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HennHenHbI KOHEYHO3/IEMEHTHbIN pacyeT KOMMNO3MTHbIX 060/104eK
C Kay4dyKOBOMW MaTpuLein

A. X. M. ®eppeiipa, XX. M. A. C. Ca, A. T. Mapkec

YHueepcuTeT 1. MopTo, MopTyranuns

MpeAcTaBneHo KOHEYHO3NEMEHTHOE pelleHne Ans KOMMNO3WTHbIX 060/M104eK C Kay4yyKoBoi MaTpu-
Leit. PaccMaTpuBalOTCA Tak>XKe MHOFOCNOMHbIE KOHCTPYKLMM C Kay4yKOBO OCHOBOW. [ins yueTa
HECOKMMAaeMOC TV KaydyKoBOi MaTpuLibl 1 HEOJHOPOAHOCTM CTPYKTYPbl MHOTOCNOHbIX 060M104eK
Heo6Xx0MMo pa3paboTaTb HA OCHOBE YMCNEHHBIX METO/OB XOPOLIO 060CHOBAaHHYI MOJeNb, ONW-
CbIBAIOLLYI0 MOBEfEHME YKA3aHHbIX CTPOMTENbHLIX MaTepuanos. MpeanodkKeHHas Moaens npume-
HANacb aBTOopamMu K BbIPOXKAEHHOMY 37eMeHTY 06O0NMoYKN B paMKax AeiopMaunoHHbLIX Teopuit
cAiBura nepeoro M TpeThbero nopsgka. Mogenb no3sonsieT AOCTATOYHO TOYHO MPOTrHO3NPOBATH
HeNnHeliHoe NOoBefeHMe MHOTOCMOMHLIX 060/10YeK C TOHKMMW NpPOCNOiKaMu M3 KOMMO3NTHOO
mMaTepuana n cnosMU Kaydyka, a Tak>Ke KOMMNO3MTHbIX 060/04eK C KayuyKoBOi MaTpuLiei.

Kntouesble cnoBa: KOMMNO3WTHas 060/704Ka, KaydyykoBas maTpuua, gedopmauu-
OHHble TEOPUMN CABUra, KOHEYHO3INEMEHTHOE pelLleHue.

Introduction. In this paper, a finite element formulation for the solution of
composite shells with rubber matrix is presented. Also sandwich structures with
rubber cores are considered. The incompressible nature of rubber and the
complexity of laminated shells bring forth the need for a sound numerical model
for the prediction of such important industrial materials.

A finite element formulation based on a degenerated shell and first- and
third-order shear deformation theories has been developed.

Two separate nonlinear material models are considered: one for rubber and
another for the composite layers. Rubber is considered to be a hyperelastic
material, for which incompressibility is formulated on a single field, where in
each interpolation point the Lagrange multiplier for incompressibility condition is
eliminated.

The total Lagrangian large displacement formulation is taken into account.

The mathematical formulation of rubber shells is fundamental in many
industrial processes. Previous work on the subject has been performed in [1-6]. In
this work, a new approach is considered by analyzing sandwich structures with a
rubber core and with a bi-material formulation [7]. Also a third-order formulation
is involved in such analysis for the first time.
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1. Large Deformation Analysis.

1.1. Generalities. In rubber composites or composite/rubber sandwiches,
continuous variation of geometry has to be considered.

The Green-Lagrange strain vector is defined as [8]

1 1
Yt = gij - °ij)= Uij + uji + Uki Ukj 1)

where ui are displacements and yj is the Green strain tensor. Three strain
invariants are usually used for the establishment of a constitutive law for rubber.
They can be obtained as a function of the Green-Lagrange strain components as

(9]

h =3+ 2yii, )
12 = 3+ dyii + 2(yiiyij - yjyji\ 3)
13 =1+ 2yii + 2(yiiyij - yijyji)+ - £I1KErsty iry jsy kt, @)

where £ and £rst are the permutation symbols.

Considering dVO0 as an elementary volume in the reference configuration
and V the volume ofthis element in actual configuration, it can be shown [9] that

dv r-
dvo =~ | (5)

so that for an incompressible material it can be written
13=1 (6)

The Piola-Kirchhoff stresses Sj are energetically conjugate with the
Green-Lagrange strains in the reference configuration [10]. In the deformed
configuration they can be related with real (or Cauchy) stresses Oy as

PO dXi dXj
ors ,
P dxr rs dxs

Sj = (7)
] y
where p 0/p is the ratio between densities of both configurations, Xt and xi

are the coordinates in the reference and deformed configurations, respectively.

1.2. Incremental Equilibrium Equations. An incremental form of the
virtual work principle is needed to take into account nonlinear material and
geometrical behavior. This principle can be expressed for conservative loading as
follows [11]:
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f (AS0<yj + SijdAyjj)dVo = fA t° duidSo + fA b° duidVvo, (8)
\b So \b
dSj
ASj :gykIAykI:DkIlJAykl, 9)
1

AYij = 2 (Auij + Auj,i + uki Aukj + ukj Auk,i + Auki Aukj ).  (10)

8Ayij = 1(dukiAukj + &ukj Auk,i)= Aryij, (11)

where Ato and AbO are the pseudo tractions and pseudo body forces,
respectively, defined in the reference configuration as

At0dSo = AtidS, (12)

AbodVo = AbtdV. (13)

The symbols Att and Abt are the real forces in the deformed configuration.

2. Rubber Theory. Synthetic rubbers are polymeric materials that withstand
large elastic deformations with full instantaneous recovery after unloading. Such
properties are due to their molecular structure [12, 13]. A typical behavior of
rubber is nonlinear with elongations under tension up to 600%.

2.1. Mathematical Theory. Rubber can be considered as an incompressible
hyperelastic material. In hyperelasticity, the reversibility of elastic deformation
and the independence of the deformation history are ensured through the
definition of stresses as gradients of a potential function, i.e., the strain energy [5,

9.

The definition of the strain energy follows the research of Mooney [14] and
Rivlin [15, 16]. For an isotropic material, the strain energy per unit undeformed
volume is taken as a function of strain invariants as

W = W(11,12,13). (14)

The strain energy must be independent of 13 [9]. This equation can now be
rewritten as
® X

W=22Cm (I1- 3)I(12- 3)m, Coo = o, (15)
I=0 m=0

where Cj are experimental parameters. The most common form for rubber is
known as the Mooney-Rivlin law [15, 16]:

ISSN 0556-171X. npoOAeubi npounocmu, 2003, N2 3 17



A. J. M. Ferreira, J. M. A. C. S, A. T. Marques

W=Cl(li- 3)+ C2(12- 3). (16)

This law can be considered acceptable for elongations up to 450-500%.

2.2. Stress Evaluation. Stresses are defined as derivatives of the strain
energy. In rubber, deformations occur without volume variation. A new
constrained functional can be defined [9] as

W = W(yij)-1(V/3 - 1), (17)

where X imposes the incompressibility condition and can be identified as
hydrostatic pressure [6, 9]. In each point, the condition 13 =1 is imposed. The
stresses are now calculated as

dw dw 1 dls

Sij = M= T o K oo, 18
17 a5 ‘dyii 2 dyi ey

2.3. Stresses in Shells. In shell structures, it is assumed that the stress normal
to midplane is zero: a 33 = 0. Therefore, some of the equations can be simplified.
The elimination of the Lagrange multiplier can be made at the element level
explicitly avoiding a mixed or penalty formulation. The constrained functional and
stresses can be written in a more convenient way [6]. According to continuum
mechanics, it is assumed that Sjj = Sjj and £jj = £jji. Strain invariants can now
be written as

l1=3+2J1, (19)

12=3+4J1+ 4J2, (20)

13=1+2J1+ 4J2 + 3J3, (21)

J1=Y1Ll+ Y22 + Y33, (22)

J2=YIY22 + Y22Y22 + YIIYB - " (y22 + y23 + Y23), (23)

1 1 2 2
J3=YUY22Y2 + 4 YI2Y13Y23 - 4 (YLY2B + Y22Y13+ YRBYL). (24)

Therefore, the constrained functional (17) can be expressed as

W=CwJ1+C2J2-X1, (25)

where
C1=2C1+ 4C2, (26)
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C2=4C2, (27)
2=22, (28)
| =J1+2J2+ 4J3. (29)
The stresses are now obtained as
o _ dJr — dJ2 - dI
Si:C!d—ij+C1d—ylj_-2 d_yj (30)

and the material constitutive tensor (9) for the incremental solution is obtained by
the derivatives of the stresses relative to strains:

das - — d2J1 — —dJ2 — d233
dy ki kh] 1 dy kidy - 2 dykl dy kidy

If S33 is zero as it is supposed in shells, it can be eliminated from Eq. (8).
The value of y33, not necessarily zero, is dependent on other strains. The
contribution of y 33 cannot be excluded. From the compressibility condition the
explicit value of y 33 can be evaluated. Considering

13- 1=R+ SyB =0, (32)

where

R=zyll+y 2 +2ylly2 - 2(y2+y2ZB+y23)+
+yLy13y23 ylly23 y22y23 (33)
and
S=1+2(yl+y2)+ 4ylly22 y2. (34)
Finally, we get
R

yB=-Snm (35)

The assumption S3 =0 allows the direct calculation of the Lagrange
multiplier in each point. From (30), we obtain

— dJ1  — dJ2
Cl— - +C2— -
t dy 33 dy 3
dJ1 dJ2 dJ3 . (36)
—_———+ 9 — - 4— -

dy 33 dy 33 dy 33
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An iterative process using a single-filed formulation, where an automatic
update of the displacement field takes place, is established. This new process,
although avoiding mixed formulations, results in a highly nonlinear process.

2.4, Reinforced Rubber. In many applications, fiber-reinforced rubber is
used by combining the strength of fibers with large rubber deformability [13,
17-20]. Examples can be found in car tyres, boats and hovercrafts. Reinforcement
layers can be oriented in chosen directions [21]. This can be considered as a
composite material. Sandwich laminates with stiff composite skins and rubber
cores also have interesting applications where a combination of stiffness and
damping is needed, for example, in trains.

In this paper, we used the first- and third-order shear deformation theories in
order to capture various elastic material properties.

A bi-phase model is proposed for composite-reinforced rubber materials. The
material properties are summed up by separate contribution of isotropic rubber
and composite layers. Both hyperelastic and elastic material models for rubber
and composites are considered.

3. Finite Element Solution of Large Deformations. When applying the

finite element method to large deformation problems, two approaches are typical:
a total Lagrangian formulation and an updated Lagrangian formulation [10, 20].
In the total Lagrangian formulation, the reference configuration is the initial one,
while in the updated Lagrangian formulation, the reference configuration is
continuously updated in each iteration and thus the element basis moves with
changes in geometry. The choice between both configurations depends on the
constitutive law and on the applications [10, 22-31]. In this paper, we adopted the
total Lagrangian formulation.

3.1 Total Lagrangian Formulation. Equations to be solved are derived
from (8). Displacements are obtained from

u= Nd, (37)
Au= NAd. (38)

The Green-Lagrange strain y is expressed as the sum of two vectors
corresponding to the linear and nonlinear contributions:

(39)
or in terms of the nodal displacements
(40)
where
& =Bd (41)
(42)
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and Bj is the traditional B matrix for small deformations [20-22]. The matrix
B NL can be written as

du
dX
du

du dv dw
0o 0 0o 0 0 0 ‘(ij
dX dX dX u
v Y dz
0 D—: 0 0 Q: 0 0 o 0 dv

du dv th
0o 0 0o 0 o o g WX
en iyt dz dz z v
~I®L_2 _____ 2 du du dv  dv dw  dw dy (43)
0 0 0
dy dXx dy dXx dy dx dv
du du dv dv dw dw 4z
0 0 0

dz dX dz dX dz dx dw
du du dv  dv dw dw (gx

0 0 0
dz dY dz dYy dz dy_ dw
dy
dw
dz

where X = Xj, Y=X2,Z=X3, u- ui, v=u2,and w=u3. Equation (42)
can also be written in the form

"NL 2AGd, (44)
where G is the matrix of spatial derivatives of the shape functions. Therefore,

BNL = AG. (45)

The Green-Lagrange strain increment can be obtained from (10) as

Ay = AEL + AEnl. (46)
It can be represented as
(47)
and
1 2 1

AENL= AENL+ AENL= BNLAd + 2ABNLAd, (48)

where
ABNL = AAG. (49)

Here AA is the matrix identical to A with spatial derivatives of increments
instead of total displacements.
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The variation of the Green-Lagrange strains can be written as

1
dy deL+ deNL \BL+ ~BNL}dd. (50)

The variation of the Green-Lagrange increments is obtained from (11) as
dy = dAGdd. (51)
The stress increments can be obtained from (9) as
6S = Ddy, (52)
where D is the material constitutive matrix. Using the approximation
Ay=Agl+ NL=(BL+BNL)"d, (53)
we can finally obtain the following equation of motion:

f (JdTBTDBAd + STdAGAd)dVo =

0

=f ddTN TAt0dSO+f dd TN TAb 0dV0 (54)
So \}

The product dATS can be written as

(55)
where
s 0 0
T= 0 0 (56)
0 S
and
S¥ Sx
S= Syx Syy Syz (57)

Six sy Sz

As in (54), virtual displacements are arbitrary, this equation can now be
written as

KTAd=ATf, (58)
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where K T is the tangential matrix in the form

KT=KL+KNL+KS. (59)

In the previous equation, K1 is the tangential matrix for small
displacements, K nl is the tangential matrix for large displacements, and K's is
the geometric matrix. They can be expressed as

Ki1=/ &ID&LdV«' (60)
A\
Knt=/ (BRIDB1+ bLdBnI)dVO0, (61)
A\
Ks =/ GTtGdVO. (62)
VO
3.2. Evaluation of Strains and Stresses. After the calculation of Ad, the

total nodal displacements can be updated as

d=d+ Ad (63)

and the total strain can be calculated as

or by

A IBL+BNL+ 27BN |- (65)

Eventually, we determine the total strain as

Y=Y+ Ay. (66)

The evaluation of the stress depends on the material constitutive laws. In
hyperelastic materials, the total stress is directly calculated from the total strain:

Sj = Sij(Yij). (67)

A degenerate shell element is used [28-30, 32] with a first- and third-order
shear deformation theory [29, 31]. For further information, the reader should
consult the above references.
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4, Results and Discussion. Two numerical examples are considered, a
three-point bending beam and an inflating rubber membrane.
4.1. Beam under Flexure Loads. A rubber beam, a fiber-reinforced rubber

beam, and a sandwich beam with composite skins and a rubber core are
considered. In Fig. 1, the general dimensions and cross sections are considered.

Rubber Composite Sandwich

Fig. 1 Beam under flexural load.

In this paper, the following material properties are used: for rubber:
C1= 0.55 and C2= 0.138; for composite material: E1=E2= 10,000, v = 0.3,
and G12= Gi3 = Gog = 3900. Nonlinear evolution of the load vs central
displacement relation is presented in Fig. 2 for the case of a rubber beam.
Calculations with the account of the first- and third-order shear deformations
provide very similar results.

100 150 200
Central displacement

Fig. 2. Load vs central displacement for a rubber beam.
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In Fig. 3, the evolution for the case of a fiber-reinforced rubber beam is
presented. Some variation occurs in the nonlinear behavior between both
deformation theories. Figure 4 presents the evolution of the load vs displacement
for the case of a sandwich beam. Both theories present similar results.

Fig. 3. Load vs central displacement for a composite section beam.

Fig. 4. Load vs central displacement for a sandwich beam.

4.2, Inflating Membrane. This example refers to a simply supported rubber
plate under external growing pressure as seen in Fig. 5. The applied load is
non-conservative as the loaded element surfaces stretch and change their
orientation. The latter phenomenon involves large deformations and rotations and
presents a challenge to the present model. On a large part of the load path the
membrane action is predominant and the behavior of this plate in bending is
similar to that of an inflating membrane [11, 33-37]. Numerical solutions for the
governing differential equations were given by Adkins and Rivlin [35] and Yang
and Feng [36]. Finite element solutions were presented by Oden and Key [37],
Tang [38], and Mattiasson [11]. In this paper, a 13-element mesh was used as
illustrated in Fig. 5. Only a 22.5° sector was used due to symmetry in the material,
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tt Lttt

p

Rs190.5 mm
h =127 mm

C1=06205MPa
C2=Q06205MPa
P=GOLMPa

Fig. 5. Rubber plate (insufflating membrane).

1 2 w/R

Fig. 6. Load vs central displacement for an insufflating membrane.

loading and boundary conditions. The results are compared with those presented
in [11, 36, 38] and are in close agreement (Fig. 6). After a load factor of 17.3, the
process was stopped due to very slow convergence.

Conclusions. In this paper, rubber, rubber composite, and sandwich shells
were analyzed by a new finite element formulation that incorporates a single-field
formulation for the rubber material model. A layered formulation of a degenerate
shell element was used with first- and third-order shear deformation theories. A
biphase material model was used for fiber-reinforced rubber shells as a better
approach to homogenized shells. The nonlinear rubber material model considers a
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single-field formulation, where at each integration point the Lagrange multiplier
is eliminated. Geometric nonlinearities are accounted for. A beam and a plate
under bending loads were treated numerical experiments. Both present interesting
results and prove the accuracy of the model.

Peswome

HaBefeHO CKiIHYEHHOENEMEHTHHIA pO3B’A30K A1 KOMMNO3UTHUX 060/IOHOK i3 Kay-
UYKOBOK MaTpuuel. Po3rnagaloTbecsa TakoX 6araTollapoBi KOHCTPYKLiT 3 Kayuy-
KOBOK OCHOBO. [nsi ypaxyBaHHS HECTUCAMBOCTI Kay4yyKoBOT MaTpuLi i HEOAHO-
pPigHOCTI CTPYKTYpKu 6aratowapoBux 060/10HOK HEOBXigHO po3pO6GUTMN Ha OCHOBI
YMCNOBUX MeTOAiIB A06pe 06rpyHTOBaHY MOAeNb, WO A03BO/MTbL ONWCATW MOBe-
AIHKY YKasaHux 6yfiBenbHMX MmaTepianis. 3anponoHoBaHa MOAENb 3aCTOCOBY-
Banacb aBTOpaMy [0 BUPOLXKEHOro efeMeHTa 060NOHKU B pamMKax fedopma-
LilHWX Teopiil 3CyBYy MepLIOro i TpeTboro nopsagky. Mogenb 403BOMSE LOCTATHbO
TOYHO NPOrHO3yBaTU HeNiHiINHY noBeAiHKY 6araTowapoBMX 060MOHOK i3 TOH-
KAMUW npolapkamn 3 KOMMO3WTHOro MaTtepiany i Wwapamy Kayyyka, a Takox
KOMMO3UTHUX 060/I0OHOK i3 Kay4yKOBOK MaTpuLeto.
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