НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ

УДК 534.08.620.178.5

Приближенное аналитическое определение вибродиагностических параметров нелинейности упругих тел, обусловленной наличием закрывающейся трещины. Сообщение 2. Определение диагностических параметров при основном и супергармоническом резонансе 2-го порядка

В. В. Матвеев

Институт проблем прочности им. Г. С. Писаренко НАН Украины, Киев, Украина

С использованием полученных автором определяющих уравнений установлены аналитические выражения различных приближений для определения в области основного и супергармонического резонансов вибродиагностических параметров усталостного повреждения упругого тела типа закрывающейся трещины нормального отрыва. Путем сопоставления результатов расчета с данными численных решений оценивается достоверность аналитического решения.

Ключевые слова: вынужденные колебания, нелинейные колебания, билинейная упругая характеристика, основной и супергармонический резонансы, трещина усталости, вибродиагностика усталостного повреждения.

Введение. Ранее [1] при анализе вынужденных колебаний упругого тела с локальной несплошностью материала типа периодически закрывающейся трещины нормального отрыва, описываемых нелинейным дифференциальным уравнением

$$\frac{d^2 u}{dt^2} + 2h\frac{du}{dt} + \omega^2 [1 - 0.5\alpha(1 + \text{sign } u)]u = q_0 \sin \nu t,$$
(1)

решение для области какого-либо супергармонического резонанса *s*-порядка ($sv \approx \omega$, s = 2, 3, ...) представлялось в виде

$$u(t) = A_0 + A_1 \sin(\nu t + \gamma_1) +$$

$$+A_{s}\left[\sin(s\nu t + \gamma_{s}) + \sum_{n=2,4,\dots} \frac{2\alpha}{\pi(n^{2} - 1)^{2}} \sin n(s\nu t + \gamma_{s})\right],$$
 (2)

где A_0 – постоянная составляющая, принимаемая равной

© B. B. MATBEEB, 2004

$$A_0 = \frac{\alpha}{\pi} A_1; \tag{3}$$

α – относительное изменение приведенной жесткости упругого тела на полуциклах разного знака,

$$\alpha = \frac{K - K_{\rm T}}{K};\tag{4}$$

K – жесткость неповрежденного тела, т.е. трещина закрыта (u < 0); K_{T} – жесткость при открытой трещине (u > 0).

Полученные в [1] аналитические зависимости (25), (26), (29) для приближенного определения неизвестных параметров решения (A_s/A_1 , γ_1 и γ_s) в области наиболее важного в практическом отношении супергармонического резонанса 2-го порядка (s = 2) принимают соответственно следующий вид:

$$\begin{cases} \left[(2-\alpha) - 8\left(\frac{\nu}{\omega}\right)^2 \right] \cos(\gamma_2 - 2\gamma_1) - 8h\frac{\nu}{\omega^2}\sin(\gamma_2 - 2\gamma_1) \right] \frac{\sin 2\beta}{\sin 2\beta} - \frac{2\alpha}{\pi} \sum_{n=2,4,\dots} \frac{1}{(n^2 - 1)^2} \left\{ \left[(2-\alpha) - 8n^2 \left(\frac{\nu}{\omega}\right)^2 \right] \sin n(\gamma_2 - 2\gamma_1) + \frac{8hn\frac{\nu}{\omega^2}\cos n(\gamma_2 - 2\gamma_1) \right] \frac{\sin 2n\beta}{\sin 2n\beta} = 0; \end{cases}$$
(5)
$$\frac{A_2}{A_1} = -2 \left[(2-\alpha)\frac{A_0}{A_1} - \alpha \underline{\sin \beta} \right] \left\langle \left[(2-\alpha) - 8\left(\frac{\nu}{\omega}\right)^2 \right] \sin(\gamma_2 - 2\gamma_1) + \frac{8h\frac{\nu}{\omega^2}\cos(\gamma_2 - 2\gamma_1) \right] \frac{\cos 2\beta}{\cos 2\beta} + \sum_{n=2,4,\dots} \frac{2\alpha}{\pi (n^2 - 1)^2} \times \left[\left[(2-\alpha) - 8n^2 \left(\frac{\nu}{\omega}\right)^2 \right] \cos n(\gamma_2 - 2\gamma_1) - 8hn\frac{s}{\omega^2}\sin n(\gamma_2 - 2\gamma_1) \right] \frac{\cos 2n\beta}{\cos 2n\beta} \right\rangle^{-1};$$
(6)
$$\sin \gamma_1 = -\frac{\frac{(1 + \sqrt{1 - \alpha})^2}{2(1 - \alpha)\omega^2} \left[1 + s^2 \left[1 + 4\left(\frac{\alpha}{\pi}\right)^2 \sum_{n=2,4,\dots} \frac{n^2}{(n^2 - 1)^4} \right] \left(\frac{A_s}{A_1}\right)^2 \right]}{\sqrt{\left[1 - \frac{(1 + \sqrt{1 - \alpha})^2}{4(1 - \alpha)} \left(\frac{\nu}{\omega}\right)^2 \right]^2} + \frac{(1 + \sqrt{1 - \alpha})^4}{4(1 - \alpha)^2} \left(\frac{h}{\omega}\right)^2 \left(\frac{\nu}{\omega}\right)^2}.$$
(7)

В уравнениях (5), (6) тригонометрические функции угла β , обозначенные чертой снизу, представляют их средние значения (24) [1] при изменении угла β от β_0 до $\pi/2$, значение угла β_0 соответствует условию $\sin \beta_0 \approx A_2/A_1$. Относительная амплитуда основной гармоники определяется выражением (19) [1]:

$$\frac{A_1}{q_0} = -\frac{\frac{(1+\sqrt{1-\alpha})^2}{4(1-\alpha)}}{\omega^2 \sqrt{\left[1-\frac{(1+\sqrt{1-\alpha})^2}{4(1-\alpha)}\left(\frac{\nu}{\omega}\right)^2\right]^2 + \frac{(1+\sqrt{1-\alpha})^4}{4(1-\alpha)^2}\left(\frac{h}{\omega}\right)^2\left(\frac{\nu}{\omega}\right)^2}}.$$
 (8)

Анализ решения в первом приближении для супергармонического резонанса. Рассмотрим решение уравнения (1), пренебрегая гармониками выше второй, т.е. в выражении (2) полагаем n = 0. В этом случае из уравнения (5) находим явное выражение для определения сдвига фаз $(\gamma_2 - \gamma_1)$:

$$tg(\gamma_2 - 2\gamma_1) = \frac{(2 - \alpha) - 8\left(\frac{\nu}{\omega}\right)^2}{8h\frac{\nu}{\omega^2}}.$$
(9)

Определив средние значения соответствующих тригонометрических функций угла β

$$\underline{\sin\beta} = \frac{2\cos\beta_0}{\pi - 2\beta_0}; \qquad \underline{\cos\beta} = \frac{2(1 - \sin\beta_0)}{\pi - 2\beta_0};$$

$$\underline{\sin 2\beta} = \frac{1 + \cos 2\beta_0}{\pi - 2\beta_0}; \qquad \underline{\cos 2\beta} = -\frac{\sin 2\beta_0}{\pi - 2\beta_0},$$
(10)

после некоторых преобразований из (6) с учетом (3) получим уравнение для нахождения отношения A_2/A_1 при условии $\beta_0 \approx \arcsin A_2/A_1$:

$$\frac{A_2}{A_1} = \frac{\alpha[(2-\alpha)(\pi - 2\beta_0) - 2\pi\cos\beta_0]}{8\pi h \frac{\nu}{\omega^2} \sin 2\beta_0} \cos(\gamma_2 - 2\gamma_1).$$
(11)

Выражение (7) для определения сдвига фазы γ_1 принимает вид

$$\sin \gamma_{1} = -\frac{\frac{(1+\sqrt{1-\alpha})^{2}}{2(1-\alpha)} \frac{h\nu}{\omega^{2}} \left[1+4\left(\frac{A_{2}}{A_{1}}\right)^{2}\right]}{\sqrt{\left[1-\frac{(1+\sqrt{-\alpha})^{2}}{4(1-\alpha)}\left(\frac{\nu}{\omega}\right)^{2}\right]^{2}+\frac{(1+\sqrt{1-\alpha})^{4}}{4(1-\alpha)^{2}}\left(\frac{h}{\omega}\right)^{2}\left(\frac{\nu}{\omega}\right)^{2}}}.$$
 (12)

Проанализируем результаты вычислений параметров A_2/A_1 и γ_2 , γ_1 для исследуемого супергармонического резонанса соответственно по уравнению (11) и формулам (9), (12). На рис. 1 приведены полученные зависимости относительной амплитуды второй гармоники A_2/A_1 от параметра α для различных значений коэффициента h в случае точного резонанса, т.е. при $\nu = 1/2\omega_0$, где собственная частота упругого тела с закрывающейся трещиной (см. (5) [1])

$$\omega_0 = \frac{2\sqrt{1-\alpha}}{1+\sqrt{1-\alpha}}\omega.$$
 (13)

(Здесь и далее в расчетах принимаем $\omega = 1$, и выбранный диапазон значений коэффициента h = 0,001...0,01 определяет значения логарифмического декремента свободных колебаний системы ($\delta = 2\pi h/\omega_0 \approx 2\pi h/\omega$) в диапазоне 0,63...6,3%.)

Рис. 1. Зависимости отношения амплитуд A_2/A_1 от параметра α при разных значениях коэффициента *h* для супергармонического резонанса ($\nu = 0, 5\omega_0$). (Сплошные линии – расчет по уравнению (11) при выборе значения β_0 из условия $\sin \beta_0 \approx A_2/A_1$; здесь и на рис. 2, 4, 6, 7, 10, 11: штриховые линии – данные численного решения.)

В качестве примера на рис. 2 показана амплитудно-частотная характеристика, на рис. 3 – фазочастотные характеристики в зоне резонанса при $\alpha = 0,005$ и h = 0,001. Расчеты проводились при выборе значения угла β_0 из условия sin $\beta_0 \approx A_2/A_1$.

Полученные значения сдвига фаз γ_1 и γ_2 свидетельствуют о возможности уменьшения угла β_0 с гарантией достоверного разграничения значений жесткости системы. Зависимости отношения амплитуд A_2/A_1 при супергармоническом резонансе ($\nu = 0,5\omega_0$) от параметра α при разных значениях h, определенные из условий $\sin \beta_0 \approx A_2/A_1$ и $\sin \beta_0 \approx 0.5A_2/A_1$,

представлены на рис. 4 (кривые 1). Как видно, с уменьшением значения угла β_0 увеличивается определяемое отношение A_2/A_1 . Более наглядно это иллюстрирует зависимость изменения отношения A_2/A_1 от угла β_0 в диапазоне 0,3... $\pi/2$ (рис. 5).

Рис. 2. Амплитудно-частотные характеристики в области супергармонического резонанса. (Сплошная линия – расчет по уравнению (11) при выборе значения β_0 из условия $\sin \beta_0 \approx \alpha_2/A_1$; штриховая линия – данные численного решения при $\alpha = 0,005$ и h = 0,001.)

Рис. 3. Расчетные фазочастотные характеристики исследуемой системы в области супергармонического резонанса при $\alpha = 0,005$ и h = 0,001.

Для уменьшения зависимости вычисляемого значения A_2/A_1 при резонансе от выбора величины угла β_0 представим выражение (11) через интегральные значения числителя и знаменателя, считая β_0 переменной интегрирования, изменяющейся от β_0 до $\pi/2$:

$$\frac{A_2}{A_1} = \frac{\alpha \left[(2 - \alpha) \left(\frac{\pi}{2} - \beta_0 \right)^2 - 2\pi (1 - \sin \beta_0) \right]}{4\pi h \frac{\nu}{\omega^2} (1 + \cos 2\beta_0)} \cos(\gamma_2 - 2\gamma_1).$$
(14)

Полученные с использованием уравнения (14) зависимости резонансного отношения A_2/A_1 от параметра β_0 показаны на рис. 4. Как видно, уравнение (14) дает меньшее различие значений A_2/A_1 при разной величине β_0 и несколько меньшие значения A_2/A_1 , чем уравнение (11).

Рис. 4. Зависимости отношения амплитуд A_2/A_1 от параметра α при h = 0,001 и 0,0025, рассчитанные по уравнениям (11) – 1 и (14) – 2 при выборе значения β_0 из условий $\sin \beta_0 \approx A_2/A_1$ (сплошные линии) и $\sin \beta_0 \approx 0.5 A_2/A_1$ (штрихпунктирные линии) для случая супергармонического резонанса ($\nu = 0.5\omega_0$).

Рис. 5. Зависимости отношения амплитуд A_2/A_1 от величины угла β_0 , рассчитанные по формулам (11) – I и (14) – 2 для случая супергармонического резонанса ($\nu = 0, 5\omega_0$) при $\alpha = 0,005$ и h = 0,001. (Штриховая линия – значение A_2/A_1 , полученное по данным численного решения.)

Более отчетливо это прослеживается из сравнения представленных на рис. 5 зависимостей отношения амплитуд A_2/A_1 от величины угла β_0 , определенных по уравнениям (11) и (14), как выражений для A_2/A_1 , заданных в явном виде при данном значении β_0 .

Выражение (12) для $\sin \gamma_1$ остается без изменения.

Анализ решения во втором приближении для супергармонического резонанса. В качестве второго приближения рассмотрим возможность учета высших гармоник, определяемых значениями n = 2 и 4, т.е. при s = 2 - 3то (см. (2)) четвертая и восьмая гармоники. В этом случае усложняется нахождение сдвига фаз ($\gamma_2 - 2\gamma_1$), поскольку из уравнения (5) не удается получить явное выражение для tg ($\gamma_2 - 2\gamma_1$). Так, используя выражения для тригонометрических функций кратных углов

$$\begin{cases} \sin 2(\gamma_{2} - 2\gamma_{1}) = 2\cos(\gamma_{2} - 2\gamma_{1}) \operatorname{tg}(\gamma_{2} - 2\gamma_{1}); \\ \cos 2(\gamma_{2} - 2\gamma_{1}) = \cos^{2}(\gamma_{2} - 2\gamma_{1})[1 - \operatorname{tg}^{2}(\gamma_{2} - 2\gamma_{1})]; \\ \sin 4(\gamma_{2} - 2\gamma_{1}) = 4\cos^{4}(\gamma_{2} - 2\gamma_{1})[\operatorname{tg}(\gamma_{2} - 2\gamma_{1}) - \operatorname{tg}^{3}(\gamma_{2} - 2\gamma_{1})]; \\ \cos 4(\gamma_{2} - 2\gamma_{1}) = 1 - 8\cos^{4}(\gamma_{2} - 2\gamma_{1})\operatorname{tg}^{2}(\gamma_{2} - 2\gamma_{1}) \end{cases}$$
(15)

и учитывая наряду с выражениями (10) средние значения тригонометрических функций угла β

$$\underline{\sin}4\beta = -\frac{1-\cos 4\beta_0}{2(\pi - 2\beta_0)}; \qquad \underline{\sin}8\beta = -\frac{1-\cos 8\beta_0}{4(\pi - 2\beta_0)}, \tag{16}$$

уравнение (5) преобразуется следующим образом:

$$\frac{2\alpha}{225\pi} \left[(2-\alpha) - 128 \left(\frac{\nu}{\omega}\right)^2 \right] \cos^3(\gamma_2 - 2\gamma_1) (1 - \cos 8\beta_0) \operatorname{tg}^3(\gamma_2 - 2\gamma_1) + \\ + \frac{16\alpha}{9\pi} h \frac{\nu}{\omega^2} \cos(\gamma_2 - 2\gamma_1) \left[(1 - \cos 4\beta_0) + \frac{8}{25} \cos^2(\gamma_2 - 2\gamma_1) (1 - \cos 8\beta_0) \right] \times \\ \propto \operatorname{tg}^2(\gamma_2 - 2\gamma_1) + \left\{ 8h \frac{\nu}{\omega^2} (1 + \cos 2\beta_0) - \frac{2\alpha}{9\pi} \left[(2-\alpha) - 32 \left(\frac{\nu}{\omega}\right)^2 \right] \cos(\gamma_2 - 2\gamma_1) \times \\ \times (1 - \cos 4\beta_0) - \frac{2\alpha}{225\pi} \left[(2-\alpha) - 128 \left(\frac{\nu}{\omega}\right)^2 \right] \cos^3(\gamma_2 - 2\gamma_1) (1 - \cos 8\beta_0) \right] \times \\ \times \operatorname{tg}(\gamma_2 - 2\gamma_1) - \left\{ \left[(2-\alpha) - 8 \left(\frac{\nu}{\omega}\right)^2 \right] (1 + \cos 2\beta_0) + \\ + \frac{16\alpha}{9\pi} h \frac{\nu}{\omega^2} \left[\cos(\gamma_2 - 2\gamma_1) (1 - \cos 4\beta_0) + \frac{1 - \cos 8\beta_0}{25\cos(\gamma_2 - 2\gamma_1)} \right] \right\} = 0. \quad (17)$$

ISSN 0556-171Х. Проблемы прочности, 2004, № 5

>

Учитывая выражения (10), а также средние значения

$$\underline{\cos}4\beta = -\frac{\sin 4\beta_0}{2(\pi - 2\beta_0)}; \qquad \underline{\cos}8\beta = -\frac{\sin 8\beta_0}{4(\pi - 2\beta_0)}$$

уравнение для определения основного диагностического параметра A_2/A_1 получим из (6) при $A_0/A_1 = \alpha/\pi$:

$$\frac{A_2}{A_1} = \frac{\alpha}{\pi} [(2-\alpha)(\pi-2\beta_0) - 2\pi\cos\beta_0] \left\langle \left\{ \left[(2-\alpha) - 8\left(\frac{\nu}{\omega}\right)^2 \right] \sin(\gamma_2 - 2\gamma_1) + 8h\frac{\nu}{\omega^2}\cos(\gamma_2 - 2\gamma_1) \right\} \sin 2\beta_0 + \frac{\alpha}{9\pi} \left\{ \left[(2-\alpha) - 32\left(\frac{\nu}{\omega}\right)^2 \right] \cos 2(\gamma_2 - 2\gamma_1) - 16h\frac{\nu}{\omega^2}\sin 2(\gamma_2 - 2\gamma_1) \right\} \sin 4\beta_0 + \frac{\alpha}{450\pi} \left\{ \left[(2-\alpha) - 128\left(\frac{\nu}{\omega}\right)^2 \right] \times \cos 4(\gamma_2 - 2\gamma_1) - 32h\frac{\nu}{\omega^2}\sin 4(\gamma_2 - 2\gamma_1) \right\} \sin 8\beta_0 \right\rangle^{-1}.$$
 (18)

В отличие от решения задачи в первом приближении, когда значение $tg(\gamma_2 - 2\gamma_1)$, вычисляемое по формуле (9), не зависело от выбора угла β_0 , нахождение $tg(\gamma_2 - 2\gamma_1)$ из уравнения (17) связано с необходимостью предварительного выбора величины β_0 и значения $\cos(\gamma_2 - 2\gamma_1)$, входящего в уравнение в различной степени. Однако, как показывает решение задачи в первом приближении, сдвиг фаз $(\gamma_2 - 2\gamma_1)$ при супергармоническом резонансе весьма мал и составляет менее одной сотой радиана, что позволяет в начале расчета принять величину $\cos(\gamma_2 - 2\gamma_1)$ равной единице, а затем исходя из полученного значения $tg(\gamma_2 - 2\gamma_1)$.

Выбор значения угла β_0 представляет определенные трудности, поскольку от него зависят как сдвиг фаз ($\gamma_2 - 2\gamma_1$), так и отношение A_2/A_1 . Поэтому здесь также необходимо использовать метод последовательных приближений, рассматривая в комплексе уравнения (17) и (18). Так, приняв угол β_0 равным его значению, полученному при решении задачи в первом приближении, находим первое значение $tg(\gamma_2 - 2\gamma_1)$, используя уравнение (17). По этому значению вычисляем $\cos(\gamma_2 - 2\gamma_1)$ и, решая опять уравнение (17), определяем уточненное значение $tg(\gamma_2 - 2\gamma_1)$, по формуле (18) – отношение A_2/A_1 , а из условий $\sin \beta_0 \approx A_2/A_1$ и $\sin \beta_0 \approx 0.5A_2/A_1$ – угол β_0 , и повторяем вычисления $tg(\gamma_2 - 2\gamma_1)$ и A_2/A_1 .

В качестве примера в табл. 1 для случая $\alpha = 0,005$, h = 0,001 и $\nu = 0,5\omega_0 = 0,499373$ приведены значения ($\gamma_2 - 2\gamma_1$), найденные из уравнения (17) второго приближения и по формуле (9) первого приближения, и отношение A_2/A_1 , вычисленное по формуле (18) второго приближения и формулам (11), (14) первого приближения.

таолица з	Т	а	б	Л	И	ц	а	1
-----------	---	---	---	---	---	---	---	---

Значения сдвига фаз ($\gamma_2 - 2\gamma_1$), найденные из решения уравнений (17), (19) и формулы (9), и отношения амплитуд A_2/A_1 , вычисленные по формулам (11), (14) и (18), (20)

Условие опреде-	(γ ₂ – 2 _{γ1}), рад, по			A_2/A_1 по				
ления угла β_0	(9)	(17)	(19)	(11)	(14)	(18)	(20)	
Γ_1	0,003218	0,002045	0,001799	0,5613	0,50600	0,6132	0,4569	
Γ_2	0,003218	0,002292	0,001970	0,6459	0,52834	0,8747	0,5091	
Δ	0	+12,0	+9,5	+15,0	+ 4,4	+ 42,6	+11,4	

Примечание. Γ_1 : $\sin \beta_0 \approx A_2/A_1$; Γ_2 : $\sin \beta_0 \approx 0.5 A_2/A_1$; $\Delta = \frac{\Gamma_2 - \Gamma_1}{\Gamma_1}$, %.

Как видно, по сравнению с первым приближением величина сдвига фаз $(\gamma_2 - 2\gamma_1)$ уменьшилась, а отношение A_2/A_1 возросло и увеличилось влияние выбора угла β_0 .

Рис. 6. Зависимости отношения амплитуд A_2/A_1 от угла β_0 , рассчитанные по формулам (11) – 1, (14) – 2, (18) – 3 и (20) – 4 для случая супергармонического резонанса ($\nu = 0, 5\omega_0$) при $\alpha = 0,005$ и h = 0,001.

Для оценки влияния угла β_0 на определяемое значение отношения A_2/A_1 на рис. 6 приведены зависимости A_2/A_1 от β_0 , рассчитанные по формуле (18) при определении сдвига фаз ($\gamma_2 - 2\gamma_1$) из уравнения (17) и по формулам (11), (14) первого приближения. На зависимостях, которые рассчитаны по формулам (11) и (14), отмечены характерные точки, соответствующие значениям β_0 , определяемым из условий $\sin\beta_0 \approx A_2/A_1$ и $\sin\beta_0 \approx 0.5A_2/A_1$. Видно, что учет высших гармоник обусловил существенную зависимость определяемого значения отношения A_2/A_1 от угла β_0 . Для уменьшения зависимости получаемого результата от выбора угла β_0 поступим аналогично рассмотренному интегральному усреднению при определении уравнения (14), т.е. полагая угол β_0 переменной интегрирования, про-

интегрируем все члены уравнения (17), а также числитель и знаменатель выражения (18) в пределах изменения этого угла от β_0 до $\pi/2$. В результате получим уравнения соответственно для определения tg($\gamma_2 - 2\gamma_1$):

$$\frac{2\alpha}{225\pi} \left[(2-\alpha) - 128 \left(\frac{\nu}{\omega}\right)^2 \right] \cos^3(\gamma_2 - 2\gamma_1) \left[1 + \frac{\sin 8\beta_0}{4(\pi - 2\beta_0)} \right] \operatorname{tg}^3(\gamma_2 - 2\gamma_1) + \frac{16\alpha}{9\pi} h \frac{\nu}{\omega^2} \cos(\gamma_2 - 2\gamma_1) \left[\left(1 + \frac{\sin 4\beta_0}{2(\pi - 2\beta_0)} \right) + \frac{8}{25} \cos^2(\gamma_2 - 2\gamma_1) \times \left(1 + \frac{\sin 8\beta_0}{4(\pi - 2\beta_0)} \right) \right] \operatorname{tg}^2(\gamma_2 - 2\gamma_1) + \left\{ 8h \frac{\nu}{\omega^2} \left[1 - \frac{\sin 2\beta_0}{\pi - 2\beta_0} \right] - \frac{2\alpha}{9\pi} \cos(\gamma_2 - 2\gamma_1) \left\{ \left[(2-\alpha) - 32 \left(\frac{\nu}{\omega}\right)^2 \right] \left[1 + \frac{\sin 4\beta_0}{2(\pi - 2\beta_0)} \right] + \frac{1}{25} \left[(2-\alpha) - 128 \left(\frac{\nu}{\omega}\right)^2 \right] \cos^2(\gamma_2 - 2\gamma_1) \left[1 + \frac{\sin 8\beta_0}{4(\pi - 2\beta_0)} \right] \right\} \operatorname{tg}(\gamma_2 - 2\gamma_1) - \left\{ \left[(2-\alpha) - 8 \left(\frac{\nu}{\omega}\right)^2 \right] \left[1 - \frac{\sin 2\beta_0}{\pi - 2\beta_0} \right] + \frac{16\alpha}{9\pi} h\nu \left[\cos(\gamma_2 - 2\gamma_1) \left(1 + \frac{\sin 4\beta_0}{2(\pi - 2\beta_0)} \right) + \frac{1}{25\cos(\gamma_2 - 2\gamma_1)} \left(1 + \frac{\sin 8\beta_0}{9\pi} h\nu \left[\cos(\gamma_2 - 2\gamma_1) \left(1 + \frac{\sin 4\beta_0}{2(\pi - 2\beta_0)} \right) + \frac{1}{25\cos(\gamma_2 - 2\gamma_1)} \left(1 + \frac{\sin 8\beta_0}{4(\pi - 2\beta_0)} \right) \right] \right\}$$
(19)

и диагностического параметра A_2/A_1 :

$$\frac{A_2}{A_1} = \frac{2\alpha}{\pi} \left[(2-\alpha) \left(\frac{\pi}{2} - \beta_0\right)^2 - 2\pi (1-\sin\beta_0) \right] \times \\ \times \left\langle \left\{ \left[(2-\alpha) - 8 \left(\frac{\nu}{\omega}\right)^2 \right] \sin(\gamma_2 - 2\gamma_1) + 8h \frac{\nu}{\omega^2} \cos(\gamma_2 - 2\gamma_1) \right\} (1 + \cos 2\beta_0) - \right. \\ \left. - \frac{\alpha}{18\pi} \left\{ \left[(2-\alpha) - 32 \left(\frac{\nu}{\omega}\right)^2 \right] \cos 2(\gamma_2 - 2\gamma_1) - 16h \frac{\nu}{\omega^2} \sin 2(\gamma_2 - 2\gamma_1) \right\} \times \\ \left. \times (1 - \cos 4\beta_0) - \frac{\alpha}{1800\pi} \left\{ \left[(2-\alpha) - 128 \left(\frac{\nu}{\omega}\right)^2 \right] \cos 4(\gamma_2 - 2\gamma_1) - 16h \frac{\nu}{\omega^2} \sin 4(\gamma_2 - 2\gamma_1) \right] \right\} \right\}$$

Приближенное аналитическое определение вибродиагностических параметров ...

$$-32h\frac{\nu}{\omega^{2}}\sin 4(\gamma_{2}-2\gamma_{1})\bigg\}(1-\cos 8\beta_{0})\bigg)^{-1}.$$
 (20)

Значения ($\gamma_2 - 2\gamma_1$) и A_2/A_1 при определении β_0 из условий $\sin \beta_0 \approx A_2/A_1$ и $\sin \beta_0 \approx 0.5A_2/A_1$ приведены в табл. 1. Как видно, влияние выбора угла β_0 на определяемые значения ($\gamma_2 - 2\gamma_1$) и A_2/A_1 уменьшилось. Это особенно наглядно следует из представленной на рис. 6 зависимости определяемого отношения амплитуд A_2/A_1 от величины β_0 . Эта зависимость также показывает, что учет высших гармоник при использовании уравнения (20) определяет несколько меньшие резонансные значения A_2/A_1 . Однако при $\beta_0 = 0$ значения A_2/A_1 , вычисляемые по формуле (14) первого приближения и по (20), практически совпадают. Это объясняется тем, что при $\beta_0 = 0$ выражение (20) аналогично выражению (14) первого приближения, если учесть соотношение (9).

Выражение для $\sin \gamma_1$ с учетом высших гармоник имеет вид

$$\sin\gamma_{1} = -\frac{\frac{(1+\sqrt{1-\alpha})^{2}}{2(1-\alpha)}\frac{h\nu}{\omega^{2}}\left\{1+4\left[1+1,779\left(\frac{\alpha}{\pi}\right)^{2}\right]\left(\frac{A_{2}}{A_{1}}\right)^{2}\right\}}{\sqrt{\left[1-\frac{(1+\sqrt{1-\alpha})^{2}}{4(1-\alpha)}\left(\frac{\nu}{\omega}\right)^{2}\right]^{2}+\frac{(1+\sqrt{1-\alpha})^{4}}{4(1-\alpha)^{2}}\left(\frac{h}{\omega}\right)^{2}\left(\frac{\nu}{\omega}\right)^{2}}}.$$
 (21)

Решение для области основного резонанса. Учитывая результаты исследования резонансных колебаний рассматриваемой системы с использованием асимптотического метода, определяющие наличие в спектре колебаний (см. (17) и (18) [1]) только четных высших гармоник с преобладающим значением амплитуды второй гармоники A_2 ($A_4/A_2 = 0,04$; $A_6/A_2 = 0,00735$ и т.д.), можно в первом приближении отыскивать решение уравнения (1) также для случая основного резонанса в виде (2) при s = 2 и n = 0. При этом для определения основного диагностического параметра A_2/A_1 в области основного резонанса можно использовать выражения (9), (11), (12), (14), (15) при частоте внешнего возбуждения $\nu \approx \omega_0$, где ω_0 определяется выражением (13).

На рис. 7 приведены зависимости диагностического параметра A_2/A_1 при $\nu \approx \omega_0$ от параметра нелинейности системы α при h = 0,001...0,01, рассчитанные по уравнениям (11) и (14) при условии $\sin \beta_0 \approx A_2/A_1$ и по формуле (18) [1] при n = 2 ($A_2/A_1 \approx 2\alpha/9\pi$). Видно, что результаты расчета A_2/A_1 по уравнению (14) для значений $\alpha < 0,025$ практически соответствуют результатам, полученным с помощью асимптотического метода [1], т.е. значению $2\alpha/9\pi$, и не зависят от коэффициента h в рассматриваемом диапазоне его изменения. Например, при $\alpha = 0,005$ значение отношения A_2/A_1 выше $2\alpha/9\pi$ на 2,35%, при $\alpha = 0,025$ – на 7,1%, при $\alpha = 0,05$ – на 13,1% и при $\alpha = 0,1$ – на 26%, в то время как определяемое из уравнения (11) значение указанного отношения выше в 4,9...4,99 раза. Таким образом, для основного резонанса следует использовать уравнение (14). При этом отметим, что ввиду малости амплитуды высшей гармоники ($A_2/A_1 < 0,01$) в

практических расчетах в уравнении (14) условие $\sin \beta_0 \approx A_2/A_1$ фактически эквивалентно принятию значения угла β_0 равным нулю. Кроме того, наблюдаемое условие $A_2 << A_1$ обеспечивает правомерность использования исходных выражений (9), (14) при значительно больших значениях параметра α , чем при супергармоническом резонансе, ограничиваемых условием $A_2 < A_1$.

Рис. 7. Зависимости отношения амплитуд A_2/A_1 от параметра α для основного резонанса ($\nu = \omega_0$), рассчитанные по уравнениям (11) – 1 и (14) – 2 при условии $\sin \beta_0 \approx A_2/A_1$, по (22) – 3 и по формуле $A_2/A_1 = 2\alpha/9\pi - 4$ при n = 2 (штриховая линия, соответствующая численному решению, совпадает с кривой 4).

Полагая значение угла β_0 равным нулю, получаем простую формулу для определения отношения амплитуд A_2/A_1 как при основном, так и супергармоническом резонансе 2-го порядка:

$$\frac{A_2}{A_1} \approx \frac{\alpha \left[(2-\alpha)\frac{\pi}{4} - 2 \right]}{8h\frac{\nu}{\omega^2}} \cos(\gamma_2 - 2\gamma_1).$$
(22)

Угол сдвига фазы γ_1 определяется формулой (21), для значений $\alpha < 0,1$ с достаточной точностью можно использовать также формулу (12).

Проведенные для основного резонанса ($\nu = \omega_0$) вычисления значений A_2/A_1 по уравнению (14) при выборе угла β_0 из условия $\sin \beta_0 \approx A_2/A_1$ и по формуле (22) показывают, что они практически совпадают (на рис. 7 кривые 2, 3). Некоторое различие между значениями A_2/A_1 проявляется при $\alpha < 0.3$, при возрастании α от 0,04 до 0,1 оно не превышает 0,032...0,18%.

Относительная амплитуда основной гармоники как для основного резонанса, так и для супергармонического резонанса 2-го порядка определяется выражением (8).

На рис. 8 для области основного резонанса приведены амплитудночастотные зависимости, на рис. 9 – фазочастотные характеристики, рассчитанные с использованием формул (8), (9), (21), (22) при $\alpha = 0,01$ и 0,05 и h = 0,001 и 0,01. Как и ранее, в расчетах принимаем $\omega = 1$, т.е. $h/\omega \equiv h$. Следует заметить, что значения отношения A_2/A_1 не зависят от коэффициента h, а сдвиг фаз ($\gamma_2 - 2\gamma_1$) практически не зависит от параметра α .

0,97 0,974 0,978 0,982 0,986 0,99 0,994 0,998 1,002 1,006 1,01 ν/ω

Рис. 8. Амплитудно-частотные характеристики $A_2/A_1(\nu/\omega) - 1$, 2 и $A_1/q_0(\nu/\omega) - 3$, 4 для области основного резонанса при разных значениях параметров α и h: $1 - \alpha = 0,05$, h = 0,001...0,01; $2 - \alpha = 0,01$, h = 0,001...0,01; $3 - \alpha = 0,05$, h = 0,001; $4 - \alpha = 0,01$, h = 0,001; $5 - \alpha = 0,05$, h = 0,01; $6 - \alpha = 0,01$, h = 0,01.

Рис. 9. Фазочастотные характеристики $[\gamma_2 - 2\gamma_1](\nu/\omega) - 1$, 2 и $\gamma_1(\nu/\omega) - 3-6$ для области основного резонанса при разных значениях параметров α и $h: 1 - \alpha = 0,01...0,05$, h = 0,001; $2 - \alpha = 0,01...0,05$, h = 0,001; $3 - \alpha = 0,05$, h = 0,001; $4 - \alpha = 0,01$, h = 0,001; $5 - \alpha = 0,05$, h = 0,01; $6 - \alpha = 0,01$, h = 0,01.

Оценка достоверности аналитического решения. Для оценки достоверности полученных результатов приближенного аналитического определения диагностических параметров колебательного процесса в области основного и супергармонического резонансов системы с асимметричной билинейной характеристикой восстанавливающей силы было выполнено численное решение исходного уравнения (1) методом усреднения по ускорению [2] с произвольно выбранными начальными условиями и продолжением вычисления до установления с заданной точностью стационарного режима колебаний [3].

Данные численного исследования представлены на рисунках штриховыми линиями. Сопоставление результатов аналитического и численного решений свидетельствует о вполне удовлетворительном их соответствии. При супергармоническом резонансе лучшее согласование результатов дают интегрально-усредненные зависимости (14), (20), при основном – зависимость (22).

Таблица 2

и усреднения по ускорению [5]									
N₂	α								
уравнения	0,0909091				0,4382	0,264706	0,0909091		
	h								
	0,02	0,03	0,04	0,05	0,1				
(14)	0,515284	0,357799	0,274068	0,222069	0,692211	0,390546	0,113877		
$\sin\beta_0 \approx A_2/A_1$	(+9,9)	(+9,1)	(+9,6)	(+12,2)	(+9,8)	(+0,7)	(-5,7)		
(14) $\sin\beta_0 \approx 0.5 A_2/A_1$	0,547843 (+ 16,9)	0,3732 (+13,8)	0,282881 (+ 13,1)	0,227731 (+15,0)	0,78384 (+24,3)	0,418244 (+7,8)	0,115251 (-4,6)		
(20) $\sin\beta_0 \approx A_2/A_1$	0,469674 (+ 0,2)	0,34464 (+ 5,1)	0,269115 (+7,6)	0,219883 (+11,0)	0,623058 (-1,2)	0,377174 (-2,7)	0,113723 (-5,9)		
(20) $\sin\beta_0 \approx 0.5 A_2/A_1$	0,529122 (+ 12,9)	0,368741 (+12,4)	0,281362 (+12,5)	0,227072 (+14,7)	0,749809 (+18,9)	0,412977 (+ 6,5)	0,115203 (-4,6)		
(14), (20) $\beta_0 = 0$	0,582418 (+ 24,2)	0,38840 (+18,4)	0,291328 (+16,5)	0,233065 (+17,7)	0,954 (+51,3)	0,45505 (+17,3)	0,116554 (-3,5)		
Метод Рунге-Кутта	0,46875	0,3280	0,2500	0,1980	0,6306	0,3878	0,1208		
Метод усреднения по ускорению	0,49310	0,32845	0,24535	0,19378	0,50362	0,29315	0,1029		

Значения отношения амплитуд A_2/A_1 , рассчитанные по формулам (14) и (20), а также результаты численного решения методами Рунге-Кутта [4] и усреднения по ускорению [3]

Примечание. В скобках приведены данные (в %), определенные по отношению к результатам численного интегрирования методом Рунге-Кутта.

Проведено также сопоставление (табл. 2) определенных по уравнениям (14) и (20) значений отношения амплитуд A_2/A_1 с данными численных решений уравнения вида (1) методом Рунге-Кутта [4] при различных значениях параметров α и *h*. (В табл. 2 приведены также результаты, получен-

ные методом усреднения по ускорению [3].) Как видно, и в этом случае, за редким исключением, наблюдается удовлетворительное соответствие между результатами даже при весьма больших значениях параметра α . Лучшее согласование отмечается при использовании уравнения (20) при условии $\sin \beta_0 \approx A_2/A_1$. Отметим, что анализ зависимостей A_2/A_1 от параметра α (рис. 1) при различных значениях коэффициента h подтверждает полученный в [5] вывод, что слабый резонанс ($A_2/A_1 < 1$) проявляется при $\alpha \omega/h \leq 10$. Так, точка на приведенной зависимости для h = 0,001 при $\alpha = 0,01$, определяющая $A_2/A_1 \approx 1$, соответствует значению $\alpha \omega/h = 10$. Кроме того, такое сопоставление свидетельствует о возможности использования предложенного аналитического решения и полученных выражений для определения отношения A_2/A_1 также при значительной степени нелинейности системы ($0,01 < \alpha < 0,5$) при условии $\alpha \omega/h < 10$, обусловливающем слабый резонанс, т.е. $A_2 < A_1$.

Анализ зависимостей отношения A_2/A_1 от угла β_0 (рис. 6) показал, что наилучшее согласование с численным решением имеют результаты расчетов по уравнениям (14) и (20). При $\beta_0 = 0$ расчеты по указанным уравнениям определяют одинаковое значение A_2/A_1 , достаточно удовлетворительно соответствующее данным численного решения. Это позволяет использовать уравнения (14) и (20) с достаточным приближением при значении $\beta_0 = 0$, что значительно упрощает вычисления. Следует также заметить, что при $\beta_0 = 0$ выражение (20), как и выражение (14), приводится к виду (22). Таким образом, как при основном, так и при супергармоническом резонансе 2-го порядка (s = 2) для оперативной оценки основного диагностического параметра (относительной величины амплитуды второй гармоники (A_2/A_1)) можно использовать простое явное выражение (22) при определении сдвига фаз ($\gamma_2 - 2\gamma_1$) по формуле (9).

Выражение (22) с учетом (9) можно преобразовать к виду

$$\frac{A_2}{A_1} = \frac{\alpha \left[(2-\alpha)\frac{\pi}{4} - 2 \right]}{(2-\alpha) - 8 \left(\frac{\nu}{\omega}\right)^2} \sin(\gamma_2 - 2\gamma_1).$$
(23)

При строго супергармоническом резонансе $\cos(\gamma_2 - 2\gamma_1) \approx 1$ и из формулы (22) прослеживается зависимость отношения амплитуды A_2/A_1 от коэффициента *h*, при основном резонансе $\sin(\gamma_2 - 2\gamma_1) \approx 1$ и формула (23) свидетельствует об отсутствии влияния коэффициента *h*.

На рис. 10 приведены полученные по формуле (22) и путем численного исследования зависимости отношения амплитуд A_2/A_1 от параметра нелинейности α упругой системы при разных значениях коэффициента h, характеризующего диссипативные свойства системы, для режима супергармонического резонанса 2-го порядка. Видно, что при $\alpha\omega/h \leq 5$ наблюдается практически полное совпадение результатов простого приближенного расчета с численным решением, т.е. при супергармоническом резонансе расчетные формулы (8), (9), (12), (22) можно с успехом применять для оценки наиболее важных с практической точки зрения диагностических

признаков ранних стадий развития трещин. Для больших значений параметра α , как следует из данных табл. 2, целесообразно использовать уравнения (19), (20) или более простое уравнение (14) и формулу (9).

Рис. 10. Зависимости отношения амплитуд A_2/A_1 от параметра α при разных значениях коэффициента *h*, рассчитанные по формуле (22) (сплошные линии) и по данным численного решения (штриховые линии) для случая супергармонического резонанса ($\nu = 0, 5\omega_0$).

Рис. 11. Амплитудно-частотные зависимости $\frac{A_2}{A_1}(\nu/\omega) - l - 4$ и $\frac{A_1}{q_0}(\nu/\omega) - 5$, 6 для области супергармонического резонанса при разных значениях параметров α и h: $l - \alpha = 0,0075$, h = 0,001; $2 - \alpha = 0,005$, h = 0,001; $3 - \alpha = 0,0075$, h = 0,01; $4 - \alpha = 0,005$, h = 0,01; $5 - \alpha = 0,0075$, h = 0,001...0,01; $6 - \alpha = 0,005$, h = 0,001...0,01.

Полученные с помощью расчетных формул (8), (22) и (9), (12) амплитудно-частотные и фазочастотные характеристики для супергармонического резонанса при разных значениях α и h приведены на рис. 11, 12. Для

одного из конкретных значений $\alpha = 0,005$ и h = 0,001 приведена амплитудно-частотная характеристика, построенная по данным численного решения. Как и в случае использования уравнения (11), при определении β_0 из условия $\sin \beta_0 \approx A_2/A_1$ (рис. 2) во всей резонансной области изменения частоты возбуждения наблюдается хорошее соответствие между результатами расчета и численного решения.

Рис. 12. Фазочастотные характеристики $[\gamma_2 - 2\gamma_1](\nu/\omega) - 1 - 4$ и $\gamma_1(\nu/\omega) - 5 - 8$ для области супергармонического резонанса при разных значениях параметров α и *h*: 1, 7 - α = 0,0075, h = 0,001; 2, 8 - α = 0,005, h = 0,001; 3, 5 - α = 0,0075, h = 0,01; 4, 6 - α = 0,005, h = 0,01.

В области супергармонического резонанса максимальное значение отношения A_2/A_1 при сохранении постоянной величины h изменяется пропорционально изменению параметра α (рис. 10), однако в отличие от основного резонанса (рис. 7) величина этого отношения на два порядка выше, даже при значениях α на порядок меньше, и существенно зависит от коэффициента h.

Заключение. Рассмотрен приближенный аналитический метод исследования вынужденных колебаний нелинейной системы с асимметричной билинейной характеристикой восстанавливающей силы, моделирующей упругое тело с локальной несплошностью материала типа закрывающейся трещины усталости нормального отрыва. Метод основан на отыскании периодических решений в области основного и супергармонического резонансов путем удовлетворения дифференциального уравнения колебаний в моменты заведомо известного значения упругой характеристики. Анализ полученных решений для основного и супергармонического резонанса 2-го порядка и сопоставление расчетных данных с численным решением дифференциального уравнения позволили найти в явном виде простые выражения различных приближений для определения основного вибродиагностического параметра – относительной амплитуды второй гармоники в зависимости от интегрального параметра нелинейности системы, т.е. относительного разли-

чия жесткости системы на полуциклах деформирования разного знака, а также построить для заданных параметров системы ее амплитудно-частотные и фазочастотные характеристики.

Резюме

Із використанням отриманих автором визначальних рівнянь установлено аналітичні вирази різних наближень для визначення в області основного та супергармонічного резонансів вібродіагностичних параметрів пошкодження від утоми пружного тіла типу тріщини нормального відриву, що закривається. Шляхом зіставлення результатів розрахунку з даними числових розв'язків оцінюється вірогідність аналітичного розв'язку.

- 1. *Матвеев В. В.* Приближенное аналитическое определение вибродиагностических параметров нелинейности упругих тел, обусловленной наличием закрывающейся трещины. Сообщ. 1. Существующие и предлагаемый методы решения // Пробл. прочности. – 2004. – № 4. – С. 5 – 20.
- 2. Тимошенко С. П., Янг Д. Х., Уивер У. Колебания в инженерном деле. М.: Машиностроение, 1985. 472 с.
- 3. *Бовсуновский А. П.* Численное исследование колебаний нелинейной механической системы, моделирующей тело с трещиной // Пробл. прочности. 1999. № 6. С. 65 80.
- 4. Плахтиенко Н. П. К диагностике кусочно-постоянной жесткости при нелинейных резонансах // Прикл. механика. 1991. **27**, № 10. С. 112 120.
- 5. Плахтиенко Н. П. Резонанс второго порядка пластины, содержащей протяженные дефекты целостности // Пробл. прочности. 2001. № 1. С. 105 116.

Поступила 29. 10. 2003