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Pe3oHaHCHble CctepuyecKne BOMHbI, OMNUCbIBAeMble BO3MYLLEHHbIM
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a OtgeneHne mMawiMHocTpoeHus OkneHAcKoro yHusepcuteta, OkneHg, Hosas 3enaHams

6 NHcTuTyT npo6nem npoyHoctn HAH YkpauHbl, Knes, YkpanHa

BbIBOANTCS YpaBHEHWE HENMHEHON aKyCTUKM 19 paguanibHbIX Chepuyeckux BOMH B TBEPAOM
Tere. MpuBN>KEHHOE PeLLIEHIE 3TOr0 YPaBHEHNS YUMTbIBAET HeMMHENHbIE, NMPOCTPAHCTBEHHbIE U
JUCCUNATUBHbIE 3(IEKThI. YCTAHOBMEHO, YTO B TPAHCPE30HAHCHO! YacTOTHOI Monoce MoryT
BO3GY>KAATHCS HeMMHelHble CepUUecKne BOMHbI, KOTOPble TPYAHO KNacCUMUMPOBATL Kak Xo-
POLLO M3BECTHbIE COMMTOH-, KHOMAA-, YAApHbIe WM GPU3-TUN BOMHLI 3TW Pe3oHaHCHbIE cepn-
UYeckyie BOMHbI TaKKe CyLIECTBEHHO OT/MYAIOTCS OT XOPOLUO WM3BECTHbIX FNAfAKUX CHepryeckux
BO/H. OfIHAKO HEKOTOpbIE BLIDAXKEHNS A1 CCHEPUUECKMX BOMH HANOMUHAIOT M3BECTHbIE PELLIEHMS
QN1 TIOBEPXHOCTHBIX BOMH.

1 Introduction, a Governing Equation and Approximate Solutions. A
linear equation for spherically symmetric waves has a simple analytical solution.
This solution was generalised for the case of resonant weakly nonlinear waves
excited in gas [1,2]. We use here this solution to study weakly nonlinear resonant
spherical waves in solid resonators. With the help of this solution, the boundary
problem reduces to the perturbed Korteweg-de Vries equation in time. A few
solutions of this equation have been constructed. Contributions from nonlinear,
spatial, transresonant, and dissipative effects can be seen from these solutions.
According to these solutions, shock waves may be excited in an inviscid medium
due to nonlinear effects. However, the formation of shock discontinuity is
prevented due to viscosity and spatial dispersion. As a result of the competition
among the nonlinear, dissipative, and spatial effects, periodic localized oscillating
spherical excitations may be generated in resonators instead of the spherical shock
waves. The shape and amplitude of these excitations depend on the excited
frequency.

Let us consider spherically symmetric solid bodies and conical-type
resonators having an approximately circular cross section. There, for the purely
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radial nonlinear waves, the following equations of continuity and motion are
valid:

2
Pt+ Prut+ Punt=-~P ut, (D)

2
P(utt ututr) rr vy Gr~Ge), (2)

where u is the displacement, ar = X{ur +2r lu) + 2/xur + 3 v(utr - r 1ut)

-1 2 2 -1
and ap =2{ur +2r u)+—fxu+-3q(utr- r ut). Here the notations are
r r

standard and a viscoelastic model of a solid body is introduced. Equation (1)
yields the following approximate expression: p= p0- p O(ur +2r- u), where
p 0 is the undisturbed density. Using the expressions for p, ar,and ap, and

neglecting small terms, which are of the third order, we can rewrite Eq. (2) so that

p Outt(l- ur —2r-1u)+ p Outurt = (2 + 2/x)[urr + 2r- L(ur —r- )]+

2 -1 4
+3rn(ur- r u)t+ 3Vutrr. 3)

Then the displacement potential $ is introduced in (3) (u=$r). After
integrating (3), we have

p 0$ tt - pOf $tr($rr+2r~1$r)dr+°5p0%1 =

=Q+2M)($mr+2r Br)+3V(ESm+2r 1$r)t. 4)

Let the viscous term in (4) be of the second order. For this case, a linear
wave equation follows from (4):

ao($rr+2r-1$r)=$tt,

where a0 =(2 +2m)/p 0. Using the wave equation, we can simplify (4). As a
result, we have

p 03 tt(1l- °.5a02$ tt)+ 0-5p 0($ rt)2 = (2 +2H)($ rr + 2r-1$r) + 4 Va02$ titm

Let p=$ t. For the latter case, we have the following equation of nonlinear
acoustics for a homogeneous viscoelastic solid body:
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ao(prr+2r Vr)=ptt- aO2ptptt+prprt-(5a02p ttt, (5)

. 4
where 0=3 It is important that Eq. (5) differs from the equation of nonlinear

acoustics for gas and liquid only by some coefficients [1, 2, 3]. Therefore, bellow
we use the results obtained for resonant waves in spherical gas layers [1, 2, 4, 5].

We emphasize that Eq. (5) does not take into account the third order effects
and the dissipative term is of the second order. The solution of (5) may be
presented as

p=pl+p2, (6)

where p1 and p 2 are the first- and the second-order values, respectively.
Substituting (6) into (5) and equating the values of the same order, we obtain a
system of differential equations for p 1 and p 2:

pIr+2r 1pIk = a02p it, @)

aO(p2rr+2r 1p2r)=p2t+pIpIt- a02p ip it - ~a02p 1ttt (8)

The solution of the linear wave equation (7) is the sum of two travelling
waves: p1=r-1(/ +/ 2). Here and below, / = £) and /2 =f 2("), where
£=2a0l- r and ~=a0l+ r. Now we can rewrite Eq. (8) in the form

a@(p2rr+2r-1p2r)-p 2t=a0{r-2(/2 -/ ))(/" -11)-
Sr-3[(2 41 0)(2-11)-(["M)2+([2)2]+r-4(/2+711)(J2 + ™) -
mr-2(/2+ /" )"+ 1Y) - <S-AU/2'+ T 1)}

where the primes denote a derivative with respect to the argument. One can find
p 2 from this equation following [1, 2, 4, 5]. Finally, the approximate solution of
(5) is

p=r-1CA+/2 +A1  2)+0.25a-Ir-2 [(/1 + /2 )2] -
-0.25a0~V-1f f r-1(/" +/2 )(//'+/2 )dUn + 0 .25~ -1(/" + £/2'). (9)

Here ~1=" (£) and ~2="2("), and the Unctions ~1 and " 2 are of the
second order. The functions /1, /2, ~1,and ™ 2 are unknown and must be
found from the initial and boundary conditions. However, solution (9) is
complicated by the integral. Let us simplify it to a form that is more convenient
for satisfying the boundary conditions. Near any boundary surface r = R and the
multiplier 1/r under the integral is replaced by 1/R. As a result, we have
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V=r-1f +fi +V1+V2)+0.25aqV-2[(f +f2)2]-
-0.25a01r -1R-1[0.5](f1)2 + 0.5£(f2)2+ f f 2+ f 2f1]+

+0.25<5a-V-1( f + f ). (10)

Solution (10) satisfies Eq. (5) if the expression ~aOr-2[(f' +f 2)2](1- rR-1)

is of the third order. Thus, (10) is valid near the surface r =R, where
|[1- rR-1]|<< 1

In this article, we examine only periodical oscillations. In this case, the
velocity must not contain secular terms. The secular terms will be eliminated if
we assume in (10)

Vi=  +0.125a-1R-1[£(f')2- 2fJ1 ]- 0.25<5a- X f”

where i=1or2; f1,f2, Wl=WLYE), and W2 = W2(]) are periodic functions.
As a result, near the surface r = R, we have for steady-state oscillations

V=r-1(fl+ f2+ W1+W2)+ 0.25a-1r-2(1- 0.5rR-1)[(f1+ f2)2]-
-0.25a- IR~1[(f{)2 - (f2)2]+ 0.5<5a-1(f" - f2 ). (11)

Both expression (9) and (11) are used below to solve a boundary problem.
2. A Boundary Problem and Basic Equation. Let us consider waves
excited by an oscillating velocity at the surface r = R. Therefore, we have

Vr=-(oBsinmt (r=R), (12)
4"r2vr=0 (r™ 0). (13)

We have written (13) according to [6, p. 491]. When r”~ 0O, the stresses
increase and the mechanical properties of the material can change strongly at the
origin. As aresult, Eq. (5) and solution (9) are not valid if r = 0. Therefore, it is
possible that Eq. (13) is a rough approximation of the reality at r = 0. Let us
assume that the influence of the origin is very local and does not change the wave
pattern qualitatively. Using (9), we can rewrite condition (13) so that

r(F2- fi +72 - A )-fl-f2-~1 -2 +
+0.25a8 V 2{r-2 [(f1+ f 2)2] }r + 0.125da- Ir2[r- 1(]fi'+ &2 )]r +

+0.25a-7/r-1f +f2)(f +f2)d£d] -
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—0.25a—V [ [/ r~\fi +/2)(/" +f2 =0, (14)

where r” 0. Equation (14) is satisfied if

fi(aot—r) =f (aot—r), f2(aot+r)=—f (aot+r),
Wi(a0l—r)= W(a0l—r), W2(aOl+ r)= W(a0l+ r). (15)

In (14)

[11 (fFi +f2/x+f2)dUn=2/ [ (f)r/"(1)—F % 0

because 1 ~”. Condition (12) is written now with the help of (11):

R(f2—f1+72 —4ji)—F1—+H2-—-"1 "2+

+0.75a—R~I(f1+f2)/1 +f2)+

+0.25ar[(F2)2- (F1)2+ (fi+f2)(_f1+f2)]+

+0.5a-R ff1+f2f2)- 0.56a-22(fL"+ f2") = -wBR2sinwt.  (16)

Here we must take into account (15). As a first approximation, it follows from
(15) and (16) that

f(£)- f (n)+Rf'(E)+ RF(") = wBR2sinwt. (17)

Following [1, 2, 4, 5], we assume f (£) and f (*) in the form

f (£)=-R-1/ F(£+R)d£- [aOw-1R-1(sinwRa-1 -

- wRa-1lcoswRa-1)- 1]F(£ + R),
(18)
f(")=-R 1 F(*- R d - [aOw-1R-1(sihnwRa-1-

- wRa-1coswRa-1) + 1]F(" - R).
Then Eqg. (17) describes travelling waves
F[a0t£ (r - R)]=
= 0.5wBR2(sinwa- IR - wa- IRcoswa- IR)-1 coswa- 1[a0l+ (r - R)]. (19)
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From (19), we obtain resonant frequencies as
Qy =nyaOR-1, (20)

where y = 1.4303, 2.4590, 3.4709, ... [6, p. 506]. Linear solutions (19), (18), and
(15) are not valid near the frequencies m=Qr. Therefore, Eq. (16) will be
considered taking into account nonlinear terms. Considering the nonlinear terms,
we assume that near a fast varying solution

|aOR -1fF (a 01)dI| < < |F (a01)|. (21)

Taking into account (21), (18), and (15), we rewrite Eq. (16) in the following
way:
miF"+R-1(W2- W) - R-2(Wl+W2)-da"F""-

- 3a- R-3FF"+ a- IR-1F F" =-mB sinml, (22)

where
ml=2a0m-1R-2(sinmRa-1- mRa-1lcosmRa-1).

Equation (22) is complex for the integration. This equation can be simplified if
we assume the following expressions in (11):

W = WL(E) = W(£) = 0.25a- 1[F"(E + R)]2,

1 2 (23)
W2 = W2(f) = -W (f) = -0.25a-1[F"(f - R)]2.

As aresult, we obtain the following basic equation from (22), which is valid
if (21) takes place:

miF"- da-1F" - 3a-1R-3FF"= -mB sinml. (24)

Equation (24) resembles Eq. (3.17) from [7]. éAfEer integrating, we take a
constant of integration in the form ¢ =a0B(1- 8"~ R ). Then Eq. (24) may be

rewritten as
(F-2G4en 1)2+ qOE£O5F"™ = £cos2r. (25)

Here
r=ml/2, G="m~0£ 05R3/6, qO0=-dm2£ 05a02R 3/6, £= 4a2BR3/3.

This equation has a nonlinear term that tends to produce a ‘discontinuity’
solution. The second term, which is generated due to viscosity of the medium, is
responsible for the dispersion of the waves.
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3. Resonant Waves. InviscidMedium. For this case, Eq. (25) does not have a
smooth periodic solution with the same period as forced oscillations. Therefore,
following [7], we construct a discontinuous 2n/m-periodic solution of (25):

F = cosr, (26)

where 0< r < n. This solution is valid for exact resonance (G = 0). Now with the
help of (18), we can calculate the functions f (aot £ r). Then, taking into account
(15) and (11), the expression for p may be written. We recall again that (11)
does not take into account correctly the second-order values far from the
boundaries. Therefore, we must consider only the first-order terms in this
expression so that

p = Ver | ]}cos'lmt—maol(r —R)] +
+cosmt + ma0+(r —R )] —2a0m R ~sinA{mt —ma0 (r —R )] +

+2a0m—R —sin*[mt+ ma—(r —R)]j, (27)

where 0< mt+ ma—i(r —R) < 2n. Within subsequent intervals of length n, we

can find <p by the periodic continuation of cos’l[mti mao_l(r —R)] and

sin’l[mti mao_l(r—R)] in (27). As a result, the solution is obtained with the

same period as the forced oscillations. The function p is discontinuous along
straight lines: mt+ ma—(r —R)=2nn (n=0, 1, 2, 3, ...). Generally speaking,
solutions (26) and (27) take place near the shock jumps, where condition (21) is
valid.

Thus, according to the inviscid model of the material, resonant shock waves
may be excited in a sphere. These waves are the sum of the spherical
saw-tooth-like travelling waves. However, this result changes dramatically if we
take into account the spatial dispersion [the second term in Eq. (25)].

Effect o fSpatial Dispersion. Transresonant Process. If the combined effects
of the nonlinearity and the spatial dispersion compensate each other, then
soliton-like waves may be excited in the system. Following [8], we seek solutions
of (25) for this case in the form F = V«[2Gn—+ 0(r)cosr],where 0 (r) is an

unknown function. As a result, we obtain the following equation:
O" —20"tanr —O = "—(1—O0 2)cos . (28)

We assume that g0 << 1 We seek a localized fast varying solution of (28).
Let
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0 = {Asech2[y(sinM 1Ir- G)]+ C}cosr, (29)

where A, y,and C are constant values, and M =1,2,3,.... Solution (29) is
localized near the points, where sinM -1r”~ G. Solution (29) approximately

satisfies Eq. (28) if A=6q0y2M -2, y2=05M 2(1- g-1C), and C* = 4(q0 %
+Vq0+3/4)/3.1f q0<< Lthen C- ~-1, y2~ 0.59-IM 2,and A= 3 Forthe
latter case, the expression for F written for the travelling waves is as follows:

F(2a0Om 1pt)=2"Me Gn 1+
+ V~{3sech2[M (sinM -1pt - G)/\]2q0]- 1}cos2pz , (30)

1
A

1 1
where pt ="wt+ ~wa~ (r _ R). Strictly speaking, solution (30) is valid if

G ~ 0. Then condition (21) takes place. According to (30), when sinM 1p+ « G,

a peak of the function F(2aow 1p+ ) is generated and then a crater occurs. This

excitation resembles the so-called ‘oscillon” [9]. By contrast to oscillons,
expressions (30), (18), (15), and (11) describe travelling spherical oscillons.
Generally speaking, solution (30) defines a spectrum of subharmonic localized
waves if M =2,3,4,.... If M =1 oscillations are possible with a forced
frequency wt. Thus, near and at resonance, periodic resonant localized waves are
predicted by (30).

Now, using (18) and (15), it is possible to find f 1(£) and f 2(7). Then we
can write expressions for <p stresses, and velocity. However, we emphasise that
(11) does not take into account the second-order values far from the boundaries.
Therefore, we must only consider the first-order terms in the expressions. For
example, for the velocity we have

fr=_r 2[rf'(E)+f (E)]_r_2[rf'(]) _f (D], (31)
where the functions f (a0l r) are found approximately according to (30) and

(18):
f (a0lx r)= _(x)V3{2G~"_1+ 3sech2[(sinpx _ G)/-j2q0]cos2p+ _

_cos2px}+ alw_IR~14é{pt _ 4G~ _1p+ + 0.5sin2pt _
_2%j2q 0 tanh[(sinpx _ G)/l~yJ2q 0]} (32)
We assume here M = 1 At the same time, according to (18), we have

f "(aol+ r)=-R~IF(2aow_1p %), (33)
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where expression (30) is valid. One can see that the shape of the wave (31) may
be complex. At the same time, the most important contributions in (31) are

defined by expressions 3sech2[(sinpt —G)/y/2q0]cos2 p . Thus, near and at

resonance, the localized oscillating spherical waves are excited, which are quite
different from the well-known saw-tooth spherical waves.

Free Oscillations or Trapped Waves. Oscillations may be generated due to a
change in the velocity at r =R at the moment t=0. We assume that, after a
sufficiently long time, transient oscillations are damped, and we are interested in
free nonlinear steady-state oscillations. Oscillations with a frequency of are
considered. For this case, it follows from (24) that

6a—IF" + 1.5a—IR—3F 2 = c, (34)

where c¢ is some constant of integration. We assume that c is defined by the

1
In the latter expression, the second term localizes near the points * t =

=(K-1n (K=1 2, 3, ..). Then one can approximately find from (34):
El1=-(-0.66ca0R 3)°'5, E2=0.1875(5-1afa - 2(-0.66caOR-3)05, and A=

= - 3E1. For the travelling waves,

F (2a0a>~1p +)= E1[1- 3sech2(EsinQya> lpt)cos2Qya> lIpt]. (35)

Solution (35) is valid near the lines, where sinQym-1p+ ~ 0. Thus, if the
coefficient d ensures condition |E |>> 1, then nonlinear localized free spherical

waves may be generated in resonators. These waves are defined by expressions
(35), (18), (15), and (11).

4. Discussion. Thus, strongly localized spherical waves can travel within
resonators according to the above analysis. Now we can calculate the stresses and
velocity in the medium. We recall again that we must only consider the first-order
terms for them. For example, we have expression (31) for the velocity. Pictures of
the variation of the velocity pr£-0'5 are presented in Figs. 1-3. The

dimensionless time x and radius r/R are used, and (2q0)-0'5=3 and a0=

= 340 m/s. There is strong amplification of the waves near r = 0. Figures 1 and 2
display particularities of the transresonant process for the case of spherical waves.
It is known that passage through resonance is a classic problem. However, usually
one- or several-degree-of-freedom models are used. From Figures one can see
that sometimes the properties of nonlinear waves may be very important. The
waves depend on the excited frequency. They are localized and strongly amplified
at resonance (G =0). The fast varying waves transform into harmonic waves
when |G| increases. If |G| ~ 1, two-peak localized waves with small amplitude are
excited (Figs. 1 and 2). The process, which resembles a transresonant process,
takes place at resonance if the dissipative effect changes (Fig. 3).
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Fig. 1 Transresonant evolution of spherical waves (y = 1.4303, q0 = 0.02).

We have considered resonant localization of waves in spherical resonators.
On the one hand, these waves are strictly different from the waves in elongated
natural resonators [8, 10-12] and tubes [7, 12]. On the other hand, solutions (30)
and (35) resemble the expressions for travelling localized plane surface waves
(see solutions (35) and (39) from [8]). The localization of surface waves has been
considered recently [9, 13, 14]. These localized waves are usually observed in
parametrically excited dispersive systems [9-11, 13, 14].

Thus, solutions (30) and (35) of the perturbed wave equation describe a
variety of wave processes in dispersive systems. One can see from (25) that in
spherical systems dispersive effects are defined by viscous properties of the
material. Periodic localized oscillating spherical waves are generated because
spatial dispersive and nonlinear effects balance each other within the sphere.
Thus, smooth localized waves rather than shock waves are formed in the system.
This result agrees qualitatively with the data of numerical calculation [15].
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03172 3

Fig. 2. Transresonant evolution of spherical waves (y = 2.4590, q0 = 0.02).

Localization also takes place because of the wave focusing [1, 14]. The order of
the amplitude O(£05) ofresonant spherical waves is the same as for plane waves

in elongated resonators with fixed boundaries [7, 8, 10-12].

Resonant spherical nonlinear waves, in contrast to plane resonant waves,
practically were not studied. At the same time, a spherical model for the
simulation of different physical objects is very popular. Indeed, on the one hand,
the model of a pulsating sphere is widely used in astrophysics [16]. On the other
hand, this model is used to study sonoluminescence in liquids where the period of
oscillation and space distances are very small [15]. However, the competition
between nonlinear and spatial dispersive effects in resonant spherical systems has
not been studied. Due to this competition, the distortion of harmonic waves into
oscillating localized resonant waves can take place. Our study has been strictly
limited by the aspect of nonlinear acoustics. However, the results presented may
be interesting for various media and circumstances [10, 11, 17].
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Fig. 3. Localization of waves due to dissipative and spatial dispersive effects.

Pesome

BuBOANTLCA PIBHAHHA HENIHIMHOT aKyCTUKN A8 CPepUYHUX XBWUAb Y TBEPAOMY
Tini. HabnuxeHunii po3B’a30K LUbOr0 PiBHAHHA ypPaxoBYe HeNiHiHI, NPOCTOPOBI i
JucunaTuBHI eekTU. Y CTaHOB/EHO, WO Y TPaHCPE30HAHCHIW CMy3i 4acToT Mo-
XYTb 30y)KyBaTUCA HeNiHiHI cepuyHi xBuni, AKi BaXXKO KnacuikyBaTu sK
pobpe BigOMi COMWUTOH-, KHOIgan-, ygapHi abo 6pm3-tun xsuni. LLi pe3oHaHCHI
chepuyHi XBUNI TakKOX CYTTEBO BiApi3HAOTLCA Big Ao6pe BigOMMX TNagKux
cthepnmyHux xBunab. OpHak feski Bupasum Ans chepuyHMX XBW/b HaragyrTb
BiJOMi PO3B’3KMN A1 NOBEPXHEBUX XBW/b.
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