha_{12} \frac{\partial \varepsilon}{\partial \varepsilon_{11}}, & a_{32} = -\alpha_{12} \frac{\partial \varepsilon}{\partial \varepsilon_{22}}, & a_{33} = G - \alpha_{12} \frac{\partial \varepsilon}{\partial \varepsilon_{12}}, \\ \alpha_{ii} = \sigma_{ii}^0 E \frac{a'_{ii}}{\varepsilon} \quad (i = 1, 2), \quad \alpha_{12} = \sigma_{12}^0 G \frac{a'_{66}}{\varepsilon}; \end{cases}$$

$$\begin{cases}
A_{11} = \frac{1}{E} + \beta_{11} \frac{\partial \varepsilon}{\partial \sigma_{11}}, & A_{12} = -\frac{\nu}{E} + \beta_{11} \frac{\partial \varepsilon}{\partial \sigma_{22}}, & A_{13} = \beta_{11} \frac{\partial \varepsilon}{\partial \sigma_{12}}, \\
A_{21} = -\frac{\nu}{E} + \beta_{22} \frac{\partial \varepsilon}{\partial \sigma_{11}}, & A_{22} = \frac{1}{E} + \beta_{22} \frac{\partial \varepsilon}{\partial \sigma_{22}}, & A_{23} = \beta_{22} \frac{\partial \varepsilon}{\partial \sigma_{12}}, \\
A_{31} = \beta_{12} \frac{\partial \varepsilon}{\partial \sigma_{11}}, & A_{32} = \beta_{12} \frac{\partial \varepsilon}{\partial \sigma_{22}}, & A_{33} = \frac{1}{G} + \beta_{12} \frac{\partial \varepsilon}{\partial \sigma_{12}}, \\
\beta_{11} = (\sigma_{11}^0 - \nu \sigma_{22}^0) \frac{a'_{11}}{\varepsilon}, & \beta_{22} = (\sigma_{22}^0 - \nu \sigma_{11}^0) \frac{a'_{11}}{\varepsilon}, & \beta_{12} = \sigma_{12}^0 \frac{a'_{66}}{\varepsilon}.
\end{cases}$$
(25)

Представленные соотношения справедливы для общего случая напряженно-деформированного состояния оболочки. Ниже будут рассматриваться ISSN 0556-171X. Проблемы прочности, 2004, № 5 43

оболочки в предположении независимости геометрических и механических параметров от координат. В этом случае уравнения (20) с учетом соотношений (21)–(25), справедливых для цепных и полных напряжений и деформаций, принимают вид

$$D[a_{1}w_{,1111} + a_{2}w_{,1122} + a_{3}w_{,2222} + 2a_{4}w_{,1112} + 2a_{5}w_{,1222}] + T_{11}^{0}w_{,11} + T_{22}^{0}w_{,22} + 2T_{12}^{0}w_{,12} - \frac{h\Phi_{,11}}{R} = 0;$$

$$\overline{A}_{1}\Phi_{,1111} + \overline{A}_{2}\Phi_{,1122} + A_{3}\Phi_{,2222} - \overline{A}_{4}\Phi_{,1112} - \overline{A}_{5}\Phi_{,1222} = -\frac{E_{0}}{R}w_{,11},$$
(26)

где

44

$$\overline{a}_{ij} = a_{ij} / E_0; \qquad \overline{A}_{ij} = E_0 A_{ij};$$

 $a_1 = \overline{a}_{11}; \ a_2 = \overline{a}_{12} + \overline{a}_{21} + 4\overline{a}_{33}; \ a_3 = \overline{a}_{22}; \ a_4 = \overline{a}_{13} + \overline{a}_{31}; \ a_5 = \overline{a}_{23} + \overline{a}_{32};$ $\overline{A}_1 = \overline{A}_{22}; \ \overline{A}_2 = \overline{A}_{12} + \overline{A}_{21} + \overline{A}_{33}; \ \overline{A}_3 = \overline{A}_{11}; \ A_4 = \overline{A}_{32} + \overline{A}_{23}; \ \overline{A}_5 = \overline{A}_{13} + \overline{A}_{31};$ $D = E_0 h^3 / 12; \ T_{ij}^0 = \sigma_{ij}^0 h$ – погонные тангенциальные усилия докритического напряженного состояния. К уравнениям (26) необходимо добавить краевые условия, соответствующие характеру закрепления торцов оболочки.

Всестороннее сжатие оболочки. В качестве примера рассмотрим устойчивость оболочки при всестороннем внешнем давлении интенсивностью q. В этом случае $T_{11}^0 = qR/2$, $T_{22} = qR$. Предполагалось, что торцы оболочки оперты на диафрагмы, абсолютно жесткие в своей плоскости и гибкие из нее:

$$w = M_{11} = \Phi_{22} = \Phi_{12} = 0, \quad x_1 = 0; L.$$
 (27)

При указанном виде нагружения в уравнениях (26) коэффициенты $a_4 = a_5 = \overline{A}_4 = \overline{A}_5 = 0.$

Решение системы уравнений (26), (27) представляется следующим образом:

$$w = A\sin\frac{m\pi x_1}{L}\sin\frac{nx_2}{R}; \qquad \Phi = B\sin\frac{m\pi x_1}{L}\sin\frac{nx_2}{R}.$$
 (28)

Выражение для безразмерного параметра критического давления имеет вид

$$\overline{q} = \left\{ \frac{1}{12} \eta [a_1 \theta^4 + a_2 \theta^2 + a_3] + \frac{\theta^4}{\eta (\overline{A_1} \theta^4 + \overline{A_2} \theta^2 + \overline{A_3})} \right\} \left(\frac{1}{2} \theta^2 + 1 \right)^{-1}, \quad (29)$$

где $\bar{q} = qR^2/E_0 h^2$; $\theta = m\pi R/nL$; $\eta = n^2 h/R$.

Если по аналогии с линейно-упругой задачей принять *m*=1 и *θ* << 1, то (29) приближенно можно записать так:

Устойчивость цилиндрических оболочек

$$\overline{q} = \frac{1}{12}a_3\eta + \frac{\theta^4}{\overline{A}_3\eta}.$$
(30)

В результате минимизации по *п* выражение (30) принимает вид

$$\overline{q} = \frac{\sqrt{6\pi}R}{9L} \left(\frac{h}{R}\right)^{1/2} \sqrt[4]{\frac{a_3^3}{\overline{A}_3}}.$$
(31)

Для сплошного материала (ε = 0) выражение (31) совпадает с классической формулой [5]

$$\overline{q} = \frac{\sqrt{6\pi R}}{9(1 - v_0^2)L} \left(\frac{h}{R}\right)^{1/2}.$$
(32)

Окружное и осевое критические напряжения определяются соответственно по выражениям

$$\sigma_{22}^{0} = \frac{\sqrt{6}E_{0}\pi h}{9L} \left(\frac{h}{R}\right)^{1/2} \sqrt[4]{\frac{a_{3}^{3}}{\overline{A}_{3}}}; \qquad \sigma_{11}^{0} = \frac{1}{2}\sigma_{22}^{0}.$$
(33)

Полагая, что в материале при рассматриваемом виде нагружения происходит накопление микродефектов типа круговых трещин, коэффициенты a_3 , \overline{A}_3 в (31), (33) находятся по формулам (24), (25), в которых концентрация микротрещин ε при двухпараметрическом распределении микропрочности (формула (12) при $\sigma_0 = 0$) в зависимости от сжимающих напряжений σ_{11}^0 , σ_{22}^0 определяется по соотношению

$$\varepsilon = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} \left(\frac{1}{\sigma_c} \right)^{\alpha} (\sigma_{11}^0 \cos^2 \varphi + \sigma_{22}^0 \sin^2 \varphi)^{\alpha} \sin^{2\alpha+1} \theta \partial \theta \partial \varphi.$$
(34)

Правые части выражений (31), (33) представляют собой нелинейные зависимости от сжимающих напряжений σ_{11}^0 , σ_{22}^0 . Влияние трещинообразования в докритическом состоянии на критическое значение давления можно оценить путем сравнения относительных толщин оболочек для заданной последовательности критических значений напряжений:

$$\frac{h}{R} = \sqrt[3]{\left(\frac{9\sigma_{22}^{0}}{\sqrt{6\pi E_{0}}} \frac{L}{R} \sqrt[4]{\frac{\overline{A_{3}}}{a_{3}^{3}}}\right)^{2}}.$$
(35)

Расчеты проводились для оболочек из материала, имеющего такие характеристики:

 $\frac{\mathcal{A} \cdot \mathcal{B} \cdot \mathcal{E}a6u^{4}}{\mathcal{E}_{0} = 4,2 \cdot 10^{11} \text{ Ta; } \nu_{0} = 0,2; \langle \sigma \rangle = 1,9 \cdot 10^{9} \text{ Ta; } D = 0,672 \cdot 10^{9} \text{ Ta; } f = 0,2. (36)$

При этом получены следующие значения параметров: $\alpha = 2$; $\sigma_c = 2,8 \cdot 10^9$ Па;

$$\varepsilon = \frac{1}{15} \left(\frac{3(\sigma_{11}^0)^2 + 2\sigma_{11}^0 \sigma_{22}^0 + 3(\sigma_{22}^0)^2}{\sigma_c^2} \right)^2 \tag{37}$$

и коэффициентов

$$a_{3} = \frac{E}{(1 - \nu^{2})E_{0}} \frac{1 + (\alpha_{11} - \nu\alpha_{22})\frac{\partial\varepsilon}{\partial\sigma_{11}^{0}}}{1 + \alpha_{11}\frac{\partial\varepsilon}{\partial\sigma_{11}^{0}} + \alpha_{22}\frac{\partial\varepsilon}{\partial\sigma_{22}^{0}}};$$

$$\overline{A}_{3} = \frac{E_{0}}{E} + \frac{8E_{0}\sigma_{11}^{0}(\sigma_{11}^{0} - \nu\sigma_{22}^{0})}{15\sigma_{c}^{2}} \left(\frac{a_{11}'}{\varepsilon}\right),$$
(38)

где σ_{11}^0 , σ_{22}^0 определяются выражениями (33), а параметры E, ν – по формулам (8).

Результаты расчетов для оболочки с относительной длиной L/R = 4 представлены в таблице, где индексами *n* и *y* обозначены относительные толщины, полученные соответственно с учетом и без учета поврежденности материала.

$\sigma_{22}^{0}/10^{9},\;\;$ Па	$\epsilon \cdot 10$	$(h/R)_n \cdot 10$	$(h/R)_y \cdot 10$
0,280	0,032	0,209	0,208
0,560	0,127	0,334	0,332
0,840	0,165	0,439	0,435
1,120	0,285	0,537	0,527
1,400	0,507	0,629	0,612
1,680	0,792	0,719	0,691
1,960	1,140	0,807	0,765
2,240	2,026	0,986	0,837
2,520	2,565	1,297	0,905

Зависимость критических напряжений в цилиндрической оболочке от относительной толщины с учетом $(h/R)_n$ и без учета $(h/R)_y$ поврежденности материала

Резюме

Виконано постановку та розв'язок задач про біфуркаційну стійкість циліндричних оболонок з урахуванням пошкодженості матеріалу в докритичному напруженому стані. Пошкодженість матеріалу зумовлена неоднорідністю його мікроміцності і моделюється системою плоских еліптичних та кругових тріщин, що статистично однорідно ізотропно розподілені по об'єму оболонки. Математична постановка задачі здійснена в рамках гіпотез Кірхгоффа–Лява з використанням концепції продовжуючого навантаження. Побудовано розв'язок задачі про стійкість при всебічному стисненні оболонки.

- 1. Бабич Д. В. Приближенный учет поврежденности материала в задачах о равновесии упругих оболочек // Пробл. прочности. 1996. № 3. С. 20 30.
- Babich D. V. Study of the stability of composite sells with allowance for the cracked state of components of the material // Int. Appl. Mech. 1999. 35, No. 11. P. 1123 1131.
- 3. *Khoroshun L. P.* Principles of the micromechanics of material damage. 1. Short-term damage // Ibid. 1998. **34**, No. 10. P. 1035 1041.
- 4. *Khoroshun L. P. and Shikula E. N.* Micromechanics of short-term damage of laminated-fibrous composites // Ibid. 2001. **37**, No. 5. P. 1171 1177.
- 5. Вольмир А. С. Устойчивость упругих систем. М.: Физматгиз, 1963. 879 с.
- 6. Салганик Р. Л. Механика тел с большим числом трещин // Изв. АН СССР. Механика твердого тела. 1973. № 4. С. 149 158.
- 7. *Болотин В. В.* Прогнозирование ресурса машин и конструкций. М.: Машиностроение, 1984. 312 с.
- 8. *Германович Л. Н., Дыскин А. В.* Модель разрушения хрупкого материала с трещинами при одноосном нагружении // Изв. АН СССР. Механика твердого тела. 1988. № 2. С. 118 131.
- 9. Крамер Г. Математические методы статистики. М.: Мир, 1975. 648 с.
- 10. *Кендалл М., Моран П.* Геометрические вероятности. М.: Наука, 1972. 192 с.

Поступила 06. 11. 2002