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BnnsHue nop Ha mMexaHu4yeckoe nosefeHue. Cny4ali KOMMO3UTHOTO
maTepuana

A. Canuxa O. ®accu dexpu6 C. Wapud g’YassaHs, 3. Azapur

aJlabopaTopus NPOMBILLIEHHOrO CTpouTeNnbCTBa, Pabar, Mapokko
6 JTabopaTopms MexaHUKW 1 MaTepuanos, Pabat, Mapokko
B /TabopaTopms MOAENMPOBaHMA W pacyeToB B MexaHuke, Pabar, Mapokko

r /labopaTopusi MEXaHWYECKON HafexXHocTH, MeTu, dpaHums

BbIMNONHEHbI 3KCMEPUMEHTANBHOE MCCNEAOBAHWE 1 UWCNEHHOE MO/ENMPOBaHNE BAMSIHUS MWKPO-
CKOMMYECKMX MOP Ha MOBEfEHMe BA3KOrO MaTepuana npu AeiopMUPOBaHUM C YYeTOM UCTOPIM
Harpy>keHusi. OGbeKTOM MCCNe0BaHNS CY>KWUA KOMMO3UTHbIV MaTepuan Ha OCHOBE MoMaCTep-
HOl pesuHbl C BK/OUEHMsIMM 13 Gucepa. B mpouecce (DOPMOBKM yKazaHHbLIX KOMMOHEHTOB B
MaTepuane 06pasyloTcs Nopbl M3-3a BA3KOCTY Pe3vHbl. [1s OLEHKM athekTa nop MCronb3oBam
3KCMEpUMEHTaNbHYIO TEXHONOMI0 MCTIbITaHWiA Ha pacTs>KeHre. B paMKax MUKPOMEXaHNYeckoro
MnoAxofa NomydeHbl OCHOBHbIE YpaBHEHWS MOPOyMpyronnacTUyHoCTY. MMpoBeAeHo 0606LLEHME MO-
Jenv maTepuana MypcoHa Ha McCnefyemblii KOMMO3UTHbI MaTepuan. PesynbTaTbl pacueToB
COMOCTaBNEHbI C 3KCMEPUMEHT NbHBIMA JaHHBIMM.

Introduction. The mechanical behavior of multiphase materials is related
not only to the properties of various components but also to the interfacial
adhesion between those constituents.

Generally, conventional composite materials contain pores introduced either
as by-products of the thermomechanical process or intentionally to control
microstructural features. During deformation, the inclusions may be debonded
from the matrix including the new pores. Consequently, those nucleating pores
grow by the plastic deformation.

There is considerable interest in the development of experimental [1] and
analytical [2] methods for the characterization of the pore nucleation and growth
process.
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The best known experimental technique is tensile dilatometry (recently
reviewed by Meddad et al. [3]). In this method, the volume change in the material
is measured during the mechanical loading. Meddad et al. [3], who work with
bead-filled plastic, operate with a section of the tensile stress-strain curve and also
report that when tensile data are plotted using the compliance versus strain
presentation, the various stages of the stress-strain curve are easily distinguished.

Analytically, there are significant developments of pore nucleation and
growth process; we list those developed by Gurson [4, 5] on the ductile solid
material containing pores. Our work parallels that of Chu and Needleman [6],
who analyzed numerically the effects of pore nucleation in the biaxially stretched
sheets.

In this work, we present the extension of the famous Gurson model [4, 5] to
the porous composite material. The introduction of the pore pressure and the
current porosity to that model allows to describe the material behavior. Based on
the Bridgman [7] approach, we have also developed a new model of the
nucleation porosity.

The theory of isotropic poroelastopasticity is introduced in section 1. The
Hooke’s relations and micromechanical constitutive constants are briefly listed in
order to facilitate the engineering applications. A detailed description of the
poroelastic theory was introduced by Biot [8]. An extended review of the
development of the isotropic theory can be found in Detournay and Cheng [9].
Considering the same formality of continuous media, Coussy [10] presented the
mechanical behavior of porous media according to the micromechanical analysis.

In section 2, a brief description of the experimental method is given. Using
the dilatometry theory, the terminology used and the technique for obtaining the
experimental data are based on [11]. In glass bead-filled unsatured polyester (UP),
the global behavior is nonlinear. This behavior is characterized by the stress and
pore pressure methods. The interfacial debonding will be suggested by the current
porosity. The porous material model that has been developed by Gurson and the
applications of the Euler integration to that model are also given in section 3. A
comparison of the numerical results with those obtained from the experimental
study close this paper.

1 Poroelastoplastic Constitutive Relations. Let us consider a geometrical
domain Q constituted by a fluid phase (pores) and solid (matrix) one, having in
its initial configuration, the voluminal fraction p o and (1—p 0), respectively. In
the case of poroelastoplastic configuration, we make an elementary dump defined

by do increments; we, respectively, measure the reversible (dee, dte) and

irreversible (dep, dtp) increments of strain and the variation of fluid content,
such that

de = dee + dep, (1)

dt= dte+dtp, @)

where de and dt, are, respectively, a differential change in the total strain and the
total variation of fluid content.
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In the framework of the hypothesis of infinitesimal transformations and for
the case of linear poroelasticity, the changes in the stress o and pore pressure p,
which represents the internal forces in the material, are defined in the following
relations:

0ij ~ Cijklekl, ?3)
p=M(Ce-ae kk), 4)

where Cjki is the modulus tensor

Ciki ={Kj - 3Gj~ jokl +2GjoikOji. (5)

The superscript y = u (resp. y = d) denotes undrained (resp. drained) quantities.
The undrained modulus tensor Cjki satisfies the following relation:

i =Cfm + «2Mj (6)

where Igki is a fourth order identity tensor, a is the Biot’s coefficient, and M is
a modulus associated with the combined fluid/solid compressibility.

\ Kr q M K Kr K
a=\ an =Kr
K, ij [ ) (7

A

For the isotropic case, the flow function includes not only the first and the
second invariants of the stress tensor but also pore pressure and state variables.
This flow function is illustrated by the following formula:

F(ah,aq,p,Ha)=0, 8)

where Ha (a=1,2, ..., n)is aset ofvalues. The function F is defined whenever:
F <0 the response is purely poroelastic and F =0 which is the consistence
condition represent the current yield surface; oH and a , which are,
respectively, the hydrostatic and the equivalent stress, are defined by the
following relations:

1

a and a = SS,
H_ a3, nipa (©)]

where 1 is the second order identity tensor and s is the stress deviator.
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With the above notation, the stress tensor can be written as
2
O —OHI +--0qu. (10)

The flow rules are written as

dep = dX --—-=-- ————ie 1 and d(bp = dX\ —
P 6q" " 3don (bp \ap, (11)

where dX is a positive potential scalar, dyp is a differential change in the plastic

porosity, and g =g(oH,o0q, p,H a) is the yield potential. The first flow rule
gives:

dep:&deﬁl + dePn, (12)
where
" dg X / N
deH = dX\ g dep = dX %g and N = e
ydoH \doq) 2 0q

in which ded and deH are related by the ‘dilatancy’ relation [10]

deH

~dep (13)

where d is the dilatational factor.
Using Egs. (1) and (2), relations (3) and (4) can be incrementally rewritten as

ot+dt = C eftdt = C"(ee+ dee)= oe- C"dep, (14)

pt+dt —M £ f+ % e- a(eHt + deH)]—pe- M [%p - adeH ], (15)

where
of —CY(ef + de) (16)
and

pe—M [Ef +dt-a (eHt +deh )], (17)

where t is the time at the start of the increment and t + dt is the time at the end
of the increment.
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Using the Egs. (5) and (12), we can rewrite the Egs. (14) and (15) as

at+dt =ae - KydEH1- 2Gyd£Pn, (18)

Pt+dt = pe- M (d"P- adfh). (19)

Finally, the poroplasticity model is achieved by describing the evolution of
the state variables

dHa = ha(dEp, dipp,a,p, HP) (20)

as far as the rate independent materials ha remain homogenous of degree one in
dEp and dpp.

2. Application.

2.1. Experimental. Material. The material used in this study is constituted
by the glass beads (type E) incorporated in the polyester (UP) resin. The average
bead diameter is about 350 *m. During the moulding of these constituents, the
pores remain in the composite because of the resin viscosity. The bead volume
fraction f and the initial porosity f o are obtained by the statistical method
which is described in [11]. Using an Versamet-2 optical microscope, with
magnification X1600, the material was visualized (see Fig. 1).

Fig. 1 Microscopic section of the material (resin in clear, beads in white, pores in black).

Technical Test. In order to determine the experimental data, we adopted the
tensile test technique. This method is specified in [11]. The values of the
mechanical characteristics are obtained in the undrained test, in which the
variation of the fluid content is zero (£= 0). A tensile test machine with the
cross-head speed of 1 mm/mn was used. The strain data is collected by using two
tensometers: axial tensometer and transverse tensometer (gauge length was
10 mm). The strains £ and the stresses a were simultaneously recorded.

The stress a versus strain £ curves for various initial porosity p 0 are
shown in Fig. 2. It shows that the stress decreases with the porosity content. The
behavior of these materials is nonlinear. The most plausible reason on this
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nonlinearity is the debonding process. The effect of treatment of the glass beads
interface appears negligible. It is difficult to separate the contribution of
debonding and the behavior of the matrix because almost all the glass beads have
became debonded from the matrix.

0,
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Fig. 2. Stress 0 vs nominal strain e for several values of " 0.

2.2. Continuum Model of Porous Material. In this section, the material
model developed by Gurson [4, 5] for a porous ductile material is applied to the
material studied. Based on an analysis of single spherical pore in a shell,
including several simplified approximations (for example, the change of pore
chap is neglected so that the yield function remains effectively isotropic), Gurson
[4] proposed the following approximate form for the yield surface of periodically
porous solid containing a volume fraction 0 of pores:

| 2

F= +2q10 coshlngm_|
0

(1+ q30 2) = 0, (21)
o 2

where o m is the equivalent stress representing the actual microscopic stress state
in the matrix material and 0 is the current porosity. The parameters qi, g2, and
g3 (where g3 = ql) were introduced by Tvergaard [12] in an attempt to make the
predictions of Gurson’s equations. This assumption agrees with numerical studies
of materials containing pores periodically distributed in the matrix. For qi =
= g2= g3 =1 the function (21) was obtained by Gurson for the spherical pores.
The yield surface given by the equation (21) becomes that of von Mises when

0 = 0. Whenever the pore volume fraction is non-zero, there is an effect of the
hydrostatic stress on the plastic flow.

The microscopic equivalent plastic strain (e P) is assumed to be governed by
the equivalent plastic work
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odep=(1-00)omdeq (22)
or, equivalently
odep
deP = —mmmmeiees : (23)
g (1-00)om 1]

The change in pore volume fraction during an increment of deformation is
partly due to growth of the existing pores and partly due to nucleation of now
pores by cracking or interfacial decohesion of inclusions or precipitate particles.
Accordingly, we write

d0 =d0g +d0On. (24)
The growth of pores is related to the change of the total volume as

d0g=(1-00)deh m (25)

Suggestion of Chu and Needleman [6]. The second phase particles are the
primary source of internal cavitations (pores). Pores initiate either by cracking of
the inclusions or by decohesion of the inclusion matrix interface. Assuming that
plastic strain controls nucleation process, as suggested by Chu and Needleman [6]
we get

d0n =AdePlL (26)

Parameter A depends in same complicated way on the distribution of the
inclusions and the mean equivalent plastic strain for nucleation en ;

A=--LI = exp 27)

where sN is the standard deviation of the distribution and f N is determined so
that the total volume fraction nucleated is consistent with the volume fraction of
inclusions.

New Model ofthe Nucleation Porosity. The model of porous ductile material
to be studied here is defined by a periodical arrangement of the spherical
inclusions (beads) in the elastic-plastic media, as shown in Fig. 3. Referring to the

microscopic scale, we also denote by dQ m and dQf the initial and the current
elementary domain of the matrix material and dQf is the volume occupied at
time t by the nucleating inclusions initially located in dQO, so that dQO0=
=dQmUuUdQO0 and dQt=dQf UdQf.

At time t the total volume strain of the material is irreversible and is sum of
the constituents which are related to:
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(i) growth of the available pores;

(ii) decohesion of matrix-bead interface;

(iii) formation of new pores.

The second constituent is ignored in this study.

Here, we suppose that the pores grow as the spherical cavities once they
nucleated. Based on an analysis of a elementary volume which contains a simple
spherical inclusion in a matrix media, we consider the equivalent plastic strain in

the material (ep) which controls the nucleation of new pores as such [7]

28
ep=21"(t , (28)

where Ro and Rt are, respectively, the initial and the current radii of the
inclusion. Equation (28) is validated in two cases:

1) we assume that the behavior of the matrix material is elastic. In this case
the plastic strain is controlled by the pore volume strain;

2) the matrix is assumed to satisfy the incompressibility condition but,
because ofthe existence of pores, the macroscopic response does not. This remark
has been explicitly used by several authors (see for example [5] and [6]).

0
r t 1 2Rt
0 o} 2RO
dQo o dQ%
Q 0 0
N
0

Fig. 3. Geometrical model of porous material.

Furthermore the material elementary volumes are defined as
dQo=dXidX2dX3 and dQt = dxidx2dx3, (29)

where Xt and xt (i= 1, 2, 3) are the initial and the current positions so that
dxi =dXi+ ddXi.

Let P be the deformation gradient ofthe material so that J = detP. It can be
shown that

dQt=JdQO (30)
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and
J=1+£, (31)

where J is the Jacobian of the transformation and £ is the volume strain of the
material. Using Eqgs. (29), (30), and (31) the volume strain £ is expressed as

6dXx1 L 1 6dX3
: + + -
H i+ dXj s dX dX . (32)
e gL 0OXT o 0dX2_ 6dX3 ] -
L= T=~n —= P — = 1
wnere dXi an dZX2 4% 3 _ Vv represent, respectively, the

longitudinal and the transverse strains and v is the Poison’s ratio. In the plastic
phase (or when the elastic phase is neglected) the volume strain is defined as

(33)
This equation is equally valuated in the parfait plasticity case.
By using Egs. (30) and (31), relationships (28) can be rewritten as
1d&b_ dOf £ 41 24
-(£ +
\dQoO0 dOo( ) (34)
ep 3in( ™ (1 +12 (35)
do o0 . )
and f N 4o are, respectively, the volume fractions of
0

nucleation pores and of the inclusions that are susceptible to be cracked or
nucleated.

Thus, the rate of the nucleated porosity dp n is obtained by the following
formula

ex deP = SdeP,
p 6 e e (36)

where d, which is defined by the Eq. (13), is the dilatational factor of the
material. To introduce it, let us consider the elementary experience that only the

hydrostatic strain £H and the distortion y :’i/% are not null. If £ and £P
correspond to the plastic contributions, the factor d is defined by the relationship:
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eH
ep
eq

0

where, in the isotropic conditions, we get

eH = (1- 2v)elL and ep =(1+v)er. (37)

Finally, using the above remarks and Eq. (37), we find

A A 1-2v (38)
1+v
3. Numerical Integration. Using the equations given in Section 1,

enforcing the consistency condition (dF = 0):

dF dF m dF
dF = — do + -—-- do +— da=0 (39)
do dom A v
By posing
y =2 am 2¢ sinh(1 q20)\, (40)
p = qlcosh|2 q2®)- q3d, (41)
B = u(@+vy)
C1- 0, 42
dom
H=— B2-0 mA<pB- 3om(1l-¢h 0)y<p, (43)
deq
and
de y H
C=-———=1+-"+ (44)
dep a EB(1-¢ 0)
where
de o+
de C(1-¢ 0)

and after some algebraic manipulations, we find that the equations describing the
poroelastoplastic problem can be written as
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do H
~de~ CB(1—% 0), (46)
dp _ 3aMy
47
de Cm (47)
dé 3y A(m +y)
(48)

~dé~ Cm(1-6 0)+ C(1-6 0),

where o and £ are, respectively, the true macroscopic axial stress and
logarithmic strain. The set of nonlinear equations (46), (47) and (48) is integrated
using the Euler method with equal strain increments of 1/1000 of the yield strain
in order to ensure high accuracy. The results of this ‘exact’ solution are compared
with those experimentally obtained.

From this comparison, let us consider the behavior of the composite material
with an initial porosity at p 0 = 0.2. The uniaxial stress-strain curve of the matrix
is represented in the following way:

0 f
or o 0
m Em
lgm _gP (49)
for om>o0Y,
K
y

where £m is the logarithmic strain, om is the true stress, o” is the uniaxial

yield stress. The coefficients Ky and My are, respectively, the plastic strength
and the hardening exponent. The elastic and plastic properties of the matrix are

specified by E jam =4000, vm=04, Ky = 1100 MPa, and My = 1.33,

where Em is the Young modulus and vm is Poisson’s ratio of the matrix
material. The Tvergaard constants (ql, g2, and q3) are equal to 1

The plastic strain that controls the nucleation process is described by the
volume fraction of nucleated or cracked beads f N = (1—p 0)f0, where f 0 is
the bead volume fraction corresponding at p 0= 0. The value of f 0 can be
estimated in most cases to 0.52. Since the debonding process begins from the
nominal strain at 0.03%, we have assigned this value to the £n , and the standard
deviation is about sn = 0.06.

The simulation test is assumed to be undrained. We suppose that the fluid
enclosed in pores is a perfect gas. Consequently, for an isothermal transformation
the fluid’s bulk modulus is equal to the initial pore pressure Kf = 0.1 MPa.

The Biot’s coefficients a and M are calculated by the Eq. (7) in which the
drained bulk modulus is obtained by the following formula:
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Km Km
D
Kuj ( Ky
Kd=Ku (50)
K
1- ! +0, 1-

In the studied range of axial strain (0-0.6%), the stress curve (o/or), the rate
of pore pressure (Ep= Ap/p0) and the rate of the -current porosity
(E0 = A0/0 0) are, respectively, plotted in Figs. 4, 5, and 6. These figures show
that the numerical results (exact solutions) agree very well with those practically
obtained.

oloy %

Fig. 4. Uniaxial stress-strain curve. Fig. 5. Pressure rate  vs nominal strain e

£0, %

Fig. 6. Porosity rate vs nominal strain e
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The behavior of porous composite material is described by the stress and the
pore pressure. The interfacial debonding process is characterized by the current
porosity p. The pores are assumed to grow as spherical cavities once they are
nucleated. This is an appropriate idealization, in which nucleation takes place by
debonding process.

The porosity influences significantly the stiffness and the characteristics of
the material. Therefore, the behavior can be divided into three distinct stages:

I. Up to a deformation £= 0.03%, the behavior of this material is linear
elastic with an initial modulus EO = 5800 MPa and initial Poisson’s ratio
vO0 = 0.34. The rate of the pore pressure (Ep) and the current porosity are zero. It
is worth noting that between 0 and 0.03%, the plastic strain is zero. The ‘loading-
unloading’ test illustrated this phenomena.

Il. In the range of 0.03% and 0.12% the curves o(£), £p(£), and £p(£) are
nonlinear. This stage corresponds to the progressive debonding of the beads from
the matrix. The value of the nucleation porosity p N is higher than that of the
growing porosity p g.When the porosity is not initially the case, the microbeads
can sometimes be nucleated during straining in the second phase. The yield stress
oy, at which the debonding process is initiated, decreases with the increasing
pores concentration.

Il. At £= 0.12%, the o(£) curve starts to deviate from nonlinearity to
linearity. The porosity increases exponentially. After the glass beads are debonded
from the matrix, it creates pores which grow by plastic deformation. This
deformation of the pores created an additional porosity. In this stage, the behavior
of porous composite material is similar to that of porous resin.

ON % ON, %
0.7 / . 10 Yy rf-01
0.6 / 09 / -
/ 08 Y :
0.5 Yy
T . o7 V] Os=015 ¥
04 Ji’ 06 - v
05 / y ¢ 602 :
”? JJty « 04 VY y -
02 / ,
0 (huesWdKliun o3 . 1 Jr *
X I'inpnxJ me<id ] 02 Jr Ui nui
0.4 o (unp nul
v )
0 0s 02 03 0« 05 0® % 31 «< 33 04 05 CS
Fig. 7. Nucleation porosity pN vs strain £ Fig. 8. Proposed model of pN for compressible
for Chu-Needleman’s and proposed models. and incompressible material.

Having found the expression (36) for the new nucleation porosity model, the
critical point of cracked beads into a shear band is pronounced in the behavior.
This point is located at the nominal strain 0.03%. Figure 7 shows that the
comparison, between the results of this model and those obtained by Chu and
Needleman is conformed. This comparison between Chu and Needleman’s
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parameters at 0= 0.2, £N = 0.03%, and sN = 0.06 and the new model’s
coefficients f n = 0.416. The parameters £ and d are, respectively, obtained by
the Eqgs. (32) and (38). For the Poisson’s ratio 0.3 < v < 0.4 the dilatational factor
is defined between 0.3 < v < 0.15.

In view of this, the transformations related to the integration of Eqs. (39)-
(48) yield to the formula that predicts a monotonous increase in ~ n with
increasing strain, while the Chu-Needleman relation asserts that this value is not
monotonic and even change rater at £p > £n , but because the value taken in this

study is very small, this phenomena no longer appears.

The effects of the volume strain of the matrix and the dilatational factor are
illustrated in Fig. 8, which shows that the volume strain appears to be negligible.
Therefore the study is similar to compressible or incompressible material, but the
effect of the dilatational factor is significant.

Conclusions. In many situations, pores remain in the composite material
during its moulding because of the viscosity of the resin. The pores modify not
only the mechanism of load transfer between the matrix and the inclusions, but
also the macroscopic characteristic. These pores are the origin of the stress
concentration.

The problem analyzed in this study is the influence of the pores on the
mechanical behavior.

On one hand, the poroelastoplastic formulation is developed in the isotropic
case, according to the micromechanical consideration. The Gurson’s material, in
which we have introduced the new porosity model, is extended to the porous
composite material. The application of the Euler integration method to the
Gurson’s model is discussed.

On the other hand, we have studied experimentally a material constituted
from the microbeads of glass (E) which are incorporated in a polyester resin (UP).

From this study we deduce that the pores influence not only the
characteristics of the material, but is also the nonlinearity of the behavior that has
three distinct stages:

1). Linear poroelastic stage, where Young’s modulus and Poisson’s ratio are
constant. In this stage, the current porosity and the pore pressure are neglected.

2). Debonding stage, in which the behavior deviates from linearity to
nonlinearity. The debonding process is describing by the new model of the
nucleation porosity. In this stage, the porosity increases exponentially.

3). Growing stage, in which the slope of the behavior decreases with the
pores content. In this stage, that follows the complete debonding, the load of the
bearing section is reduced by the area occupied by the glass beads.

We have also found that in the proposed model the effect of the
incompressibility of the material appears to be negligible, but the dilatational
factor influences significantly the nucleation porosity. This model consists in the
replacement of the Chu-Needleman relation by a new one, which is more
easy-to-use and more adapted to the micromechanics of this phenomena.
However, the refinements proposed here cover mostly the expansion of an
isolated spherical pore under uniaxial tensile loading conditions of a porous
structure.
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Pestome

BVKOHaHO eKcrnepuMeHTanbHi AOCNIAXKEHHA | 4YMCNOBe MOJEe/t0OBaHHA BMNINBY
MIKPOCKOMIYHUX MOp Ha MOBeAiHKY B’A3KOro martepiany npu fedopmyBaHHi 3
ypaxyBaHHAM icTopii HaBaHTaXeHHA. O6’eKTOM [OCMIMXEHHA C/YXWB KOMMO-
3UTHUIA MaTepias Ha OCHOBI NOMiecTepHOT rymMmu 3 BKpanjeHHsMu 3 6Gicepy. Y
npoweci POPMOBKM yKa3aHMX KOMMOHEHTIB Yy maTtepiani 3’ABNAOTLCA NOPU BHa-
CNifoK B’A3KOCTI rymu. [nd OUiHKM edeKkTy nop BMKOPUCTOBYBAIM eKcnepwu-
MeHTa/lbHY TEXHOMOrit0 BMMPOOYBaHb Ha PO3TAr. ¥ paMKax MiKpOMeXaHiyHoro
nigxofy OTPMMAHO OCHOBHI PIBHAHHS MOPOMPY>XHOMMACTUYHOCTI. [MpoBeAeHO
y3araibHeHHs Mogeni maTepiany FypcoHa Ha KOMMO3UTHMWIA maTepian, wWwo Ao-
CNifXyeTbca. Po3paxyHKOBI pe3ynbTaTu 3iCTaBAATLCA 3 EKCNepUMeHTabHUMU.
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