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Выполнены экспериментальное исследование и численное моделирование влияния микро­
скопических пор на поведение вязкого материала при деформировании с учетом истории 
нагружения. Объектом исследования служил композитный материал на основе полиэстер- 
ной резины с включениями из бисера. В процессе формовки указанных компонентов в 
материале образуются поры из-за вязкости резины. Для оценки эффекта пор использовали 
экспериментальную технологию испытаний на растяжение. В рамках микромеханического 
подхода получены основные уравнения пороупругопластичности. Проведено обобщение мо­
дели материала Гурсона на исследуемый композитный материал. Результаты расчетов 
сопоставлены с экспериментальными данными.

Introduction. The mechanical behavior of multiphase materials is related 
not only to the properties of various components but also to the interfacial 
adhesion between those constituents.

Generally, conventional composite materials contain pores introduced either 
as by-products of the thermomechanical process or intentionally to control 
microstructural features. During deformation, the inclusions may be debonded 
from the matrix including the new pores. Consequently, those nucleating pores 
grow by the plastic deformation.

There is considerable interest in the development of experimental [1] and 
analytical [2] methods for the characterization of the pore nucleation and growth 
process.
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The best known experimental technique is tensile dilatometry (recently 
reviewed by Meddad et al. [3]). In this method, the volume change in the material 
is measured during the mechanical loading. Meddad et al. [3], who work with 
bead-filled plastic, operate with a section of the tensile stress-strain curve and also 
report that when tensile data are plotted using the compliance versus strain 
presentation, the various stages of the stress-strain curve are easily distinguished.

Analytically, there are significant developments of pore nucleation and 
growth process; we list those developed by Gurson [4, 5] on the ductile solid 
material containing pores. Our work parallels that of Chu and Needleman [6], 
who analyzed numerically the effects of pore nucleation in the biaxially stretched 
sheets.

In this work, we present the extension of the famous Gurson model [4, 5] to 
the porous composite material. The introduction of the pore pressure and the 
current porosity to that model allows to describe the material behavior. Based on 
the Bridgman [7] approach, we have also developed a new model of the 
nucleation porosity.

The theory of isotropic poroelastopasticity is introduced in section 1. The 
Hooke’s relations and micromechanical constitutive constants are briefly listed in 
order to facilitate the engineering applications. A detailed description of the 
poroelastic theory was introduced by Biot [8]. An extended review of the 
development of the isotropic theory can be found in Detournay and Cheng [9]. 
Considering the same formality of continuous media, Coussy [10] presented the 
mechanical behavior of porous media according to the micromechanical analysis.

In section 2, a brief description of the experimental method is given. Using 
the dilatometry theory, the terminology used and the technique for obtaining the 
experimental data are based on [11]. In glass bead-filled unsatured polyester (UP), 
the global behavior is nonlinear. This behavior is characterized by the stress and 
pore pressure methods. The interfacial debonding will be suggested by the current 
porosity. The porous material model that has been developed by Gurson and the 
applications of the Euler integration to that model are also given in section 3. A 
comparison of the numerical results with those obtained from the experimental 
study close this paper.

1. Poroelastoplastic Constitutive Relations. Let us consider a geometrical 
domain Q constituted by a fluid phase (pores) and solid (matrix) one, having in 
its initial configuration, the voluminal fraction p  o and (1 — p  o ), respectively. In 
the case of poroelastoplastic configuration, we make an elementary dump defined 
by do  increments; we, respectively, measure the reversible (dee , d t e) and 

irreversible (dep , d t p ) increments of strain and the variation of fluid content, 
such that

where de and dt, are, respectively, a differential change in the total strain and the 
total variation of fluid content.

de = de e + de p , (1)

d t=  d t e + d t p , (2)
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In the framework of the hypothesis of infinitesimal transformations and for 
the case of linear poroelasticity, the changes in the stress o  and pore pressure p, 
which represents the internal forces in the material, are defined in the following 
relations:

0  ij ~  C ijkle k l, (3)

p  = M (Ç e - a e  ekk), (4)

where Cjki is the modulus tensor

Cjki = { K j -  3 Gj ^ j ô kl + 2 G j ô ikÔj i . (5)

The superscript y  = u (resp. y  = d) denotes undrained (resp. drained) quantities. 
The undrained modulus tensor C j ki satisfies the following relation:

j  = Cfm  + « 2 M I j (6)

where Igki is a fourth order identity tensor, a  is the Biot’s coefficient, and M  is 
a modulus associated with the combined fluid/solid compressibility.

a  = \-
K r

K ,
and M  = K r

K r

K ■Ф\
m j

K

K

- i

(7)

For the isotropic case, the flow function includes not only the first and the 
second invariants of the stress tensor but also pore pressure and state variables. 
This flow function is illustrated by the following formula:

F ( a  h  , a  q , p , H  a ) = 0, (8)

where H a (a  = 1,2, ..., n) is a set of values. The function F  is defined whenever:
F  < 0 the response is purely poroelastic and F  = 0 which is the consistence 
condition represent the current yield surface; o H and a  , which are, 
respectively, the hydrostatic and the equivalent stress, are defined by the 
following relations:

a H
1

= 3 a I
and a = л / д а ss , (9)

where I  is the second order identity tensor and s is the stress deviator.
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With the above notation, the stress tensor can be written as

2
O — OH I  +--- OqU. (10)

The flow rules are written as

dep = dX
1 dg  , 1 dg N
----- n + ---------1
dO q 3 dO h

and d(bp = dX\ —  
\à p ,

(11)

where dX is a positive potential scalar, d ÿ p is a differential change in the plastic 

porosity, and g  = g (o H , o  q , p , H a ) is the yield potential. The first flow rule 

gives:
1 pde p = 3 de H I  + de P n , (12)

where

'  dg X
de H = dX\

y do
dep = dX

/ a  N dg

H \ dO q )
and n = ------

2 O q

in which de qP and de H are related by the ‘dilatancy’ relation [10]

de H

~dep
(13)

where d is the dilatational factor.
Using Eqs. (1) and (2), relations (3) and (4) can be incrementally rewritten as

o  t+dt = C ̂  e £t+dt = C ̂  ( e e + de e ) = o  e -  C  ̂  de p , (14)

p t+dt — M £ f + % e -  a (eH t + d eH )]— p e -  M [% p -  adeH  ], (15)

where

o  f — C Y (e f + de) (16)

and

p e — M  [£f  + d t - a (  e Ht + de h  )], (17)

where t is the time at the start of the increment and t + dt is the time at the end 
of the increment.
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Using the Eqs. (5) and (12), we can rewrite the Eqs. (14) and (15) as

a t+dt = a e  -  K y d£H 1 -  2Gy d£Pn , (18)

Pt+dt = p e -  M (d ^ P - ad£h  ). (19)

Finally, the poroplasticity model is achieved by describing the evolution of 
the state variables

d H a = h a (d£ p , dip p , a , p , H P ) (20)

as far as the rate independent materials h a remain homogenous of degree one in 

d£p and dp  p .
2. Application.
2.1. Experim ental. Material. The material used in this study is constituted 

by the glass beads (type E) incorporated in the polyester (UP) resin. The average 
bead diameter is about 350 ^m . During the moulding of these constituents, the 
pores remain in the composite because of the resin viscosity. The bead volume 
fraction f  and the initial porosity f  o are obtained by the statistical method 
which is described in [11]. Using an Versamet-2 optical microscope, with 
magnification X1600, the material was visualized (see Fig. 1).

Fig. 1. Microscopic section of the material (resin in clear, beads in white, pores in black).

Technical Test. In order to determine the experimental data, we adopted the 
tensile test technique. This method is specified in [11]. The values of the 
mechanical characteristics are obtained in the undrained test, in which the 
variation of the fluid content is zero (£ = 0). A tensile test machine with the 
cross-head speed of 1 mm/mn was used. The strain data is collected by using two 
tensometers: axial tensometer and transverse tensometer (gauge length was 
10 mm). The strains £ and the stresses a  were simultaneously recorded.

The stress a  versus strain £ curves for various initial porosity p  0 are 
shown in Fig. 2. It shows that the stress decreases with the porosity content. The 
behavior of these materials is nonlinear. The most plausible reason on this

ISSN 0556-171X. npoôëeubi npounocmu, 2002, N2 5 21
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nonlinearity is the debonding process. The effect of treatment of the glass beads 
interface appears negligible. It is difficult to separate the contribution of 
debonding and the behavior of the matrix because almost all the glass beads have 
became debonded from the matrix.

o ,
7.0

6.0

5.0

4.0

3.0

2.0

1.0

o a.i a.2 as a4 os 07 e, %

Fig. 2. Stress o vs nominal strain e for several values of ^ 0.

2.2. Continuum  Model of Porous M aterial. In this section, the material 
model developed by Gurson [4, 5] for a porous ductile material is applied to the 
material studied. Based on an analysis of single spherical pore in a shell, 
including several simplified approximations (for example, the change of pore 
chap is neglected so that the yield function remains effectively isotropic), Gurson 
[4] proposed the following approximate form for the yield surface of periodically 
porous solid containing a volume fraction 0  of pores:

I
F  =

o
+ 2q10  cosh| 3 q 2 o  H

2 o
(1+ q 3 0  2) = 0, (21)

2

where o m is the equivalent stress representing the actual microscopic stress state 
in the matrix material and 0  is the current porosity. The parameters q i , q 2 , and 
q 3 (where q 3 = q1) were introduced by Tvergaard [12] in an attempt to make the
predictions of Gurson’s equations. This assumption agrees with numerical studies 
of materials containing pores periodically distributed in the matrix. For qi = 
= q 2 = q 3 = 1, the function (21) was obtained by Gurson for the spherical pores. 
The yield surface given by the equation (21) becomes that of von Mises when 
0  = 0. Whenever the pore volume fraction is non-zero, there is an effect of the 
hydrostatic stress on the plastic flow.

The microscopic equivalent plastic strain (e P) is assumed to be governed by 

the equivalent plastic work
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ode p = ( 1 - 0  0 )o md  e qp (22)

or, equivalently

ode p
d  e P = ---------------- . (23)

q ( 1 - 0  o ) o m 1 J

The change in pore volume fraction during an increment of deformation is 
partly due to growth of the existing pores and partly due to nucleation of now 
pores by cracking or interfacial decohesion of inclusions or precipitate particles. 
Accordingly, we write

d0 = d0  g + d0 n  . (24)

The growth of pores is related to the change of the total volume as

d0 g = ( 1 - 0  o )de h  ■ (25)

Suggestion o f  Chu and Needleman [6]. The second phase particles are the 
primary source of internal cavitations (pores). Pores initiate either by cracking of 
the inclusions or by decohesion of the inclusion matrix interface. Assuming that 
plastic strain controls nucleation process, as suggested by Chu and Needleman [6] 
we get

d0 n  = A d  e PI. (26)

Parameter A  depends in same complicated way on the distribution of the 
inclusions and the mean equivalent plastic strain for nucleation e n  ;

A f  N A = ------1=  exp
s N ĵ 2n

e „ - e N

\
s N

(27)

where s N is the standard deviation of the distribution and f  N is determined so 
that the total volume fraction nucleated is consistent with the volume fraction of 
inclusions.

New M odel o f  the Nucleation Porosity. The model of porous ductile material 
to be studied here is defined by a periodical arrangement of the spherical 
inclusions (beads) in the elastic-plastic media, as shown in Fig. 3. Referring to the 
microscopic scale, we also denote by dQ  m and dQ  f  the initial and the current 

elementary domain of the matrix material and dQ f is the volume occupied at 

time t by the nucleating inclusions initially located in dQ 0, so that dQ 0 = 

= dQ m U dQ 0 and dQ t = dQ f  U dQ f .
At time t the total volume strain of the material is irreversible and is sum of 

the constituents which are related to:
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(i) growth of the available pores;
(ii) decohesion of matrix-bead interface;
(iii) formation of new pores.
The second constituent is ignored in this study.
Here, we suppose that the pores grow as the spherical cavities once they 

nucleated. Based on an analysis of a elementary volume which contains a simple 
spherical inclusion in a matrix media, we consider the equivalent plastic strain in 
the material (ep ) which controls the nucleation of new pores as such [7]

e p = 2 l ” ( t ,
(28)

where R o and R t are, respectively, the initial and the current radii of the 
inclusion. Equation (28) is validated in two cases:

1) we assume that the behavior of the matrix material is elastic. In this case 
the plastic strain is controlled by the pore volume strain;

2) the matrix is assumed to satisfy the incompressibility condition but, 
because of the existence of pores, the macroscopic response does not. This remark 
has been explicitly used by several authors (see for example [5] and [6]).

r  t

0

o

Î

O

2Rt

2R 0

dQ 0 O , dQ t
t

Q OO

^

o
Fig. 3. Geometrical model of porous material.

Furthermore the material elementary volumes are defined as

dQ  o = d X  id X  2 d X  3 and dQ  t = dx idx  2 dx 3 , (29)

where X t and x t (i=  1, 2, 3) are the initial and the current positions so that 
d x i = d X  i + d d X  i .

Let P  be the deformation gradient of the material so that J  = det P. It can be 
shown that

dQ  t = JdQ  0 (30)
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and

J  = 1 + £ , (31)

where J  is the Jacobian of the transformation and £ is the volume strain of the 
material. Using Eqs. (29), (30), and (31) the volume strain £ is expressed as

H i +
ô d X  1
d X

1 +
i / dX

1 +
ô d X  3
d X

-  1, (32)

ôdX 1 ô d X  2 ô d X 3
where £ L = and £T = ^ z — = ^ ; — = _  v£ l represent, respectively, the

dX  i dX  2 dX  3
longitudinal and the transverse strains and v is the Poison’s ratio. In the plastic 
phase (or when the elastic phase is neglected) the volume strain is defined as

(33)

This equation is equally valuated in the parfait plasticity case.
By using Eqs. (30) and (31), relationships (28) can be rewritten as

1 d&b_ dO f 

\ d Q 0 dO о
-( £ +1) (34)

ep з 1п( ^  ( l  + 1)
(35)

and f N
dO  0 
dO о

are, respectively, the volume fractions of

nucleation pores and of the inclusions that are susceptible to be cracked or 
nucleated.

Thus, the rate of the nucleated porosity dp n  is obtained by the following 
formula

exp
( p 

2 ô
de P = Sde P , (36)

where d, which is defined by the Eq. (13), is the dilatational factor of the 
material. To introduce it, let us consider the elementary experience that only the

£ q phydrostatic strain £ H and the distortion у = ^ =  are not null. If  £ H and £ P
л/3

correspond to the plastic contributions, the factor d is defined by the relationship:
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e Hô = — ,e p 
e q

where, in the isotropic conditions, we get

e H = ( 1 -  2v)e L and e p = (1+ v )e l  . (37)

Finally, using the above remarks and Eq. (37), we find

, 1 -  2v
ô ^ - ------ . (38)

1+ v

3. Num erical Integration. Using the equations given in Section 1, and 
enforcing the consistency condition (dF = 0):

By posing

dF dF m dF
dF  = —  do + ------ do + —  dà = 0. (39)

do d0  m дф v ’

y  = 2  я м  2ф sinh(1 q 2 o)\, (40)

p  = q1cosh|2  q 2 ® )-  q 3ф , (41)

ü ( (ü + у  )
(42)B  =

1- ф , 

d o m
H  = —  B  2 - o  mA<pB -  3o m ( 1 - ф  0)у<р, (43)

d e q

and

where

de у  H
C = ----- = 1 + -  +

de pq ü  Е В (1 -ф  0 )

d  e pq ü  + y
de С (1 -ф  0)

(44)

(45)

and after some algebraic manipulations, we find that the equations describing the 
poroelastoplastic problem can be written as

26 ISSN 0556-171X. Проблемы прочности, 2002, N  5



Effect o f  Pores on Mechanical Behavior. Application

do H  

~de~  CB(1 —é  0 ) , (46)

dp _  3aM y  
de Cm

(47)

d é  3y A( m + y ) 
~dë~  C m ( 1 - é  o) + C  ( 1 - é  0) , (48)

where o  and £ are, respectively, the true macroscopic axial stress and 
logarithmic strain. The set of nonlinear equations (46), (47) and (48) is integrated 
using the Euler method with equal strain increments of 1/1000 of the yield strain 
in order to ensure high accuracy. The results of this ‘exact’ solution are compared 
with those experimentally obtained.

From this comparison, let us consider the behavior of the composite material 
with an initial porosity at p  0 = 0.2. The uniaxial stress-strain curve of the matrix 
is represented in the following way:

0
EE m
1 „  m _mO — Ov

K y /

for o o

(49)
for o  m > o Y ,

m

where £ m is the logarithmic strain, o m is the true stress, o ^  is the uniaxial

yield stress. The coefficients K  y and M  y are, respectively, the plastic strength 
and the hardening exponent. The elastic and plastic properties of the matrix are 
specified by E j a m  = 4000, v m = 0.4, K y = 1100 MPa, and M y = 1.33,

where E m is the Young modulus and v m is Poisson’s ratio of the matrix 
material. The Tvergaard constants (q1, q 2 , and q 3) are equal to 1.

The plastic strain that controls the nucleation process is described by the 
volume fraction of nucleated or cracked beads f  N = (1 — p  0 ) f  0, where f  0 is 
the bead volume fraction corresponding at p  0 = 0. The value of f  0 can be 
estimated in most cases to 0.52. Since the debonding process begins from the 
nominal strain at 0.03%, we have assigned this value to the £ n  , and the standard 
deviation is about s n  = 0.06.

The simulation test is assumed to be undrained. We suppose that the fluid 
enclosed in pores is a perfect gas. Consequently, for an isothermal transformation 
the fluid’s bulk modulus is equal to the initial pore pressure K f  = 0.1 MPa.

The Biot’s coefficients a  and M  are calculated by the Eq. (7) in which the 
drained bulk modulus is obtained by the following formula:
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K d = Ku

Km
K Ф(

u j

Km
K f  У

1 -
Ku
K

+ 0 ,
m

1 -
f

(50)

In the studied range of axial strain (0-0.6%), the stress curve (o /o r ), the rate 
of pore pressure (£p = A p /p 0) and the rate of the current porosity 
(£0 = A 0 /0  0) are, respectively, plotted in Figs. 4, 5, and 6. These figures show 
that the numerical results (exact solutions) agree very well with those practically 
obtained.

o /o  y %

Fig. 4. Uniaxial stress-strain curve. 

£0, %

Fig. 5. Pressure rate vs nominal strain e.

28

Fig. 6. Porosity rate vs nominal strain e.
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The behavior of porous composite material is described by the stress and the 
pore pressure. The interfacial debonding process is characterized by the current 
porosity p . The pores are assumed to grow as spherical cavities once they are 
nucleated. This is an appropriate idealization, in which nucleation takes place by 
debonding process.

The porosity influences significantly the stiffness and the characteristics of 
the material. Therefore, the behavior can be divided into three distinct stages:

I. Up to a deformation £ = 0.03%, the behavior of this material is linear 
elastic with an initial modulus E 0 = 5800 MPa and initial Poisson’s ratio 
v 0 = 0.34. The rate of the pore pressure (£p) and the current porosity are zero. It 
is worth noting that between 0 and 0.03%, the plastic strain is zero. The ‘loading- 
unloading’ test illustrated this phenomena.

II. In the range of 0.03% and 0.12% the curves o (£), £p(£), and £p(£) are 
nonlinear. This stage corresponds to the progressive debonding of the beads from 
the matrix. The value of the nucleation porosity p  N is higher than that of the 
growing porosity p  g . When the porosity is not initially the case, the microbeads 
can sometimes be nucleated during straining in the second phase. The yield stress 
o  y  , at which the debonding process is initiated, decreases with the increasing 
pores concentration.

III. At £ = 0.12%, the o (£) curve starts to deviate from nonlinearity to 
linearity. The porosity increases exponentially. After the glass beads are debonded 
from the matrix, it creates pores which grow by plastic deformation. This 
deformation of the pores created an additional porosity. In this stage, the behavior 
of porous composite material is similar to that of porous resin.

0  N % 0  N , %

0.7

/  : 1.0
y rf-0 .1 :

0.6 / 0.9
/  ■

/ 0.8 Y  :
0.5 y

0.7 J  O .S=0.15 *jT ' V ‘
0.4 Jf 0.6

7 Y
0.5 /  y  « t 6 =0.2 :

0.3 y Yjt 0.4 V y -j* «
0.2 / 0.3 /  JT •

0 ( hu • Vvdk’liun

A  « X  l'inpnxJ m><kk'l ■ 0.2 jr * uiw»mp nui “
v. 1

V 0.1
(unp nul ;

0 O.S 0.? 0.3 0.« 0.5 0.® % 3,1 «,.< 3.3 0,4 0.5 C.S

Fig. 7. Nucleation porosity p N vs strain £ Fig. 8. Proposed model of p N for compressible 
for Chu-Needleman’s and proposed models. and incompressible material.

Having found the expression (36) for the new nucleation porosity model, the 
critical point of cracked beads into a shear band is pronounced in the behavior. 
This point is located at the nominal strain 0.03%. Figure 7 shows that the 
comparison, between the results of this model and those obtained by Chu and 
Needleman is conformed. This comparison between Chu and Needleman’s
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parameters at <p 0 = 0.2, £ N = 0.03%, and s N = 0.06 and the new model’s 
coefficients f  n  = 0.416. The parameters £ and d are, respectively, obtained by 
the Eqs. (32) and (38). For the Poisson’s ratio 0.3 < v < 0.4 the dilatational factor 
is defined between 0.3 < v < 0.15.

In view of this, the transformations related to the integration of Eqs. (39)- 
(48) yield to the formula that predicts a monotonous increase in ^  n  with 
increasing strain, while the Chu-Needleman relation asserts that this value is not 
monotonic and even change rater at £ p > £ n  , but because the value taken in this 
study is very small, this phenomena no longer appears.

The effects of the volume strain of the matrix and the dilatational factor are 
illustrated in Fig. 8, which shows that the volume strain appears to be negligible. 
Therefore the study is similar to compressible or incompressible material, but the 
effect of the dilatational factor is significant.

Conclusions. In many situations, pores remain in the composite material 
during its moulding because of the viscosity of the resin. The pores modify not 
only the mechanism of load transfer between the matrix and the inclusions, but 
also the macroscopic characteristic. These pores are the origin of the stress 
concentration.

The problem analyzed in this study is the influence of the pores on the 
mechanical behavior.

On one hand, the poroelastoplastic formulation is developed in the isotropic 
case, according to the micromechanical consideration. The Gurson’s material, in 
which we have introduced the new porosity model, is extended to the porous 
composite material. The application of the Euler integration method to the 
Gurson’s model is discussed.

On the other hand, we have studied experimentally a material constituted 
from the microbeads of glass (E) which are incorporated in a polyester resin (UP).

From this study we deduce that the pores influence not only the 
characteristics of the material, but is also the nonlinearity of the behavior that has 
three distinct stages:

1). Linear poroelastic stage, where Young’s modulus and Poisson’s ratio are 
constant. In this stage, the current porosity and the pore pressure are neglected.

2). Debonding stage, in which the behavior deviates from linearity to 
nonlinearity. The debonding process is describing by the new model of the 
nucleation porosity. In this stage, the porosity increases exponentially.

3). Growing stage, in which the slope of the behavior decreases with the 
pores content. In this stage, that follows the complete debonding, the load of the 
bearing section is reduced by the area occupied by the glass beads.

We have also found that in the proposed model the effect of the 
incompressibility of the material appears to be negligible, but the dilatational 
factor influences significantly the nucleation porosity. This model consists in the 
replacement of the Chu-Needleman relation by a new one, which is more 
easy-to-use and more adapted to the micromechanics of this phenomena. 
However, the refinements proposed here cover mostly the expansion of an 
isolated spherical pore under uniaxial tensile loading conditions of a porous 
structure.
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Р е з ю м е

Виконано експериментальні дослідження і числове моделювання впливу 
мікроскопічних пор на поведінку в ’язкого матеріалу при деформуванні з 
урахуванням історії навантаження. Об’єктом дослідження служив компо­
зитний матеріал на основі поліестерної гуми з вкрапленнями з бісеру. У 
процесі формовки указаних компонентів у матеріалі з ’являються пори вна­
слідок в ’язкості гуми. Для оцінки ефекту пор використовували експери­
ментальну технологію випробувань на розтяг. У рамках мікромеханічного 
підходу отримано основні рівняння поропружнопластичності. Проведено 
узагальнення моделі матеріалу Гурсона на композитний матеріал, що до­
сліджується. Розрахункові результати зіставляються з експериментальними.
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