УДК 539.3

Визначення напруженого стану та крайових ефектів у тришаровому циліндрі

Ю. В. Коханенко, С. А. Цірук, Д. П. Латкін

Інститут механіки ім. С. П. Тимошенка НАН України, Київ, Україна

Розглянуто осесиметричну задачу про визначення зон концентрації напружень у тришаровому круговому циліндрі з ізотропними шарами. Циліндр знаходиться під дією рівномірного осьового навантаження. Наближений розв'язок задачі лінійної теорії пружності отримано методом сіток. Наведено приклад розв'язку і проаналізовано результати.

Ключові слова: тришаровий циліндр, напружений стан, крайові ефекти, метод сіток, базова схема.

Постановка задачі. Розглядається тришаровий круговий циліндр з ізотропними лінійно-пружними шарами. Зовнішній і внутрішній шари мають однакові механічні та геометричні характеристики. На циліндр діє рівномірне поверхневе навантаження $\mathbf{P}_z = \mathbf{P}_3 = (P_{31}, P_{33}) = (0, -P), P > 0$, яке забезпечує осесиметричний напружено-деформований стан у тілі конструкції. Наявність геометричної та силової симетрії дозволяє задачу розглядати для верхньої половини циліндра у площині rOz. Циліндр (рис. 1) займає область $\overline{\Omega} = \sum_{q=1}^{3} \overline{\Omega}^q$, $\overline{\Omega}^q = \{R_{q-1} \le r \le R_q \land 0 \le z \le Z\}$. Довжина циліндра Z

вибирається так, що крайові ефекти не досягають його серединної площини z = 0 (рис. 1). Позначимо через E^q , v^q технічні сталі q-ї компоненти композита, q = 1, 2, 3. При цьому значення q = 1 і 3 відносяться відповідно до внутрішнього і зовнішнього шарів, q = 2 – до середнього шару циліндра (рис. 1). Індекс q змінюється від 1 до 3, інші індекси приймають значення 1; 3, якщо не обговорюється протилежне. Виконується загальноприйняте правило підсумовування індексів.

Крайові ефекти у тілі циліндра зумовлені різницею механічних характеристик його компонент і виникають у поверхневих контактних точках $\mathbf{x} = (R_1, Z)$ та $\mathbf{x} = (R_2, Z)$. При $z \to 0$ крайові ефекти зникають (рис. 1, δ). Через $\mathbf{x} = (r, z)$ позначимо радіус-вектор точки в області $\overline{\Omega}$.

Розв'язок задачі визначення крайових ефектів складається з двох етапів [1]: розв'язок задачі лінійної теорії пружності кусково-однорідного середовища і оцінка зони концентрації напружень (зони крайових ефектів) у відповідності з вибраним критерієм.

Сформулюсмо задачу теорії пружності. В області $\overline{\Omega}$ відшукуються векторні функції $\mathbf{u}^q = (u_1^q, u_3^q)$, які задовольняють рівнянням рівноваги:

$$\frac{\partial (r\sigma_{11})^{q}}{\partial r} + \frac{\partial \sigma_{31}^{q}}{\partial z} - \sigma_{22}^{q} = 0;$$
(1a)

© Ю. В. КОХАНЕНКО, С. А. ЦІРУК, Д. П. ЛАТКІН, 2002 12 ISSN 0556-171Х. Проблемы прочности, 2002, № 6 Визначення напруженого стану та крайових ефектів ...

Рис. 1. Тіло циліндра (а) і його розрахункова схема (б).

$$\frac{\partial (r\sigma_{13})^{q}}{\partial r} + \frac{\partial \sigma_{33}^{q}}{\partial z} + \sigma_{33}^{q} = 0, \quad \mathbf{x} \in \overline{\Omega}^{q}, \tag{16}$$

граничним умовам:

$$\begin{cases} \sigma_{11}^{1} = 0 \land \sigma_{13}^{1} = 0, & r = R_{0} \land 0 \le z \le Z; \\ \sigma_{11}^{3} = 0 \land \sigma_{13}^{3} = 0, & r = R_{3} \land 0 \le z \le Z; \\ \sigma_{31}^{q} = 0 \land \sigma_{33}^{q} = -P, & R_{0} \le r \le R_{3} \land z = Z; \\ \sigma_{31}^{q} = 0, & R_{0} \le r \le R_{3} \land z = 0, \end{cases}$$

$$(2)$$

умовам ідеального контакту:

$$\mathbf{u}^{j+1} = \mathbf{u}^{j} \wedge \sigma_{1i}^{j+1} = \sigma_{1i}^{j}; \quad r = R_{j} \wedge 0 \le z \le Z, \quad j = 1, 2, \quad i = 1, 3.$$
(3)

Закон Гука для q-ї компоненти має наступний вигляд:

$$\sigma_{ii}^{q} = A_{ik}^{q} \varepsilon_{kk}^{q}; \quad \sigma_{12}^{q} = 0; \quad \sigma_{23}^{q} = 0; \quad \sigma_{31}^{q} = 2G_{31}^{q} \varepsilon_{31}^{q} \quad (i, k = \overline{1, 3});$$

$$\varepsilon_{11}^{q} = \frac{\partial u^{q}}{\partial r}; \quad \varepsilon_{22}^{q} = \frac{u^{q}}{r}; \quad \varepsilon_{33}^{q} = \frac{\partial u^{q}}{\partial z}; \quad \varepsilon_{13}^{q} = \frac{1}{2} \left(\frac{\partial u^{q}}{\partial z} + \frac{\partial w^{q}}{\partial r} \right); \quad (4)$$

$$\varepsilon_{12}^{q} = 0; \quad \varepsilon_{23}^{q} = 0.$$

Модулі пружності A_{ij}^q визначаються через технічні сталі з виразів

$$A_{ii}^{q} = \frac{E^{q}(1-\nu^{q})}{(1+\nu^{q})(1-2\nu^{q})}; \quad A_{12}^{q} = \frac{E^{q}\nu^{q}}{(1+\nu^{q})(1-2\nu^{q})}; \quad G^{q} = \frac{E^{q}}{2(1+\nu^{q})}.$$
 (5)

Далі розглядається питання про знаходження величин протяжності крайових ефектів. У даному випадку протяжність крайових ефектів досліджується у напрямку Oz дії поверхневої сили. Позначимо через $d_{ij}^q(Z_l)$ (далі d_{ij}^q) протяжність крайового ефекту для напруження σ_{ij}^q при фіксованому значенні $r = r_l = \text{const}, l = 1, 2, ...$ У відповідності з першим критерієм [1] величина d_{ij}^q визначається з рівності (рис. 1, δ)

$$d_{ij}^{q} = Z - Z_l, \tag{6}$$

де Z_l – точки, в яких напруження σ_{ij}^q відрізняються по модулю на ρ відсотків від усталеного напруження $P_{33}^q = -P^q$, $P^q = \text{const}^q > 0$, тобто точки, в яких виконуються рівності

$$\sigma_{33}^{q} = P^{q}(1+0,01\rho); \quad \sigma_{11}^{q} = \sigma_{22}^{q} = \sigma_{13}^{q} = P^{q}0,01\rho.$$
(7)

Напруження P^q в (7) визначається, після розв'язку задачі (1)–(5), за формулами (4), (5).

Метод розв'язку. До наближеного розв'язку задачі (1)–(5) застосовується сітковий підхід. При цьому дискретні задачі будуються з використанням концепції базової схеми [1, 3, 4]. Сіткові рівняння розв'язуються методом Холецького та спряжених градієнтів [2]. Реалізована процедура оптимізації обчислень, яка базується на застосуванні динамічної різницевої сітки і комбінованому використанні вказаних методів розв'язку дискретних задач.

Приклад розрахунку. Розглядається тришаровий круговий циліндр товщиною $t = R_3 - R_0 = 0.8$ з наступними технічними сталими шарів: $E^1 = E^3 = 2500$, $\nu^1 = \nu^3 = 0.25$ (внутрішній і зовнішній шари); $E^2 = 280$, $\nu^2 = 0.4$ (середній шар). Геометричні характеристики шарів: $R_0 = 2$; $t_1 = R_1 - R_0 = R_3 - R_2 = 0.2$; $t_2 = R_2 - R_1 = 0.4$; Z = 10 (рис. 1). Модулі пружності подано в ГПа, лінійні розміри – в см, величина Z отримана за результатами обчислювального експерименту. Осьове навантаження P = -1.0.

У результаті розв'язку задачі (1)–(5) отримано наступні значення усталених напружень:

$$\sigma_{33}^1 = -1,79; \qquad \sigma_{33}^2 = -0,22; \qquad \sigma_{33}^3 = -1,77.$$
 (8)

Рис. 2. Графіки напружень $\sigma_{33}(r) - a$, $\sigma_{11}(r) - b$ і $\sigma_{13}(r) - b$.

На рис. 2,*а* наведено графіки залежності напружень $\sigma_{33}(r)$ для $z \in \{Z_1, Z_2, Z_3\} \equiv \{9, 8; 9, 4; 1, 2\}$. При цьому крива l (l = 1, 2, 3) відповідає значенню $z = Z_l$. Для z = 1, 2 (на рис. 2,*a* крива 3) має місце кусковооднорідний незбурений стан, і напруження σ_{33}^q визначаються з (8). На контактних відрізках відмічається розрив напружень, при цьому величини стрибків $[\sigma_{33}] \in \{1,98; 1,69; 1,58\}$ між внутрішнім і середнім шаром та $[\sigma_{33}] \in \{1,91; 1,64; 1,56\}$ між середнім і зовнішнім відповідають значенням $z \in \{9,8; 9,4; 1,2\}$. Для $z = Z_1 \land z = Z_2$ (на рис. 2,*a* криві 1, 2) спостерігається неоднорідний (збурений) напружений стан. Максимальні значення модулів

напружень мають місце в контактних точках $r = 2,2 \wedge r = 2,6$, мінімальні – в точках $r = 2,0 \wedge r = 2,8$ внутрішньої і зовнішньої поверхонь. При цьому $\max \left| \sigma_{33}^{q} \right| \approx 2,30$, $\min \left| \sigma_{33}^{q} \right| \approx 0,69$ при $z = Z_1$ (рис. 2,*a*) і $\max \left| \sigma_{33}^{q} \right| \approx 1,870$, $\min \left| \sigma_{33}^{q} \right| \approx 1,64$ при $z = Z_2$. У зовнішньому і внутрішньому шарах графіки напружень σ_{33}^{q} представляють собою прямі лінії. У середньому шарі для $z = Z_1$ і $z = Z_2$ графіки функцій σ_{33}^{q} нагадують графіки парабол. Максимальні за модулем значення мають місце посередині шару (r = 2,4), мінімальні – в точках контакту із зовнішнім і внутрішнім шарами ($r = 2,2 \wedge r = 2,6$). При цьому екстремуми мають такі значення: $\max \left| \sigma_{33}^{2} \right| \approx 0,68$, $\min \left| \sigma_{33}^{2} \right| \approx 0,32$ при $z = Z_1$ і $\max \left| \sigma_{33}^{2} \right| \approx 0,28$, $\min \sigma_{33}^{2} \right| \approx 0,17$ при $z = Z_2$.

На рис. 2,6,6 наведено графіки залежності напружень $\sigma_{1i}(r)$ для $z \in \{Z_1, Z_2, Z_3\} = \{9,8; 9,4; 9,0\}$. Крива l_i відповідає значенню $z = Z_i$ (i=1, 2, 3). На рис. 2,6 представлено епюри напружень σ_{11} . Видно, що кривій l відповідає величина $\sigma_{11} \leq 0$, а кривим 2, $3 - \sigma_{11} \geq 0$. У внутрішньому і зовнішньому шарах, тобто для $2,0 \leq r \leq 2,2 \land 2,6 \leq r \leq 2,8$, функція σ_{11} представляє собою відрізки прямих і змінюється від значень $\sigma_{11} = 0$ в поверхневих точках $r = 2,0 \land r = 2,8$ до $\sigma_{11} \approx -0,1$ в контактних точках $r = 2,2 \land r = 2,6$. Кривим 2, 3 відповідає додатня функція σ_{11} , яка у середині циліндра (на лінії r = 2,4) досягає максимальних значень $\sigma_{11}^2 \in \{0,1;0,01\}$ для $z \in \{9,4;9,0\}$ і нульових значень в точках $r = 2,0 \land r = 2,8$ внутрішньої і зовнішньої поверхонь циліндра. Із рис. 2,6,6 видно, що епюри напружень σ_{ii} симетричні відносно прямої r = 2,4.

Рис. 2,*в* ілюструє графіки функцій $\sigma_{13}(r)$ для $z = Z_l$, l = 1, 3. Видно, що всі епюри – антисиметричні відносно прямої r = 2, 4, тобто $\sigma_{13}(r - 2, 4) = -\sigma_{13}(2, 4 - r)$. Максимальні за модулем значення мають місце в контактних точках $r = 2, 2 \wedge r = 2, 6$, мінімальні – в точках поверхонь $r = 2, 0 \wedge r = 2, 8$ і в середніх точках циліндра r = 2, 4. При цьому на кривих 1, 2, 3 відмічаються максимальні значення тах $\sigma_{13} \in \{2, 30; 0, 07; 0, 01\}$ при $z \in \{9, 8; 9, 4; 9, 0\}$.

Графіки залежності протяжності крайових ефектів d_{ij}^q у напрямку дії поверхневої сили від радіуса r наведено на рис. 3. Величини d_{ij}^q визначаються за формулами (6), (7) при $\rho = 5$. Криві 1, 2, 3 відповідають функціям d_{33}^q , d_{11}^q , d_{13}^q . Видно, що величини d_{ij}^q мають розриви на лініях контакту. При цьому у середньому шарі протяжність крайових ефектів більша, ніж у внутрішньому і зовнішньому шарах. Функція d_{33}^q у внутрішньому і зовнішньому шарах добре апроксимується прямими лініями і приймає значення max $d_{33} \approx 1,0 \wedge \min d_{33} \approx 0,6$. У середньому шарі функція $d_{33}^2 \approx 0,6$ у точці r = 2,4, min $d_{33}^2 \approx 0,35$ у контактних точках $r = 2,2 \wedge r = 2,6$. Функція d_{11}^q (на рис. 3 крива 2), яка відповідає напруженню σ_{11}^q , у внутрішньому і зовнішньому шарах добре апроксимується кривими, що є частинами однієї пара-

Рис. 3. Графік протяжності крайових ефектів d_{ti}^{q} .

боли. Екстремальні значення d_{11}^q у внутрішньому і зовнішньому шарах: $\max d_{11}^q \approx 0.25$ у контактних точках $r = 2.2 \wedge r = 2.6$, $\min d_{11}^q = 0$ у точках $r = 2.0 \wedge r = 2.8$ поверхонь циліндра. У середньому шарі $d_{11}^2 \approx \text{const} = 1.0$. Функція d_{13}^q (на рис. 3 крива 3) відповідає напруженню σ_{13}^q . Видно, що дана функція якісно поводить себе так, як і функція d_{11}^q . Максимальне значення $\max d_{13}^2 \approx \text{const} = 0.8$. Найбільшу різницю величини протяжності крайового ефекту має функція d_{11} , яка характеризує напруження σ_{11} . У цьому випадку $[d_{11}] \approx 0.8$. Мінімальне значення скачка має функція d_{33} , для якої $[d_{33}] \approx 0.25$. Для функції d_{13} величина $[d_{13}] \approx 0.3$.

Висновки

1. Розглянуто осесиметричну задачу про визначення напруженого стану і протяжності крайових ефектів у тришаровому двокомпонентному циліндрі з ізотропними лінійно-пружними шарами. Протяжність крайових ефектів визначається у напрямку *Oz* дії поверхневої сили. Наближений розв'язок знаходиться методом сіток.

2. Наведено приклад розрахунку реальної конструкції.

3. Отримано наступні результати для п'ятивідсоткової похибки ($\rho = 5$): величина протяжності крайових ефектів не перевищує 1,5 товщини циліндра, $d_{ij} \le 1,5t$; максимальні значення стискових напружень досягаються в околі поверхневих контактних точок: $\max |\sigma_{11}| = 0,21 \,\Gamma\Pi a, \, \max |\sigma_{33}| = 2,3 \,\Gamma\Pi a;$ $\max |\sigma_{13}| = 0,65 \,\Gamma\Pi a;$ на контактних лініях для напружень σ_{33} мають місце розриви. Максимальне значення розриву дорівнює величині $|\sigma_{33}^1 - \sigma_{33}^2| =$ = 1,45 і досягається у точці x = 0,98.

Резюме

Рассмотрена осесимметричная задача определения зон концентрации напряжений в трехслойном круговом цилиндре с изотропными слоями. Цилиндр находится под действием равномерного осевого нагружения. Приближенное решение задачи теории упругости получено методом сеток. Приведен пример решения и выполнен анализ результатов.

- 1. *Механика* композитов: В 12 т. Под ред. А. Н. Гузя. Т. 1. Статика материалов. Киев: Наук. думка, 1993. 456 с.
- 2. Бахвалов Н. С., Жидков Н. П. Численные методы. М.: Наука, 1987. 598 с.
- 3. *Bystrov V. M.* Analysis of the edge effects in laminated materials on the basis of a representative element // Int. Appl. Mech. 2000. **36**, No. 3. P. 826 855.
- Kokhanenko Yu. V. Discrete models of problems in the elastic theory of composites in circular cylindrical coordinates. Pt. 1 // Ibid. No. 8. P. 1067 1076.

Поступила 30. 10. 2001