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YECKUX XAPAKMEPUCTIUK CLOSL U3 BA3KOYRPY2020 UHEPYUOHHO20 MAMEpUald.

Knroueswie cnosa: xonebanusi, CI0XKHAS CUCTEMA, BA3KOYIPYIHMI WHEPIHOHHBIH
3aIOJIHNTENb, AHAINTHYECKOE PELICHHE.

Introduction. Compound systems coupled together by elastic constraints
play an important role in various engineering and building structures. Vibration
problems in engineering were considered by Timoshenko [1]. Vibration analysis
for laminated plates is presented in [2-3] and in many other works. The
stress-strain state of laminated orthotropic nonhomogeneous plates and shells was
considered in [4-5]. Vibrations of an elastically connected rectangular
double-plate compound system with moving loads are given in [6].

Vibration analysis of layered systems with vibration damping is a difficult
problem. In the above complex cases, especially where viscosity and discrete
elements occur, it is recommended to adopt a method of solving a dynamic
problem for such a system in complex functions [7-8]. For the first time the
property of orthogonality of complex modes of free vibrations for discrete
systems with damping was presented in [7], for discrete-continuous systems with
damping in [8], and for continuous systems with damping in [15, 16].

The goal of this paper is to present the solution and dynamic analysis of free
and forced vibrations for a complex system with damping, which consists of a
plate, viscoelastic inerlayer, and stiff foundation.

Statement of the Problem. Let us consider a problem of free and forced
vibrations for a complex system with a viscoelastic inertial interlayer. The
external layers of the complex system are made from an elastic plate and stiff
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Fig. 1 Dynamic model for a complex system of an elastic plate with a viscoelastic inertial interlayer
resting on stiff foundation.

foundation and are shown in Fig. 1. The elastic plate is described by the
Kirchhoff-Love model and is simply supported at its ends. The viscoelastic
inertial interlayer has the characteristics of a homogeneous continuous
unidirectional Winkler’s foundation and was described by the Voigt-Kelvin
model [9-11].

In this paper, we consider two cases. In the first case, small-frequency
transverse vibrations of a complex system are exited by a stationary dynamic load
f 1(X,y ,t). In the second case, small-frequency transverse vibrations o}Ea complex
system are exited by a non-inertial moving load f :(Xx,y,t), y = v t with the

speed v *

The phenomenon of small-frequency transverse vibrations for an elastic plate
with a viscoelastic inertial interlayer resting on a stiff foundation is described by
the following non-homogeneous system of conjugate partial differential
equations:

d w1 N d zé‘dw
c— — =f 1(X
nr 1 dt) dz ¢z, 100D, ()
d2w
l+ C— \Eh =0, (2)
dt) dt
where
dw . MPw Mw
2Wi = — — + 2— +E @)
dx dx 2dy 2 dy
b E.h3 %
1D e —, 1= P1hl, x = ph.
12(1- \' ) (4)

Here w: = wi(X,y ,t), W(X,y ,z,t) are the transverse deflections of the plate and
the viscoelatic inertial interlayer, respectively, E1 and E are Young’s moduli of
the material of the plate and the interlayer, ¢ is the damping coefficient of the
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interlayer (retardation time), p; and p are the mass densities of the material of the
plate and the interlayer, respectively, A; and /1 are the thickness of the plate and
the interlayer, a and b are the dimensions of the plate, v » is Poisson’s ratio, x and
y are the coordinate axes, and f{(x,y,?) is the dynamic load acting on the
complex system.

Separation of Variables. Presenting the solution of the problem under
consideration in the form

|:W1(xayat)i|_|: Wl(xay)

W (x,y.2)

Wx.y.2.0) }exp(ivt) (5)

and substituting (5) in the system of differential equations (1), (2), by an
assumption that f|(x,y,f)=0, we obtain a homogeneous system of conjugate
ordinary differential equations describing complex modes of free vibration of the
plate and the viscoelastic inertial interlayer:

Jz z=0
d*w
—+ AW =0, (7)
dz
where
oW, atw, atw,
AWy =—21+2 L - (8)

ax* 8x28y2 dy

2
A= 2= 9)
Eh(1+ icv)

Here W (x,y) and W(x,y,z) are the complex modes of free vibration of the
plate and the interlayer, and v is the complex eigenfrequency of the complex
system with damping.

Solution of a Boundary Value Problem. The solution for the inertial
viscoelastic interlayer (7) is presented in the following form:

W(x,y,z)=Cy(x,y)sinAz + C,(x,y)cos Az, (10)

where C(x,y) and C,(x,y) are constant coefficients.
We have assumed the following geometric conditions:

W‘Z:():WI’ W‘Z:hzo (11)

On substitution of (10) and (11) in (7), Eq. (10) can be rewritten in the following
form:
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W(x,y,z)=W(x,y) (cos Az — ctg Az — ctg Ahsin Az). (12)

Substituting (12) in Eq. (6), we obtain
DN W, — [y ? + 1+ icv)Ehctg AW, =0. (13)
The solution for W, is similar to that in [1]:
Wi(x,y)= X1 ()Y (). (14)
Substituting (9) and (14) in (13), we can rewrite Eq. (13) in the following form:
Xy +2x{v + xy[" —ttxy, =0, (15)

where

1
g =D_1[,W2 + (1+ icv)EA ctg Ah]. (16)

The quantities X;(x) and Y,(y) can be separated as follows [1]:

YIH 2 YIIV 4
A = g2 DL =gt 17
Y, Y, ° (17

Representing the solution of the differential equation (15) in the forms of
X, =Aexp(rix) and Y, =Bexp(r,y), (18)
we obtain a characteristic equation in the form of an algebraic equation
' —2d° +(d* =D +d*)=0, d*=g* (19)

with the following roots:

rn=%ia,, a,=y-L>%C>, rn=%xif, f=d. (20)

The solution of the differential equation (6) consists of a system of solutions:

2
Wi(x,y)= 2:[A;k sina,x + A, cosa,x|[B*sinfy+ B cosBy], 21)

v=1

* EX #* EX .
where 4,, A, , B ,and B are constant coefficients.
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In order to solve the boundary value problem, the following boundary
conditions are used:

Wl‘x:():(), Wl‘x:azo’ Wl‘y:():(), Wl‘y:b=0,
d*w, o d*w, o d’wy|  _ 4w _o @
dx? Tt ’ dy2 ’ dy2

=0 =a =0 y=b

Substituting the sequences «, =ay, =« " and S "y in Egs. (12) and (21)

2

we obtain the following two complex sequences of free vibration modes for a
plate and viscoelastic inertial interlayer:

Winn, (x.y)=sina, xsinf3, y, (23)
Wnlnz(x,y,z)=sinanlxsinﬂnzy[cos}.hsin}.z], (24)

where
Gy =" B, =T m=123 e =123 (2)

For ry, = iianl and o, =% iﬂn2 , on substituting Egs. (16) and (25) in

(20) and carrying out the transformations, we obtain the following equation of
frequency:

2 2_2
nl J nzﬂ: 2
a2 + b2 T o mny (26)
where
1
2 2 .
Cnlnz = i\/D_[:uIV N, + (1+ ey mH, )E}"nlnz Ctg}"nlnzh] (27)
1
and

2
ny mny

=, |—, 28
W VER(+ v, ) @%)

from which a sequence of complex eigenfrequencies is determined:
annz = innlnz ia)nlnz’ (29)

Solution of the Initial Value Problem. Free vibration of a complex system
with a viscoelastic inertial interlayer is represented in the form of a Fourier series
based on the complex eigenfunctions, i.e.,
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Z Z W1n1n2 (x:y)

|:W1(x:y:t)i|= m= 1n2—1
2 ’Z’t
N DY WA

| m= 1 ny=1

D, EXP(V 1), (30)

where CI)n " 1s the Fourier coefficient.
1742

From the system of equations (6) and (7) performing some algebraic
transformations, adding the equations together and then integrating them on both
sides within the limits from 0 to 1, we obtain the property of orthogonality of
eigenfunctions for a complex system with an inertial viscoelastic interlayer:

a b
ff[i(vnwm)
00

h
AW, W + [ ,uWnWmdz]]dxdy+
0

nm 2

I ab
+c{{{dz dW’”dddz N,0 31)

where

=

Il
o S~—=a
o=

mhy

h
[21’1/ mny (u 1W1%zl n, t f U Wn%nz dz]] dxdy +
0

abh 2
+cfff( nlan dxdydz. (32)
000

Here 0,,, is Kronecker’s delta, and n=(n,,n,), m=(my,m,).
The following initial conditions are the basis for solving the problem of free
vibrations:

o o

wi(x,y 0)=wy, wi(x,y,z,0)=wo1, wu(x,y.0)=wy. (33)

By applying conditions (33) in series (30) and taking into account the property of
orthogonality (31), the formula for the complex Fourier coefficient is obtained:

a b 5 h
n1n2 - ff :ul(”/nlnlenanWOl +W1nln2 W01)+f:u nanWOdZ dxdy+
N”lnz 00
a b h den dw
+c — 12 270 ivdyds.
e o
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Free vibration of the complex system with a viscoelastic inertial interlayer is
obtained in the following form;

0 0
=3 S

Winyn, CI)”I”Z Cos(wnlnz E¥ Py + Ximny ): (35)

n1=1 n2=1

[ee) [ee)

— Mgyt

w= Z Ze . Wn1n2 (I)nlnz Cos(wnln2t+(pnln2 +Xn1n2 ), (36)

m=1 n,=1

where
‘Wlnlnz =mod Wi, » ‘Wnlnz = mod Woin, s

37
X lnyn, =arg W1n1n2 > X mny = argq)nlnz .

Solution of the Forced Vibration Problem. The first case concerns
stationary forced vibrations. Small-frequency transverse vibrations of a complex
system with damping are excited by dynamic loading f;(x,y,?) at the points x|
and y, varying in time ¢ (Fig. 1):

f1(x.y.0)= Pio(x —x¢)0(y = yo)sinwgt, (38)
where P, is the force, 0(x —x) and O(y — y,) are Dirac delta functions, and
wg 1s the real frequency of stationary forced vibrations.

The solution for complex modes of stationary forced vibrations for a
complex system with damping are written in the form

Wi(x, ) =Wy (x, )+ W, (x,p). (39)

The general solution of the differential equation (1) consists of the system of
solutions

2
Wl*(x,y) = 2:[A;k sina,, +A;* cosaux][B* sinfly +B" cos By]. (40)

v=1

In the case v =w, in Eq. (20)

o # oy =y-p+E5, ﬁ=%, (41)

where

1
2 =i\/D_[Mg (14 i YAy ctg Agh] (42)
1
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Here

2

Hag
A= =t —, 43
O\ ER(1+ icwy) “3)

from which the frequencies of real stationary forced vibrations are determined:
wq ={0...100000}.

The particular solution of the differential equation (1) consists of the system
of solutions

Wl (x)y):

2

P, 1 a b ' '
=L [ [sina, (x = 1))8(z, —x¢)sin f(y = 75 )00(T5 = yo ) d 5.
Dy H By

(44)
On substituting (40) and (44) into (39), the complex modes of the stationary

forced vibrations for a complex system with a viscoelastic inertial interlayer can
be written in the following form:

Wi(x,y)= (Al* sinax + A; sinazx)B* sin Sy +

Pl . 1 .
+-L —sina(x —xg)H(x —xy)+—sina,(x —xy) [ X
1L% %)

X%sinﬂ(y—yo)H(y—yo)- (45)

In order to solve the problem of forced vibrations, the boundary conditions

(22) have been applied. The constants occurring in Eq. (45) are described in the
following form:

1 sinay(a—xg)

A7 =4"=0, 4 =— . . A§=—i—sma,2(a_x°),
al Slnala az Slnaza
. 46
B**ZO’ B*z_ilsmﬂ'(b—yo) ( )
D, p sinfb

Forced vibrations of a complex system with damping are stationary and have
the following form:

wi(x,y,8) =Wi(x,y)exp(io 7). (47)

Substituting (39) into (47) and performing trigonometric and algebraic
transformations, we obtain forced vibrations of a complex system with a
viscoelastic inertial interlayer:
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w, = ‘Wl‘Sin((,()()t + ﬁl): (48)

where ‘Wl‘ is the amplitude of an elastic plate with a viscoelastic inertial
interlayer and ¥, is argl(x,y).

The second case concerns non-stationary forced vibrations. Small-frequency
transverse vibrations of a complex system with damping are excited by a
non-inertial moving load f(x,y,?) [12, 13] with the speed v (Fig. 1).

f1(x,y,0)=Po(y — ). (49)

Here P; is the force, o(y — ») is the Dirac delta function, y = v *t,x=0.5a,and

v" = const.
In order to solve the differential equations (1), (2). the function of the load
(49) is expanded by the operational method [14]:

1. 0= D W + 4, Vo (50)

m=1ln,=1

where Wlnln2 and Wnln2 have been described by Eqgs. (23) and (24).

The function of the displacement of a complex system with damping is
presented in the form of a Fourier series as

wi|_ T W1n1n2
{W}_Z Z|:Wnn :|T”1”2’ (51)
m=1ny=1 172

Substituting (50) and (51) into the differential equations (1), (2), we obtain
the following equation of motion:

o

T”lnz Wnlnz 1y fn1n2 (52)

where 7’ iy is the coefficient of the distribution of the dynamic loading function

in the Fourier series.
Applying the property of orthogonality of eigenfunction (31), we derive
formulas for the coefficients of load distribution, namely:

a b h
umy = 53— W [ W, () + f Wi, (.3, 2)dz |Pi6(y — ¥)dxdy.
1Y mny 00

(53)
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The solution of the differential equation (52) has the form [14]

;!
Toymy, = n/—f [eXP( W& = T) = 11y, (7). (54)

mhy 0

On substituting (53) and (54) into (51), Eq. (51) can be rewritten in the
following form:

w = Z Z‘Wlnlnz Tnlnz Cos(ﬁlnlnz + Cnlnz ): (55)
m=1n,=1
w= Z Z‘Wnlnz Tnlnz Cos(ﬁnlnz +Cn1n2 ), (56)

m=1n,=1

where

ﬁlnlnz =arg W1n1n2 » ﬁnlnz =arg Wn1n2 » Enlnz =arg Tnlnz . (57)

Calculations. The calculations for a complex system with a viscoelastic
inertial interlayer are presented. The external layers of the complex system are
made of an elastic plate and stiff foundation. The thickness and mechanical
characteristics of the plate, foundation, and the interlayer do not change.

Numerical results are presented for the same parameters: £, =10'" N-m™>

p1=2-10 N-s*> m™*, v, =03, y=02m, h=05m P=2-10"N,
a=10m, h=1000m, c=25s, and v’ =120 m-s ~.

The amplitude-frequency diagrams for a complex system with damping for
real stationary frequencies in the range 0<w, <100000 are presented in
Figs. 2-3.

In the first case, small-frequency transverse vibrations of the complex system
are excited by the force f(x,y,6)=P,0(x —x)0(y — y,)sin(w?) acting at the
point x5 =0.5a, yo=05b and varying in time ¢. The amplitude-frequency
diagrams of the complex system are presented in Fig. 2. Changes in the amplitude
‘Wl‘ for the complex system at the point x = 0.55a, y =0.55h (variant “a”) and at
the point x =0.7a, y =0.8b (variant “b”) are also given there. In the case of
variant “b” considered, the amplitude ‘Wz of the complex system is 50% smaller
than the amplitude ‘Wl‘ of the complex system for variant “a”.

The changes in the amplitude ‘Wl‘ of the viscoelastic inertial interlayer at the
point x =0.7a, y =0.8h are shown in Fig. 3 for two thicknesses of the interlayer.
In variant “a” for the thickness z=10.24, the amplitude ‘Wl‘ of the interlayer is
36% smaller than the amplitude of the plate for z=0. In variant “b” for the
thickness z= 0.5k, the amplitude [#,| of the interlayer is 65% smaller than the
amplitude of the plate for z = 0. After analyzing the results presented in Figs. 2-3,
we state that a viscoelastic inertial interlayer can be a vibration damper for a plate
loaded by the force f(x,y,t) acting at the point x,, ¥4 and varying in time ¢.
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b

Fig. 2 The amplitude-frequency diagrams for an elastic plate with a viscoelastic inertial interlayer at
the points: (@) x —0.55a, y —0.550; (b) x —0.7a, y —0.8b.

Fig. 3. The amplitude-frequency diagrams for an elastic plate with a viscoelastic inertial interlayer at
the points: (@) x —0.7a, y —0.8b, z—0.2k; (b) x —0.73, y —0.80, z—0.5h.
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Fig. 4. The trajectory of dynamic displacement of a moving point of an elastic plate with a
viscoelastic inertial interlayer for the concentrated non-inertial moving force for x = 0.5a for time
t=003s

In the second case, small-frequency transverse vibrations of a complex
system are exited by the moving concentrated force f 1(X,y ,t)= P:d(y —y) with
the speed v .The effect of the non-inertial moving force in the complex system

with an inertial viscoelastic interlayer is presented in diagram 4. The diagram
shows the real part of the trajectory of dynamic displgcement of a moving point of
the complex system wi(x,y,t) for x=0.5a,y = v t for time t= 0.03 s.

A model for a complex system consisting of an elastic plate with a
viscoelastic inertial interlayer resting on a stiff foundation can play the role of a
runway in an airport. In the first case, we might have been considering free and
forced vibrations of an aircraft, which touches the runway of the airport. In the
second case, we might have been considering the trajectory of dynamic
displacement of an aircraft moving with the speed v * after touching the runway

of the airport. A complex system with a viscoelastic inertial interlayer of big
thickness can be used for damping vibrations in practical problems.

Complex modes of free vibrations and the property of orthogonality of those
modes presented in this paper are the basis for solving the problems of free and
forced vibrations of a complex system with a viscoelastic inertial interlayer.

Pe3ome

3anponoHoBaHO aHaNiTUYHWIA MeTOL PO3B’A3KY 3a4ay LLOA0 3racaHHs BiflbHUX Ta
BUMYLUEHUX KOMMBaHb CKNafHUX CUCTEM, HECYHi Luapu SKUX BUKOHAHO 3 OfHO-
PigHOrO MPYXXHOro, a CepefHiin - 3 B’A3KOMPYXXHOro iHepuiiHOro marepiany.
Mani nonepeyHi KONUBAHHA CKNaAHUX CUCTEM 3YMOBJEHI PO3NOLiNeHUM i pyxo-
MUM HaBaHTaXXEHHSIM. BMKOHaHO AUHaMIYHWIA aHani3 LWapyBaTUX KOHCTPYKLUIW Yy
LUMPOKOMY fiana3oHi 3MiHW reOMEeTPUYHMX | MeXaHIYHNX XapaKTepPUCTUK Liapy 3
B’A3KOMPY>XHOTrO iHepLiiHOro marepiany.
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