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YHusepcuteT 1. lNopto, MopTyranus

Mpepno>keHa Teopyist CABUrOBOM AedhopMauii TPETLEro MopsaKa s OMWCaHWS HaMps>KEHHO-
[echopMMPOBAHHOIO COCTOSHUS GETOHHBLIX 060/I04EK, aPMMPOBAHHBIX BHELLH/MMX KOMMO3MTHBLIMA
namMvHaTamMy. APMUPOBaHHbIE 6 TOHHbIE KOHCTPYKLMN - [NlaBHblE KOMMOHEH T B CTPOUTE/bHOM
oTpacin. Kopposusi cTabHbIX 6a/oK, MCMOMb3yeMbIX AN1S apMUPOBaHNS Kene300e TOHHbIX KOHCT-
PYKUMIA, SIBNSETCA OYeHb aKTyasbHON Npobriemold, KoTopas yCyrydnsieTcs 3a CYeT MopUcTocTu
6eToHa. B kauecTBe afekBaTHOIO peLLieHns MpoteMbl YPOHHEHUS 1 MOgMAIMKALWIN OCabIEHHbIX
KOHCTPYKUMIA MPaKTUKYeTCA UCMO/b30BaHME BHELLHMX KOMMO3MTHbIX SIAMMHATOB, KOTOpble 3a-
KPEnISKTCA Ha Hapy>KHbIX MOBEPXHOCTSX GETOHHLIX KOHCTPYKUMA. [echopmmpoBaH/ie Takoro
pOfa KOHCTPYKLMIA XapaKTepusyeTCs 3HAUMTENbHON HEJIMHEHOCTHHO. [1151 pa3paboTKW HervHel-
HbIX reoOMeTPUYECKUX MOJeneli 1 Modeneil MaTepuana WCroMb3yloTCA YUCIeHHble MeTOofdbl, B
YaCTHOCTY METOf KOHEUHbIX 3/1EMEHTOB. [i1s1 aHa/mM3a KOMMO3WTHBLIX aMUHATOB BCE Yalle
UCTOMB3YIOTCA CABWUIOBble AechopMaLim BbICOKOTO ropsigka. Mpeanaraemast Teopust sIBNsSiETCA
abTepHaTVBOA Teopun MepBOro Mopsifka, paHee Mpe/io>KeHHO deppeiipa ¢ coasTopamu.
Teopyisi onpo6oBaHa Ha 3neMeHTe 060MI0YKY, CTPYKTypa KOTOPOro MO3BO/SET BOCTPOM3BECTY
MOCMOMAHYI0 AMCKPETU3aLMIO lAMAHATHLIX MaTepuanos. [ MogenmpoBaHus aedhopMmypoBaHus
6eTOoHa NpM COKATUM UCMO/Mb30BA/ICh MOAX0Ab! WAEABHO MIAaCTUYECKOrO U Mac TUHECKV-YTIPOY-
HSIEMOro MoBefeHNA MaTepuana. PaccMOTpPeH ABOVCTBEHHbIA KOUTEpUiA TeUeHUs 1 paspyLLIEHNS
MaTepuasia C TOYKM 3peHUs HanpsKeHWA 1 aechopMaLinii, KOTOPbIA MPUMEHSETCA B CO4ETaHUM C
npeacTaB/eHVeM [epOpMALIVIOHHON KPMBOIA MW PacTS>XKEHWW B BUfE JIOMaHOW SIHAN C FOPU30H-
Ta/bHbIM Y4aCTKOM, COOTBETCTBYIOLLMM Havany MiacTUYecKoro TeyeHns. OpHOHanpaBieHHble
KOMMO3UTHbIE MOMOChI XapaKTepusytoTCs IMHEAHO-YMpyrM  (XPyrkuM) MoBefeHMEM. BbinonHeH
KOHEYHO-3/TEMEHTHBI pacyeT Hamnpsi>KeHHO-AehOPM1POBAHHOMO COCTOSHIS aPMMPOBaHHOM KOM-
MO THBLIMW MO/I0CaMV 6ETOHHOI Gariki, NMOABEPTHY TON TPEXTOUEYHOMY M3rnby. OnmcaHbl Habso-
[Jaemble 3thheKThl apMUPOBaHUS, pesybTaTbl MPUMEHEHS TeopuM TPeTLEro Mopsaka v faH
CPaBHUTE/bHbI aHANN3 YMPOUHEHUS! GETOHHOM KOHCTPYKLMM KOMMO3UTHBIMM M0/I0CaMM U CTavTb-

HOlA apMaTypoiA.

KntoueBble cnoBa: 6eToHHAs 060/10YKa, KOHEYHO-3/IEMEHTHbI aHanu3, apMupo-
BaHWe BONOKHWUTOM, KOMMO3UTHbIA mMaTepuan, KOMGUHUPOBAHHOE apMUpOBaHue,
TpexmepHas Teopus.
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Introduction. Reinforced concrete (RC) structures are very important in
civil construction industry.

For many years, the structural analysis of RC was based on empirical laws
and elasticity equations. Concrete is a complex material with cracking, tension
stiffening, plasticity, and nonlinear properties. Numerical methods such as the
finite element method are needed for such an analysis [1-3].

Corrosion of steel re-bars is a common problem due to the porosity of
concrete. The use of external composites (FRP) bonded to the faces of concrete
are today a good solution to retrofitting of degraded structures [4-6]. The need for
numerical methods is even greater than with conventional reinforced concrete.

The use of higher-order shear deformations is now common in the analysis
of composite laminates [7-10].

In this paper, it is intended to study the behavior of reinforced concrete
strengthened with thin unidirectional composite strips mainly on the tension side
by the use of the finite element method.

The nonlinear material model for concrete and for composite strips is applied
to a shell element. The geometrical and material nonlinear behavior is accounted
for [11-13]. Some results are discussed.

Compressive Behavior of Concrete. The nonlinear behavior of concrete is
inelastic. A perfect plastic and a strain-hardening plasticity approaches are used to
model the compressive behavior of concrete. A dual criterion for yielding and
crushing in terms of stresses and strains is considered, which is complemented by
a tension cut-off representation.

The Yield Condition. The yield condition for thick plates and shells
accounting for transverse shear effects is formulated in terms of the first two
stress invariants as

f (11,12)=[A3J2)+ all]l/2= a0, (1)

where a and are material parameters and a o is the effective stress obtained
from a uniaxial compression test. Relating this expression to Kupfer’s results
[14], the material parameters are

a =0.355a0 and ji = 1.355. 2)

In the perfectly plastic model, a o is taken as the ultimate stress f'c obtained
from a uniaxial compressive test. An elastic response is assumed up to when the
effective stress reaches f'c, after which a perfectly plastic response follows until
the limiting surface is reached. Figure 1 illustrates a one-dimensional representation
of both the perfectly plastic and the strain-hardening models [11, 12].

The Crushing Condition. The crushing condition is a strain-controlled
phenomenon. The lack of experimental information necessitates a direct
conversion of (1) into strains. Thus,

[y3(3J2) +al 1112 = £2, 3)

where 11 and J2 are strain invariants and £u is the ultimate total strain
extrapolated from the uniaxial test results.
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Stresses

Fig. 1 One-dimensional representation of the constitutive model of concrete.

Crushing or compressive type of fracture is assumed to occur when the
effective total strain reaches the limit value, which is usually taken as the
maximum compressive strain in a uniaxial compression test. Once crushing has
occurred, the concrete is assumed to lose all its characteristics of stiffness at the
point under consideration. Therefore, the corresponding elasticity matrix D is
taken as a null matrix and the vector of total stresses is reduced to zero.

Tensile Behavior of Concrete. The relative weakness of concrete in tension
and the resulting cracking is a fundamental factor affecting nonlinear behavior of
reinforced concrete plates and shells. It is assumed that when concrete is
subjected to tensile stress it behaves like an elastic-brittle material. The formation
of cracks is a brittle process and the concrete strength in the tension-loading
direction abruptly goes down to zero after such cracks have formed (Fig. 2).

Fig. 2. Behavior of concrete under traction, smeared crack model, and the corresponding material
axes for concrete cracked in one direction.

Smeared Crack Model. In our analysis, we are not interested in the tensile
strength of concrete, but in the influence of the cracked zones on the concrete
structural behavior. A simplified averaging procedure for finite element
representation is adopted based on smeared cracked concrete, which assumes that
cracks are distributed across the region of the finite element [11, 12].

In this model, cracked concrete is supposed to remain a continuum and the
material properties are then modified to account for the damage induced in the
material. After the first crack has occurred, the concrete becomes orthotropic with
the material axes oriented along the directions of cracking (Fig. 2).
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The response of concrete under tensile stresses is assumed to be linear-elastic
until the fracture surface is reached. This tensile type of fracture or cracking is
governed by the maximum tensile stress criterion (tension cut-off). Cracks are
assumed to form in planes perpendicular to the direction of the maximum tensile
stress, as soon as this stress reaches the specified concrete tensile strength f't. A
sudden and total release of the normal stress in the affected direction, or its
gradual relaxation according to a tension-stiffening diagram is adopted after
cracking has occurred. The elasticity modulus and Poisson’s ratio are reduced to
zero in the direction perpendicular to the cracked plane, and a reduced shear
modulus is employed [11, 12]. Before cracking, concrete is assumed to be an
isotropic material with the following stress-strain relationship:

E VE 0 0 0
0x 1-v2 1-v2 X
VE E
ay 0 0 0 y
> 1-v2 1-v2 4
rxy 0 o 6 o o YV )
b 0 0 0o ac o V¥
xyz 0 0 0 0 aGg 'V

Here x and y are the axes in the plane of the structure, E is the elasticity
modulus, v is Poisson’s ratio, G is the shear modulus, G = E/2(1+ v), and a is
the shear correction factor (a= 5/6). Taking 1 and 2 as the two principal stress
directions in the plane of the structure, the stress-strain relationship for concrete
cracked in the 1-direction (crack plane normal to 1-direction) is

01 0 0 0 0 0 «
02 o E 0 0 0 «?2
re - 0 0 G2 O 0 =y (%)
G13
r13 o 0 0 T
0 0 0 0 aG
- y 23

where Gc is the reduced shear modulus of cracked concrete [11, 12]. When the

tensile stress in the 2-direction reaches the value f't, the second cracked plane
perpendicular to the first one is assumed to form and the stress-strain relationship
for concrete cracked in two directions becomes

0 0 0 0 0
01 «1

0 0 0 0 0
02 «2

_ GC2
rz > 00 0 0y (6)
ri13 0 o0 0 GC3 0 y 13
o 0 o0 0 0 G2 Y&
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The cracked concrete is anisotropic and these relations must be transformed to the
reference axes, similarly to composite materials.

Behavior of Steel Re-Bars in Tension and Compression. Steel reinforcing
bars used in reinforced concrete structures are usually round with protrusions (ribs
or lugs). These protrusions are responsible for better bond characteristics between
the reinforcing bars and the surrounding concrete. Steel bars have elastoplastic
behavior defined by its yield strength with a typical elasticity modulus of 210 GPa.
A vyield plateau, whose extension depends on the class of steel, is followed by
strain-hardening behavior up to failure. In this model, the reinforcing bars are
modeled as steel layers of equivalent thickness. Each steel layer exhibits a
uniaxial response, having strength and stiffness characteristics in the bar direction
only. The elastoplastic behavior is treated incrementally as a one-dimensional
problem.

Behavior of Composite Strips in Tension and Compression. Composite
strips made usually from carbon/epoxy materials are bonded together at the
tension face of concrete, in order to improve the tension characteristics of
concrete. These strips are typically made from unidirectional composites with
unidirectional properties. They are considered as elastic-brittle materials, with no
yield strength, having only ultimate strength. When the stresses in these layers
reach a specified ultimate tensile strength of the composite material, the material
is assumed to lose all its stiffness and strength, as in a typical concrete layer. The
material characteristics are orthotropic and are defined as in Egs. (10)-(12).
Typical composites made from unidirectional epoxy/carbon materials have a
modulus of 180 GPa and ultimate stress of about 1500 MPa.

Shear-Deformation Theories. First Order Shear-Deformation Theories.
Yang, Norris, and Stavsky [9] and Stavsky [10] have developed a theory of
deformation based on the work of Mindlin [15] and Reissner [16] for isotropic
plates. The displacement field is obtained as

u(x,y,z)=u0(x,y)+ zdx(x,y),
*V(X,y,z)=VvOo(x,y)+ zdy(x,y), (7
w(x,y,z)= Wq(x,y),

where u, v,and w are the x, y,and z displacements. The u0, v0,and wo0 are
the midplane displacements, and 6x and 6y are the rotations of the normal.
Stress-strain relations can be expressed as

£X £8 k x
£y = fy +z Ky = £ + zk, (8)
< — i‘ﬁ H&H
— —
N WX+ 6X

9)

w wy+6y_
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where

£x u0x, £y vO0y, yxy vOx u0y,

/350 +1A

y e /\xy: f)le (10)

Y. X

are the membrane deformations and plane curvatures, respectively.
In each layer k of the laminate, the stress-strain relations are obtained as

all Cl c12 cB £n =
_ r 13 o o y13
02 T cl2 ¢c2 cB £ e (11)
e k C%H 55k B_
J 12 _k cl3 ¢ZB ¢33 g yl2_

where Cjj are elastic coefficients and {1, 2, 3} are the principal material
directions for each layer. This theory is simple but introduces a shear correction
coefficient [11, 13] that affects only the shear terms.

Higher Order Shear-Deformation Theories. The higher order shear-
deformation theories avoid the use of the shear correction factors by a better
representation of the “normal” warping. Various theories were proposed in the
literature [7-10]. The model proposed in this paper has the following
displacement field:

u=ulO+ z6+ 236 |, (12)

A
where 6 represents the higher order rotations.

In these theories, the transverse displacement is constant throughout the plate
or shell thickness. This theory has the advantage that no shear-correction factors
are needed.

In sandwich laminates, these theories present some difficulties. The layer-
wise theory proposed allows for a better deformation analysis in the laminate.

Finite Element Implementation. The theories presented so far were
implemented in a degenerated shell element [4-6, 17]. Two main coordinate
systems are used in the element [17]: the global Cartesian coordinate system
(x,y ,z),in relation to which the nodal coordinates and displacements are defined,
and the curvilinear coordinate system (£,],£), where the shape functions Nk are
expressed. The midsurface of the element is defined by the £ and ] coordinates.
In the Ahmad shell element, £ is a linear coordinate in the thickness direction and
is only approximately normal to the shell midsurface. Ahmad degenerated a
three-dimensional brick element to a curved shell element, which has nodes at the
midsurface [17]. In addition to the coordinate systems mentioned above, this
element defines two more sets as can be seen in Fig. 4. A nodal Cartesian
coordinates system (vi1k,v2k,v3k) is associated with each nodal point of the
element and has its origin at the midsurface. The unit vector v 3k constructed

from the nodal coordinates of the top, x kO, and bottom, x” , surfaces at the
node Kk, determines the ‘normal’ direction vsk, which is not necessarily

perpendicular to the reference surface. The unit vectors V1k (direction v1k) and
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V 2k (direction v2k) define the nodal rotations B 2k and B ~, respectively, of the

‘normal’” mentioned above. The local Cartesian coordinate system (x',y',z') is
used to define the local stresses and strains at the sampling points wherein they
must be calculated. The vector direction z' is taken to be orthogonal to the
surface %= const, the direction x' is defined similarly to that of V” and, finally,
y' is obtained by the cross product of z' and x'. This coordinate system varies
along the thickness of the element and it is useful to define the direction cosine

matrix Q which relates the transformations between the local and global
coordinate systems; this matrix is defined by

=Xy 7], (13)

where X', y', and z' are unit vectors along the directions x', y', and Z',
respectively.
The coordinates x of a point within the element are obtained as

x = [x,y,z]T=2 NK(£,J)[xmid + hk %2 V3k]. (14)
k=i

The displacements for the first-order shear deformation are obtained as

= 2 UkUmid + 2 Nk%y - Vik -V2k]{B1k1 (15)
k=1 k=1 2 IR 2k\

whereas for the third-order theory they are obtained as

k=l k=1

+
el MK (9)

for other layers. In (16), * and p?k represent the higher-order rotations. The

parameter n is the number of nodes per element, hk is the shell thickness at the
node Kk, i.e., the respective ‘normal’ length, umid and x mid are, respectively, the

displacements and the global coordinates at the midsurface, and Nk (£,”) are the
element shape functions.

Numerical Example. A single span beam tested by Bresler and Scordelis
[18] is selected for analysis. The beam is simply supported, subjected to a
concentrated load at midspan and has a shear span to effective depth ratio of
about 7. The type of failure experimentally observed for the beam was brittle
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fracture due to flexure-compression. The beam failed by crushing of the concrete
compression zone near midspan. This is a good example to compare the model
developed for compression concrete, namely, the perfect plastic and the hardening
plastic models. In the experiment, the beams were first loaded to about 30 percent
of the ultimate load in two or three increments and then the load was removed.
The load was reapplied in small increments until failure occurred. The available
experimental curves were obtained from the deflections recorded during the final
cycle of loading from zero to the ultimate value. In the analysis, the load is
applied incrementally in one cycle from zero to the ultimate.

The loading conditions and the span are illustrated in Fig. 3. The stirrups are
not considered in the analysis. Brittle fracture of concrete by crushing before
yielding of the steel is expected, therefore, the post-yield diagram of the main
reinforcement is not of great importance in this study.

Units :cm
LOAD P F E.Mesh
1 2 3 4
1
22.861 320.04 43.84, {6.50 , 87.50 , 127.50
a
BEAM A-3 Cross Section Layer System
, 30.734 .
5.0847 t, =0.0 84
Z-*4
65 T 9 o o t2=0.637
2 9 t, =0.637
b conc. layers steel layers

Fig. 3. A simply supported RC beam. Geometry, mesh, and layered structure.

Taking advantage of the symmetry, we analyzed only one half of the span.
Four finite elements are used to refine the mesh near the center, where larger
nonlinear effects are expected (Fig. 2). Selective integration is employed to obtain
a better representation of the material behavior particularly near the applied load.

Ten concrete layers of equal thickness and three smeared steel layers are
used to discretize the beam through the thickness. The smeared thickness of each
layer is specified in Fig. 2.

Midspan deflections versus total load are plotted in Fig. 4. The numerical
solutions performed with the present model, either by using the perfect plastic
(PP) or the hardening plastic (HP) approach for concrete in compression are
compared with the experimental curve. Excellent agreement is shown between the
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experimental and the hardening plastic results. The slight discrepancy for lower
load range is attributed to the previously mentioned unloading and reloading
experimental cycle. The slightly higher collapse load (2.6%) may be due to the
coarse thickness considered for the concrete top layer. One of the main steel
reinforcement layers (the bottom one) starts to yield at P = 470 kN, therefore, the
assumed steel post-yield diagram may have some influence on the ultimate load.
The results obtained with the perfectly plastic model show a stiffer response for
higher loads and a greater (nonconservative) collapse load.

Fig. 4. A simply supported RC beam. Comparison of experimental and numerical results.

The third-order shear-deformation approach seems to be efficient in the
analysis of such structures.

Figure 4 also presents a load-displacement curve for an RC beam with an
external 1 mm thick CFRP laminate in the tension side (bottom face). The overall
load-displacement behavior is much stiffer than for a RC beam without any
laminate reinforcement.

Conclusions. The material and geometrical nonlinearities for reinforced
concrete strengthened with fiber-reinforced plastics were investigated. The
material model for concrete was based on a dual approach for compressive and
tensile behavior, with degradation of properties due to cracking and crushing.
Steel reinforcements are considered as unidimensional elastoplastic solids, while
composite reinforcements are considered as elastobrittle solids. A third-order
approach for the reinforcement of concrete shells with external composite
laminates was presented. A perfect plastic and a strain-hardening plasticity
approach were used to model the compressive behavior of concrete. A dual
criterion for yielding and crushing in terms of stresses and strains was considered
with a tension cut-off representation. The material behavior of unidirectional
composites is linear elastic/brittle. The concrete allows for elastoplastic-brittle
behavior. A simply supported concrete beam reinforced with composite strips was
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analyzed. The effects of the reinforcement on concrete, comparison of composite
strengthening by steel re-bars, and the use of the third-order theory for their
description were discussed. A good agreement between the experimental and
numerical results was found for RC beams. When strengthened with CFRP sheets,
the behavior of the beam becomes stiffer as expected. The cracking by tension is
delayed to higher loads. The overall behavior is much more stiff. However, this
model does not take into account the influence of the adhesive layer, which may
change the load-displacement behavior.
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Peswome

3anponoHoBaHO Teopito 3CyBHOT geopMmalii TPeTbOro MOpPAAKY ANA OMNUCY Ha-
NpYyXeHOo-A4e(hOPMOBAHOI0 CTaHY apMOBaHWX 30BHIWHIMW KOMMO3UTHUMU nami-
HaTaMn 6eTOHHMX 06010HOK. ApMOBaHi 6eTOHHI KOHCTPYKLIT - FOMOBHI KOMMNO-
HeHTW B ranysi 6ypgisHuuTea. Kopo3sifd cTanbHUX 6anokK, L0 BUKOPUCTOBYHThCA
ANA apMyBaHHA 3ani306eTOHHMX KOHCTPYKLiN, - Ay)Xe aKTyanbHa npobnema, fika
MOCUNIDETLCA 328 PaxyHOK MOPUCTOCTI 6eTOoHY. AAeKBAaTHUM BUPILIEHHAM
npo6aeMmun 3MiLHeHHs | MogudikaLii ocnabneHnx KOHCTPYKL i € BUKOPUCTaHHA
30BHILIHIX KOMNO3UTHUX NamiHaTiB, KOTPi 3aKpiniAlOTLCA Ha 30BHIWHIX NOBepX-
HAX GETOHHUX KOHCTPYKUiiA. [ehopMyBaHHSA TaKOro poay KOHCTPYKLIiW xapakTte-
PU3YETLCA 3HAYHOK HENiHIAHICTIO. [N po3p06KU HEeNiHIAHUX reoMeTpUYHUX
mMojeneit Ta mMofeneil matepiany BUKOPUCTOBYHOTHLCA YMCNOBI MeTOAM, 30Kpema
MeTOof CKiIHYeHHWX eneMeHTiB. [na aHanizy KOMNO3UTHUX faMiHaTiB 4acTO BUKO-
pUCTOBYIOTb 3CYBHI [fetopmauii BUCOKOro nopsaky. 3anponoHoBaHa Teopia €
anbTepHaTMBOK Teopil mepworo nopaaky, Ky 3anponoHyBas paHiwe deppeipa
3i cnisaBTopamu. Teopisa onpo6oBaHa Npu po3paxyHKY efemMeHTa 060/I0HKM,
CTPYKTypa fKOro [03BO/S€E BiATBOPUTM NOLIAPOBY AMCKPeTU3aLito flaMiHATHUX
MaTepianis. Ana mopfentoBaHHA peopmyBaHHS OGeTOHY Npu CTUCKY BUKOPUC-
TOByBanucs NigxoAan ifeanbHO NAAcTUYHOI Ta NAACTUYHO-3MIiLHKOBAHOI MoBe-
[LiHKN MaTepiany. Po3rngaHyTo ABOICTUIA KpUTepiil TeKy4yocTi i pyilHyBaHHA MaTe-
piany 3 TOYKM 30py HampyXeHb Ta gedopmauiil, AKWA BWKOPUCTOBYETHCHA B
noefHaHHi 3 npefcTaB/feHHAM fgedopmayiiniHoiT KpuBOT Npu po3TA3i y BUrAagi
NIOMaHOT NiHiT 3 rOpM30HTaNbHOK AINAHKOM, L0 BigNOBifae NoYaTKy NnacTUYHOT
TeKy4yocTi. OpHocnpaAMoBaHi KOMMO3UTHI CMYru XapakTepusylTbcsA NiHiAHO-
NPY>XHOK (KPWXKOIO) NoBeAiHKOW. BUKOHAHO CKiHYEHHOENEMEHTHUIA po3paxy-
HOK Hanpy>XeHo-AeOpPMOBaHOro CTaHy apMOBaHOI KOMMO3UTHUMU cMyramu be-
TOHHOT 6anku, AKy nighasann TPUTOUKOBOMY 3rMHy. OnucaHo CROCTepexyBaHi
e(heKTU apMyBaHHA, pe3ynbTaTW BUKOPUCTaHHSA Teopil TpeTboro nNopsaky i npo-
BefleHO MOpPIBHANbHUIA aHani3 3MiLLHEHHS GETOHHOT KOHCTPYKLiT KOMMNO3UTHUMMU
CMyramu i CTafibHOK apMaTypoto.

1. 0. C. Zienkiewicz, The Finite Element Method, McGraw-Hill (1991).

2. M. A. Crisfield, Nonlinear Finite Element Analysis ofSolids and Structures,
John Wiley & Sons (1991).

46 ISSN 0556-171X. Mpo6nemu npoyHocTw, 2003, No 2



10.

11.

12.

13.

14.

15.

16.

17.

18.

On the Shear-Deformation Theories

K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice
Hall, Englewood Cliffs (1982).

U. Meyer and A. Winistorfer, “Retrofitting of structures through external
bonding of CFRP sheets,” in: Proc. 2nd Int. RILEM Symp. FRPRCS-2,
E&FN Spon, London (1995).

L. Juvandes, J. A. Figueiras, and A. T. Marques, “Performance of concrete
beams strengthened with CFRP laminates,” in: H. Saadatmanesh and M. R.
Eshani (Eds.), Fiber Composites in Infrastructure (Proc. Second Inter. Conf.
on Composites in Infrastructure), Tucson (1998).

. A. Nanni, F. Focacci, and C. A. Cobb, “Proposed procedure for the design of

RC flexural members strengthened with FRP sheets,” in: H. Saadatmanesh
and M. R. Eshani (Eds.), Fiber Composites in Infrastructure (Proc. Second
Inter. Conf. on Composites in Infrastructure), Tucson (1998).

J. N. Reddy, “A simple higher-order theory for laminated composite plates,”
J. Appl. Mech., 51, 745-751 (1984).

. T. Kant and D. R. J. Owen, “A refined higher-order C° plate bending

element,” Comp. Struct., 15, 177-183 (1982).

P. C. Yang, C. H. Norris, and Y. Stavsky, “Elastic wave propagation in
heterogeneous plates,” Int. J. Sol. Struct., 2, 665-684 (1966).

Y. Stavsky, “Bending and stretching of laminated aerolotropic elastic
plates,” J. Eng. Mech. Div., 87, 31-56 (1961).

A. J. M. Ferreira, Numerical Models for the Analysis of Composite and
Sandwich Laminated Structures [in Portuguese], Ph. D. Thesis, Faculdade de
Engenharia da Universidade do Porto, Porto (1997).

D. R. J. Owen and J. A. Figueiras, “Ultimate load analysis of reinforced
concrete plates and shells,” in: E Hinton and D. R. J. Owen (Eds.), Finite
Element Software for Plates and Shells, Pineridge Press (1984).

J. A. Figueiras, Ultimate Load Analysis of Anisotropic and Reinforced
Concrete Plates and Shells, Ph. D. Thesis, University College of Swansea
(1983).

H. Kupfler, K. H. Hilsdorf, and H. Rush, “Behavior of concrete under biaxial
stresses,” in: Proc. Amer. Concrete Institute, 66, No. 8, 656-666 (1969).
R. D. Mindlin, “Influence of rotary inertia and shear on flexural motions of
isotropic elastic plates,” J. Appl. Mech., 18 (1), Trans. ASME, 73, 31-38
(1951).

E. Reissner, “The effects of transverse shear deformation on the bending of
elastic-plates,” J. Appl. Mech., 12 (2), Trans. ASME, 67, 69-77 (1945).

S. Ahmad, B. Irons, B. M. Zienkiewicz, and O. C. Zienkiewicz, “Analysis of
thick and thin shell structures by curved finite elements,” Int. J. Num. Meth.
Eng., 2, 419-451 (1970).

R. Bresler and A. C. Scordelis, “Shear strength of reinforced concrete
beams,” ACI Journal, Proc., 60, No. 1, 51-73 (1963).

Received 05. 09. 2002

ISSN 0556-171X. npo6n.eubi npounocmu, 2003, Ne 2 47



