УДК 539.3:666.233

Компьютерное моделирование физико-механических процессов в реакционной ячейке аппаратов высокого давления при синтезе алмазов

А. А. Лещук^а, Н. В. Новиков^а, В. И. Левитас⁶

^а Институт сверхтвердых материалов им. В. Н. Бакуля НАН Украины, Киев, Украина

⁶ Техасский технический университет, Лаббок, Техас, США

Рассмотрено конечноэлементное моделирование связанных нелинейных нестационарных процессов электро-, теплопроводности и термопластичности с учетом фазовых переходов в материалах. В качестве практического приложения разработана методика компьютерного моделирования процесса спонтанной кристаллизации алмазов. Решена задача по определению полей температуры, напряжений и концентраций фаз в реакционном объеме аппарата высокого давления и в локальной системе алмаз-расплав-графит в процессе кристаллизации алмазов. Установлены существенная связанность этих полей, взаимовлияние решений для реакционной смеси и локальной системы, эффект саморегуляции давления в реакционной зоне, заключающийся в колебательном характере изменения давления относительно линии фазового перехода графит–алмаз.

Ключевые слова: давление, температура, концентрация, алмаз, графит, металлический расплав, компьютерное моделирование, фазовый переход, конечноэлементная модель.

Введение. Для специалистов в области технологии синтеза алмазов с исследовательской и практической точек зрения всегда актуальна задача, которую можно решить, объединив методы термомеханики сплошных сред, вычислительной механики, компьютерного материаловедения: прогнозирование распределений давления и температуры в реакционной ячейке аппарата высокого давления (АВД) с целью совершенствования существующих и разработки новых технологий синтеза алмазов.

Известно, что алмазы высокого качества могут быть получены только вблизи линии фазового равновесия графит–алмаз (А. В. Курдюмов, А. И. Пилянкевич, 1979 г.; Н. В. Новиков и др., 1987 г.). Как следует из экспериментов и расчетов, температура и давление распределяются в реакционном объеме АВД существенно неоднородно. Возникает вопрос, как получить высококачественные алмазы в таких неоднородных условиях. Чтобы ответить на него, можно использовать полученные нами результаты численного моделирования процесса синтеза алмазов.

Рассмотрим процессы, протекающие в реакционном объеме АВД с момента начала нагрева. До нагрева реакционный объем представляет собой сжатую порошковую смесь (до давлений 4-5 ГПа) графита и мелких частиц сплава-растворителя углерода. Его нагрев осуществляется путем пропускания электрического тока и, как следствие, выделения джоулева тепла. При нагреве происходит перераспределение напряженного состояния АВД. По достижении определенных значений давления (~ 5,5 ГПа) и температуры

© А. А. ЛЕЩУК, Н. В. НОВИКОВ, В. И. ЛЕВИТАС, 2001 108 ISSN 0556-171Х. Проблемы прочности, 2001, № 3 (~1300°С) в реакционном объеме происходит фазовое превращение углерода: начинается рост алмазных частиц в металлическом расплаве на центрах кристаллизации, представляющих собой углеродные кластеры. Спонтанная кристаллизация алмазных частиц происходит в результате наложения различных физико-механических процессов: резистивного электронагрева и теплопереноса, термоупругопластического деформирования, фазовых превращений.

В настоящей работе рассматривается общая термомеханическая модель спонтанной кристаллизации алмазов в АВД. Ее использование позволяет вычислить оптимальные *p*,*T*-условия алмазной кристаллизации и анализировать кинетику процесса синтеза алмазов на двух масштабных уровнях (рис. 1): 1-й уровень (макроуровень) – весь АВД с эффективными значениями физических свойств материала реакционного объема; 2-й уровень (локальный) – сдиничная частица алмаза, растущая в металлическом расплаве.

Рис. 1. Схема для расчета процесса спонтанной кристаллизации алмазов в АВД на двух масштабных уровнях: *1* – реакционный объем; *2* – деформированный контейнер.

Термомеханическая модель. Моделирование термомеханического состояния реакционной ячейки в процессе кристаллизации алмазов может быть осуществлено путем решения замкнутой системы связанных уравнений механики сплошной среды [1].

1. Квазистационарные уравнения электростатики:

$$\operatorname{div}[\gamma(p,T,x,\mathbf{r})\operatorname{grad}\varphi(t)] = 0;$$

$$\varphi(\mathbf{r}_{S_{\varphi}},t) = f_1(\mathbf{r}_{S_{\varphi}},t), \quad i_n(\mathbf{r}_{S_i},t) = -\mathbf{n} \cdot \gamma(p,T,x,\mathbf{r}_{S_i})\operatorname{grad}\varphi(t), \tag{1}$$

где γ – коэффициент электропроводности; p – давление; T – температура; x – концентрация компонентов; **г** – радиус-вектор точек рассматриваемой области АВД V с граничной поверхностью S; φ – электрический потенциал; t – время; f_1 – известная функция; i_n – проекция вектора плотности тока на направление внешней нормали **n** к S_i ; $S = S_{\varphi} + S_i$.

А. А. Лещук, Н. В. Новиков, В. И. Левитас

2. Нелинейные уравнения нестационарной теплопроводности:

$$c(p,T,x,\mathbf{r})\rho(p,T,x,\mathbf{r})\frac{\partial T}{\partial t} =$$

$$= \operatorname{div}[\lambda(p,T,x,\mathbf{r})\operatorname{grad} T] + \gamma(p,T,x,\mathbf{r})|\operatorname{grad} \varphi(t)|^{2};$$

$$T(\mathbf{r}_{S_{T}},t) = f_{2}(\mathbf{r}_{S_{T}},t); \quad h_{n}(\mathbf{r}_{S_{h}},t) = -\mathbf{n} \cdot \lambda(p,T,x,\mathbf{r}_{S_{h}})\operatorname{grad} T;$$

$$h_{n}(\mathbf{r}_{S_{\alpha}},t) = \alpha(\mathbf{r}_{S_{\alpha}})[T - \Theta(\mathbf{r}_{S_{\alpha}},t)] = -\mathbf{n} \cdot \lambda(p,T,x,\mathbf{r}_{S_{h}})\operatorname{grad} T;$$

$$T(\mathbf{r},t_{0}) = T_{H}(\mathbf{r}),$$

$$(2)$$

где c – теплоемкость; ρ – плотность; λ – коэффициент теплопроводности; $\gamma |\text{grad } \varphi|^2$ – плотность источников джоулева тепла; h_n – проекция вектора теплового потока на внешнюю нормаль **n** к S_h ; α – коэффициент теплоотдачи; Θ – температура окружающей среды; $S = S_T + S_h + S_\alpha$; t_0 – момент времени, с которого начинается рассмотрение процесса электронагрева; f_2 и $T_{\rm H}$ – известные функции.

3. Уравнения теории пластического течения.

3.1. Уравнения равновесия:

$$\frac{\partial \hat{\sigma}}{\partial \mathbf{r}} = 0, \tag{3}$$

где $\hat{\sigma}$ – тензор истинных напряжений Коши; **r** – радиус-вектор точек объема V' в деформированном состоянии.

3.2. Геометрические соотношения:

$$\begin{cases} \mathbf{F} = \mathbf{F}_{e} \cdot \mathbf{U}_{T} \cdot \mathbf{U}_{f} \cdot \mathbf{U}_{p}; & d\mathbf{r} = \dot{\mathbf{u}}dt; \\ \mathbf{d} = \frac{1}{2} \left[\frac{\partial \dot{\mathbf{u}}}{\partial \mathbf{r}} + \left(\frac{\partial \dot{\mathbf{u}}}{\partial \mathbf{r}} \right)^{\mathrm{T}} \right]; & \mathbf{w} = \frac{1}{2} \left[\frac{\partial \dot{\mathbf{u}}}{\partial \mathbf{r}} - \left(\frac{\partial \dot{\mathbf{u}}}{\partial \mathbf{r}} \right)^{\mathrm{T}} \right]; & \mathbf{d} = \frac{1}{\mu} (\hat{\mathbf{B}}_{e} + v\mathbf{I}) + \mathbf{d}_{p}; \\ \hat{\mathbf{B}}_{e} = \dot{\mathbf{B}}_{e} + \mathbf{B}_{e} \cdot \mathbf{w} + \mathbf{w}^{\mathrm{T}} \cdot \mathbf{B}_{e}; & \mu = \frac{a^{2}}{\beta^{2}}; & v = \frac{\beta a^{2}}{\beta^{3}}; \\ \beta = \left[\alpha_{T}(T, x)T + 1 \right] \sqrt[3]{\frac{\rho_{0}(x_{\mathrm{T}}, x_{\mathrm{M}})}{\rho(x_{\mathrm{a}}, x_{\mathrm{T}}, x_{\mathrm{M}})}; & a^{2} = \frac{2}{3} \left[\beta^{2} I_{1}(\mathbf{B}_{e}) + \frac{3}{2}(\beta^{2} - 1) \right] + 1, \end{cases}$$
(4)

где **F** – градиент полной деформации; **F**_e, **U**_p – градиенты упругой и пластической деформации; **U**_T = $(\alpha_T + 1)$ **I** – градиент температурной деформации; α_T – коэффициент температурного расширения (КТР); **I** – единичный тензор; **U**_f = $\sqrt[3]{\rho_0(x_r, x_M)/\rho(x_a, x_r, x_M)}$ **I** – градиент деформации перехода графит \rightarrow алмаз; ρ_0 , ρ – плотность реакционной смеси при нормальных условиях до и после образования алмазов; x_M = const, $x_r = 1 - x_a - x_M$; **ù** – вектор скорости перемещения; **d**, **d**_p, **w** – тензоры скорости деформации,

скорости пластической деформации, вихря; $\hat{\mathbf{B}}_{e}$ – производная Яумана от тензора меры упругой деформации Фингера \mathbf{B}_{e} ; $I_{1}(\mathbf{B}_{e})$ – первый инвариант тензора \mathbf{B}_{e} .

3.3. Физические уравнения:

 $\mathbf{d}_{p} = \xi \mathbf{S}$ – закон пластического течения;

$$\begin{cases} \boldsymbol{\xi} = \frac{1}{\chi} \left[\frac{\partial F}{\partial \hat{\sigma}} : \dot{\mathbf{E}} : \mathbf{B}_{e} + \frac{\partial F}{\partial \hat{\sigma}} : \mathbf{E} : (\mu \mathbf{d} - v \mathbf{I}) + \frac{\partial F}{\partial T} \dot{T} \right]; \quad \mathbf{S} = \hat{\sigma} - \sigma_{0} \mathbf{I}; \\ \boldsymbol{\xi} = \left(\mathbf{E} - \delta \frac{\mu}{\chi} \mathbf{E} : \mathbf{S} \frac{\partial F}{\partial \hat{\sigma}} : \mathbf{E} \right) : (\mu \mathbf{d} - v \mathbf{I}) + \dot{\mathbf{E}} : \mathbf{B}_{e} - \delta \frac{\mu}{\chi} \left(\frac{\partial F}{\partial \hat{\sigma}} : \dot{\mathbf{E}} : \mathbf{B}_{e} + \frac{\partial F}{\partial T} \dot{T} \right) \mathbf{E} : \mathbf{S}; \quad (5) \\ \boldsymbol{\chi} = \mu \frac{\partial F}{\partial \hat{\sigma}} : \mathbf{E} : \mathbf{S} - \frac{\partial F}{\partial q} \left(\frac{2}{3} \mathbf{S} : \mathbf{S} \right)^{1/2}; \quad q = \int \left(\frac{2}{3} \mathbf{d}_{p} : \mathbf{d}_{p} \right)^{1/2} dt, \end{cases}$$

где **S** – девиатор тензора $\hat{\sigma}$; q – параметр Одквиста; $F(\hat{\sigma},q,T)$ – функция нагружения; **E** – изотропный тензор упругих постоянных, в котором постоянные Ламе зависят от σ_0, T, x_a ; $\delta = 0, F < 0, \mathbf{d}_p = 0$ – в упругой области; $\delta = 1, F = 0$ – в пластической области.

3.4. Краевые условия:

$$\hat{\sigma}(\mathbf{r},t_0) = \hat{\sigma}_{\mathrm{H}}(\mathbf{r}); \quad q(\mathbf{r},t_0) = q_{\mathrm{H}}(\mathbf{r});$$

$$\mathbf{u}(\mathbf{r}_{S_u},t) = \mathbf{u}_{\mathrm{H}}(\mathbf{r}_{S_u},t); \quad \hat{\sigma}(\mathbf{r}_{S_\sigma},t) \cdot \mathbf{n} = \mathbf{p}(\mathbf{r}_{S_\sigma},t); \quad S' = S_u + S_\sigma,$$

где **u** – вектор перемещений; **p** – вектор поверхностных сил; **n** – вектор внешней нормали к S_{σ} ; $\hat{\sigma}_{\rm H}$, $q_{\rm H}$, $\mathbf{u}_{\rm H}$ – заданные параметры.

4. Кинетическое уравнение фазового перехода графит → алмаз:

$$\dot{x}_{a}^{m} = Ahe^{-At^{h}}t^{h-1}; \quad A = Be^{-Q_{a}/RT},$$

где \dot{x}_{a}^{m} – скорость изменения массовой концентрации алмазных частиц; h, B – константы; Q_{a} – энергия активации перехода графит – алмаз; R – универсальная газовая постоянная.

5. Критерий фазового перехода графит > алмаз:

$$T > T_{\rm III}(p); \quad p > \frac{\partial \int \psi dV}{\partial R_{\rm a}} / \frac{\partial u_{\rm r}}{\partial R_{\rm a}} S_{\rm a},$$

где $T_{\rm пл}$ – температура плавления сплава-растворителя углерода; ψ – свободная энергия локальной системы (рис. 1,6); $R_{\rm a}$ – радиус алмазного зародыша; $u_{\rm r}$ – радиальное перемещение наружной поверхности графитового слоя; $S_{\rm a}$ – площадь поверхности алмазного зародыша.

6. Уравнения термоупругости для локального уровня:

$$\begin{aligned} \frac{d\sigma_r}{dr} + \frac{2}{r}(\sigma_r - \sigma_\theta) &= 0; \quad \varepsilon_r = \frac{du}{dr}; \quad \varepsilon_\theta = \frac{u}{r}; \\ \sigma_r &= \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)\varepsilon_r + 2\nu\varepsilon_\theta] - \frac{E(\alpha T + \varepsilon_f)}{1-2\nu}; \\ \sigma_\theta &= \frac{E}{(1+\nu)(1-2\nu)} [\varepsilon_\theta + \nu\varepsilon_r] - \frac{E(\alpha T + \varepsilon_f)}{1-2\nu}, \end{aligned}$$

где E, ν, α – соответственно модуль Юнга, коэффициент Пуассона и КТР; $\varepsilon_r, \varepsilon_{\theta}, \sigma_r, \sigma_{\theta}$ – радиальные и тангенциальные деформации и напряжения соответственно; $\varepsilon_f = (\rho_r - \rho_a)/3\rho_r$ – линейная фазовая деформация; ρ_r и ρ_a – соответственно плотность графита и алмаза; u – радиальное перемещение.

Связанность определяющих соотношений обусловлена зависимостью физико-механических характеристик материалов элементов реакционной ячейки от давления, температуры, концентрации компонентов реакционной среды и принятием критерия фазового перехода (*p*,*T*-условие), который определяет область кристаллизации алмазов. Замкнутость системы уравнений на разных масштабных уровнях устанавливается через модули реакционной смеси, которые определяются интегрально по объему из решения задачи для локальной системы алмаз – металлический расплав – графит:

$$K^* = \frac{p(r,z)}{\varepsilon_e^V(r,z)}; \quad G^* = \frac{1}{V} \int_{V_r} G_r dV; \quad \alpha^* = \frac{\varepsilon_T^V(r,z)}{3T(r,z)}; \quad \varepsilon^V = \varepsilon_e^V + \varepsilon_T^V + \varepsilon_f^V,$$

где K^* , G^* , α^* – эффективные значения модулей объемного сжатия, сдвига и линейного КТР реакционной смеси; ε^V , ε_e^V , ε_T^V , ε_f^V – объемная деформация локальной системы и, соответственно, ее упругая, температурная и фазовая составляющие.

Конечноэлементная модель. Совместный расчет электрических, тепловых, механических, концентрационных полей в элементах АВД в процессе спонтанной алмазной кристаллизации выполняется путем численного решения связанной задачи механики сплошной среды. Решение такой задачи предполагает поэтапное применение численных методик для расчета каждого поля в отдельности с дальнейшим объединением всех методик в единый вычислительный алгоритм, учитывающий связанность всех полей. Рассмотрим особенности конечноэлементных моделей для задач тепло-, электропроводности, термопластичности с учетом фазовых переходов материалов, особенностей конструкции АВД, зависимости свойств материалов от температуры, давления и концентрации компонентов реакционной среды [2]. 1. Теплопроводность. Краевая задача теплопроводности (2) в конечноэлементной постановке сводится к вариационной задаче об определении минимума некоторого функционала [3], который в осесимметричном случае принимает вид

$$\chi = \int_{S} \left[\frac{1}{2} \lambda(p, T, x, \mathbf{r}) | \operatorname{grad} T |^{2} - \gamma(p, T, x, \mathbf{r}) | \operatorname{grad} \varphi |^{2} T + c(p, T, x, \mathbf{r}) \rho(p, T, x, \mathbf{r}) \frac{\partial T}{\partial t} T \right] 2\pi r dS + \int_{L_{h}} h_{n}(\mathbf{r}, t) T 2\pi r dL + \frac{1}{2} \int_{L_{\alpha}} \alpha(\mathbf{r}) [T - \Theta(\mathbf{r}, t)]^{2} 2\pi r dL,$$
(6)

где S – площадь осевого сечения; L_h и L_α – части границы $L = L_T + L_h + L_\alpha$ площади S, на которых заданы тепловой поток и условия конвективного теплообмена соответственно; h_n – проекция вектора теплового потока на внешнюю нормаль к L_h . Процедура построения решения с использованием функционала (6) предполагает также учет температуры, заданной на границе L_T , и начального условия $T(\mathbf{r}, t_0)$.

В соответствии с порядком построения разрешающей системы уравнений методом конечных элементов (МКЭ) определим искомую функцию температуры для треугольного элемента *e* с узлами *i*, *j*, *k*:

$$T^{e} = [N_{i} \ N_{j} \ N_{k}][T_{i} \ T_{j} \ T_{k}]^{\mathrm{T}} = [N]\{T\}^{e}.$$
(7)

Здесь N_m – функции формы элемента, $N_m = a_m + b_m r + c_m z$ (m = i, j, k). Константы a_m, b_m, c_m определяются по соотношениям [3]:

$$a_{i} = \frac{1}{2S^{e}}(x_{j}y_{k} - x_{k}y_{j}); \quad b_{i} = \frac{1}{2S^{e}}(y_{j} - y_{k}); \quad c_{i} = \frac{1}{2S^{e}}(x_{k} - x_{j}), \quad (8)$$

где 2*S*^{*e*} = det $\begin{bmatrix} 1 & x_i & y_i \\ 1 & x_j & y_j \\ 1 & x_k & y_k \end{bmatrix}$ – удвоенная площадь элемента *е*. Постоянные

 a_j, b_j, c_j и a_k, b_k, c_k определяются из (8) путем циклической перестановки.

Минимизируя функционал (6), определяем вклад каждого элемента в общую систему уравнений. При этом в пределах элемента значения c, ρ, λ и γ в фиксированный момент времени постоянны и вычисляются в центре тяжести элемента. Кроме того, на соответствующих сторонах граничных элементов значения h_n, α и Θ постоянны и вычисляются в центре этих сторон. В результате имеем

$$\begin{split} \frac{\partial \chi^{e}}{\partial T_{m}} &= \int_{S^{e}} \left\{ \lambda(p^{e}, T^{e}, x^{e}) \left[\frac{\partial T^{e}}{\partial r} \frac{\partial}{\partial T_{m}} \left(\frac{\partial T^{e}}{\partial r} \right) + \frac{\partial T^{e}}{\partial z} \frac{\partial}{\partial T_{m}} \left(\frac{\partial T^{e}}{\partial z} \right) \right] \right] - \\ &- \gamma(p^{e}, T^{e}, x^{e}) \left[\left(\frac{\partial \varphi}{\partial r} \right)^{2} + \left(\frac{\partial \varphi}{\partial z} \right)^{2} \right] \frac{\partial T^{e}}{\partial T_{m}} + \\ &+ c(p^{e}, T^{e}, x^{e}) \rho(p^{e}, T^{e}, x^{e}) \frac{\partial T^{e}}{\partial t} \frac{\partial T^{e}}{\partial T_{m}} \right\} 2\pi r dS + \\ &+ h_{n}^{e}(t) \int_{L_{h}^{e}} \frac{\partial T^{e}}{\partial T_{m}} 2\pi r dL + \alpha^{e} \int_{L_{\alpha}^{e}} \left[T^{e} \frac{\partial T^{e}}{\partial T_{m}} - \Theta^{e}(t) \frac{\partial T^{e}}{\partial T_{m}} \right] 2\pi r dL, \quad m = i, j, k. \end{split}$$

Подставив в последнее выражение интерполяционную формулу (7) и ее производную по времени $\partial T^e / \partial t = [N]\partial \{T\}^e / \partial t$, получим систему уравнений для элемента:

$$\frac{\partial \chi^{e}}{\partial \{T\}^{e}} = [h(p^{e}, T^{e}, x^{e})]^{e} \{T\}^{e} + [g(p^{e}, T^{e}, x^{e})]^{e} \frac{\partial \{T\}^{e}}{\partial t} + \{f(t)\}^{e}.$$

Здесь [h]^e – матрица теплопроводности элемента:

$$[h(p^{e}, T^{e}, x^{e})]^{e} = \lambda(p^{e}, T^{e}, x^{e}) \int_{S^{e}} [B]^{\mathsf{T}} [B] 2\pi r dS + \alpha^{e} \int_{L_{\alpha}^{e}} [N]^{\mathsf{T}} [N] 2\pi r dL,$$
(9)

где [B]^т – матрица производных от функций формы,

$$\begin{bmatrix} \boldsymbol{B} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \frac{\partial N_i}{\partial r} & \frac{\partial N_i}{\partial z} \\ \frac{\partial N_j}{\partial r} & \frac{\partial N_j}{\partial z} \\ \frac{\partial N_k}{\partial r} & \frac{\partial N_k}{\partial z} \end{bmatrix};$$

[g]^e – матрица теплоемкости элемента:

$$[g(p^{e}, T^{e}, x^{e})]^{e} = c(p^{e}, T^{e}, x^{e})\rho(p^{e}, T^{e}, x^{e}) \int_{S^{e}} [N]^{\mathsf{T}}[N] 2\pi r dS;$$
(10)

 ${f}^{e}$ – вектор-столбец правых частей, учитывающий действие внутренних источников тепла, теплового потока и конвективного теплообмена на границе:

$$\{f(t)\}^{e} = -\gamma(p^{e}, T^{e}, x^{e}) \left| \operatorname{grad} \varphi(t) \right|^{2} \int_{S^{e}} [N]^{\mathrm{T}} 2\pi r dS + h_{n}^{e}(t) \int_{L_{h}^{e}} [N]^{\mathrm{T}} 2\pi r dL - \alpha^{e} \Theta^{e}(t) \int_{L_{\alpha}^{e}} [N]^{\mathrm{T}} 2\pi r dL.$$

$$(11)$$

Система уравнений для всей области относительно неизвестных узловых значений $\{T\}$ получена из условия минимума функционала (1):

$$\frac{\partial \chi}{\partial \{T\}} = [H(p,T,x)]\{T\} + [G(p,T,x)]\frac{\partial \{T\}}{\partial t} + \{F_T(\varphi,t)\} = 0,$$
(12)

где $[H] = \sum_{e} [h]^{e}, [G] = \sum_{e} [g]^{e}, [F_{T}] = \sum_{e} [f]^{e}$ – соответственно матрица теплопроводности, теплоемкости и вектор-столбец правых частей системы

элементов.

Как видно, (12) представляет собой систему дифференциальных уравнений первого порядка. Для замены этой системы конечно-разностным аналогом запишем уравнение изменения температуры на временном интервале $[\tau, \tau + \Delta \tau]$ через некоторый весовой множитель ω :

$$T(t) = (1 - \omega)T_{\tau} + \omega T_{\tau + \Delta t}, \quad t = \tau + \omega \Delta t, \quad 0 \le \omega \le 1,$$
(13)

откуда

$$\frac{\partial T}{\partial t} = \frac{\partial T}{\partial \omega} \frac{\partial \omega}{\partial t} = \frac{T_{\tau + \Delta t} - T_{\tau}}{\Delta t}, \qquad (14)$$

где $T_{\tau+\Delta t}$ и T_{τ} – температура соответственно в конце и в начале временного интервала. Подставляя (13) и (14) в (12) и полагая { F_T } в пределах временного интервала неизменным, получаем семейство двухслойных разностных схем:

$$\left\{\omega[H(p,T,x)] + \frac{1}{\Delta t}[G(p,T,x)]\right\}\{T\}_{\tau+\Delta t} =$$

$$= \left\{ (\omega - 1)[H(p, T, x)] + \frac{1}{\Delta t} [G(p, T, x)] \right\} \{T\}_{\tau} - \{F_T(\varphi)\}.$$
(15)

Отметим, что решение системы (15) должно удовлетворять заданным значениям температуры в граничных узлах [4].

Запишем уравнения (15) в окончательном виде:

$$[A(p,T,x)]\{T\}_{\tau+\Delta t} = [P(p,T,x)]\{T\}_{\tau} - \{F_T(\varphi)\}.$$
(16)

Матрицы [A] и [P] являются комбинациями матриц [H] и [G]. Полагая узловые значения температуры в начале временного интервала $\{T\}_{\tau}$ известными и решая (16), получаем температуру в конце интервала $\{T\}_{\tau+\Lambda t}$.

В случае установившегося теплопереноса в функционале (6) отсутствует слагаемое, содержащее производную $\partial T / \partial t$, и соответствующие параметры не зависят от *t*. Это приводит к разрешающей системе уравнений:

$$[H(p,T,x)]{T} + {F_T(\varphi)} = 0.$$
(17)

Принципиальным является вопрос интегрирования уравнений (9)–(11), которое можно проводить как численно, так и точно. Последний случай – более удобен при использовании формул интегрирования произведений степеней *L*-координат, которые в треугольном элементе служат функциями формы. Указанный способ подробно рассмотрен в [3, 4], где соответствующие матрицы для треугольного элемента расписаны в конечном виде.

Таким образом, решение нелинейных задач теплопроводности МКЭ сводится к решению систем квазилинейных алгебраических уравнений (16) или (17).

2. Электропроводность. Поскольку уравнения установившихся электрои теплопереноса изоморфны, вариационный функционал для краевой задачи электропроводности (1) запишем по аналогии с (6):

$$\chi = \int_{S} \frac{1}{2} \gamma(p, T, x, \mathbf{r}) \left| \operatorname{grad} \varphi \right|^{2} 2\pi r dS + \int_{L_{i}} i_{n}(\mathbf{r}, t) \varphi 2\pi r dL,$$
(18)

где L_i – часть границы L площади S, на которой задана плотность тока; i_n – проекция вектора плотности тока на внешнюю нормаль к L_i .

Искомую функцию электрического потенциала в элементе определим через ее узловые значения:

$$\varphi^{e} = [N_{i} \ N_{j} \ N_{k}] [\varphi_{i} \ \varphi_{j} \ \varphi_{k}]^{\mathrm{T}} = [N] \{\varphi\}^{e}.$$
(19)

Проводя известную процедуру минимизации (18) на классе аппроксимирующих функций (19), придем к разрешающей системе уравнений МКЭ типа (17):

$$[H_{\mathfrak{H}}(p,T,x)]\{\varphi\} + \{F_{\mathfrak{H}}(t)\} = 0,$$
(20)

где $[H_3] = \sum_{e} [h_3]^e, \{F_3\} = \sum_{e} \{f_3\}^e$ – соответственно матрица электропро-

водности и вектор-столбец правой части, учитывающий заданную плотность

116

тока на границе. На эту систему необходимо наложить ограничения, связанные с заданными значениями электрического потенциала в граничных узлах. Подматрицы $[h_3]^e$ и $\{f_3\}^e$ определяются соответственно из (9) и (11) при $\alpha = \gamma |\operatorname{grad} \varphi|^2 = 0$ и заменой λ величиной γ , $h_n - i_n$.

Таким образом, задача электростатики в конечноэлементной постановке сводится к решению системы обыкновенных линейных алгебраических уравнений (20).

3. Термопластичность. Построим конечноэлементный аналог системы уравнений упругопластической задачи (3)–(5) при наличии больших деформаций [6], объемных фазовых превращений и нестационарных температурных полей. Записанные ниже соотношения в приращениях справедливы для каждого элемента дискретизированной области.

3.1. Уравнения равновесия:

$$\int_{V'} [D]^{\mathrm{T}} \{\sigma\} dV' = \{F\},\tag{21}$$

где [D] – матрица формы; $\{\sigma\}$ – вектор истинных напряжений Коши; V' – объем тела в деформированном состоянии в момент времени t; $\{F\}$ – вектор обобщенных узловых нагрузок.

3.2. Геометрические соотношения:

$$\begin{cases} \{d\}\delta t = [D]\{\delta u\}; \quad \{d\}\delta t = \frac{1}{\mu}\{\hat{B}_{e}\}\delta t + \{d_{p}\}\delta t + \left(1 - \frac{\beta_{H}}{\beta_{K}}\right)\{I\}; \\ \mu = \frac{a^{2}}{\beta_{K}^{2}}; \quad a^{2} = \frac{2}{3}\left[\beta_{K}^{2}I_{1}(\{B_{e}\}) + \frac{3}{2}(\beta_{K}^{2} - 1)\right] + 1; \\ \beta_{H} = (\alpha_{T_{H}}T_{H} + 1)b_{H}; \quad \beta_{K} = (\alpha_{T_{K}}T_{K} + 1)b_{K}, \end{cases}$$
(22)

где $\{d\}$ – вектор скорости деформации; δ перед переменной обозначает ее приращение; $\{u\}$ – вектор перемещений; $\{\hat{B}_e\} = \{\hat{B}_e\} + [w]\{B_e\}$ – производная Яумана от вектора упругой деформации $\{B_e\}$ ([w] – матрица вихря); $\{d_p\}$ – вектор скорости пластической деформации; $\{I\}$ – единичный вектор; $I_1(\{B_e\})$ – первый инвариант $\{B_e\}$; $\alpha_{T_{\rm H}} = \alpha_T(T_{\rm H}, x_{\rm H})$, $\alpha_{T_{\rm K}} = \alpha_T(T_{\rm K}, x_{\rm K})$ – соответственно КТР в начальный и конечный моменты деформирования; $b_{\rm H} = \sqrt[3]{\rho_{c0}/\rho_{c}(x_{\rm H})}$, $b_{\rm K} = \sqrt[3]{\rho_{c0}/\rho_{c}(x_{\rm K})}$ – компоненты тензора градиента деформации, обусловленной фазовым переходом, соответственно в начальный и конечный моменты деформирования (ρ_{c0} , ρ_{c} – плотность реакционной среды при нормальных условиях до и после образования алмазов).

А. А. Лещук, Н. В. Новиков, В. И. Левитас

3.3. Физические уравнения:

$$\begin{split} \{\widetilde{\sigma}\}\delta t &= \left([E_{\kappa}] - \varepsilon \frac{\mu}{v} [E_{\kappa}] \{S\} \left\{ \frac{\partial F}{\partial \hat{\sigma}} \right\}^{\mathrm{T}} [E_{\kappa}] \right) \left(\mu \{d\} \delta t - \frac{\mu}{\beta_{\kappa}} \delta \beta \{I\} \right) + \\ &+ ([E_{\kappa}] - [E_{\mathrm{H}}]) \{B_{e}\} - \varepsilon \frac{\mu}{v} \left[\left\{ \frac{\partial F}{\partial \hat{\sigma}} \right\}^{\mathrm{T}} ([E_{\kappa}] - [E_{\mathrm{H}}]) \{B_{e}\} + \frac{\partial F}{\partial T} \delta T \right] [E_{\kappa}] \{S\}; (23) \\ &v = \mu \left\{ \frac{\partial F}{\partial \hat{\sigma}} \right\}^{\mathrm{T}} [E_{\kappa}] \{S\} - \frac{\partial F}{\partial q} \left(\frac{2}{3} \{S\}^{\mathrm{T}} \{S\} \right)^{1/2}, \end{split}$$

где $\{\tilde{\sigma}\} = \{\hat{\sigma}\} + [w]\{\hat{\sigma}\}$ – производная Яумана от вектора $\{\hat{\sigma}\}; [E_{\kappa}] = [E(p_{\kappa}, T_{\kappa}, x_{\kappa})], [E_{\mu}] = [E(p_{\mu}, T_{\mu}, x_{\mu})]$ – матрицы упругих констант соответственно в конечный и начальный моменты деформирования; $\{S\}$ – вектор девиатора напряжений; $F(\{\hat{\sigma}\}, q, T)$ – функция нагружения; $\varepsilon = 0, F < 0$ – в упругой области; $\varepsilon = 1, F = 0$ – в пластической области; $q = \int \frac{2}{3} (\{d_p\}^T \{d_p\})^{1/2} \delta t$ – параметр Одквиста.

Уравнения (23) дают однозначную зависимость приращений напряжений от приращений $\{d\}\delta t, \delta\beta$ и δT .

Таким образом, термоупругопластическая задача с учетом конечных деформаций, вызванных пластическим деформированием и фазовыми переходами, в конечноэлементной постановке сводится к решению уравнений (21)–(23), к которым необходимо добавить граничные и начальные условия.

Обобщая изложенное, констатируем, что конечноэлементная модель для определения термомеханического состояния АВД в процессе спонтанной алмазной кристаллизации включает связанные системы конечноэлементных уравнений задач теплопроводности (16), электропроводности (20), термоупругопластичности (21)–(23), уравнение для скорости изменения массовой концентрации алмазов $\{\delta x_a\} = f_3(\{p\}, \{T\})$, критерий превращения графит \rightarrow алмаз $\{p\} > f_4(\{T\}, \{x_a\}), \{T\} > f_5(\{p\}),$ где $\{x_a\}$ и $\{p\}$ – векторы узловых значений концентрации алмазов и давления соответственно; f_3, f_4, f_5 – известные функции.

Вычислительный алгоритм. Алгоритм решения связанной задачи электро- и теплопроводности подробно изложен в [5]. Для решения термоупругопластической задачи используется метод начальных напряжений [6], который наиболее экономичен по времени решения задач теории пластичности. Основная идея метода состоит в конечноэлементном решении набора упругих задач в приращениях перемещений $[K]{\delta u} = {\delta F}$ ([K] – матрица жесткости), определении по формулам (22) и (23) приращений деформаций и напряжений, а также итерационном удовлетворении условий равновесия (21).

Остановимся подробнее на алгоритме решения связанной задачи, наиболее полно характеризующем термомеханику спонтанной кристаллизации алмазов. В качестве исходных данных задаются поля напряжений и интенсивности пластической деформации, которые определяются из решения задачи о сжатии реакционной ячейки. Таким образом, процесс моделируется от момента начала нагрева ячейки, т.е. при заданных давлении в холодном состоянии, комнатной температуре и нулевой алмазной концентрации.

Принимается следующий алгоритм. На каждом временном шаге *j* происходит последовательное решение связанных уравнений. Сначала решается задача электропроводности и определяются поле электропотенциала { φ } и поле источников джоулева тепла {Q}, после чего решается задача теплопроводности и определяется поле температуры {T}. Зная прирост температуры { $\delta T(t_j)$ } = { $T(t_j)$ } – { $T(t_{j-1})$ }, путем решения термоупругопластической задачи определяется изменение напряжений и соответственно прирост давления в реакционной зоне { $\delta p(t_j)$ } = { $p(t_j)$ } – { $p(t_{j-1})$ }. Далее, используя критерий фазового перехода графит \rightarrow алмаз, находим зону возможного зарождения и роста алмазных частиц. Если таковая имеется, в каждом ее элементе интегрируем кинетическое уравнение для скорости изменения массовой концентрации алмазных частиц и устанавливаем прирост концентрации { δx_a }.

Внутри каждого временного шага решения проводим итерационное самосогласование полей $\{\varphi\}, \{Q\}, \{T\}, \{p\}, \{x_a\}$ путем учета зависимости физико-механических характеристик от температуры, давления, концентрации фаз. Проводим также согласование решений механической задачи на эффективном уровне реакционной смеси и локальном уровне отдельной алмазной частицы (кристалла), растущей в металлическом расплаве. Для этого из анализа напряженно-деформированного состояния на локальном уровне определяем эффективные модули реакционной смеси и расчетное давление фазового перехода, которое используем для определения области алмазной кристаллизации в реакционной зоне АВД. Отметим, что на каждой последующей *n*-й итерации электро- и теплофизические свойства материалов определяются в зависимости от некоторых значений температуры P_T , давления P_p и концентрации P_x , полученных как средние между значениями этих параметров на предыдущих временном шаге j-1 и итерации n-1:

$$P_{Tn,j} = \frac{1}{2} [T(t_{j-1}) + T_{n-1,j}], P_{pn,j} = \frac{1}{2} [p(t_{j-1}) + p_{n-1,j}],$$
$$P_{xn,j} = \frac{1}{2} [x(t_{j-1}) + x_{n-1,j}].$$

На первой итерации $P_{T1,j} = T(t_{j-1}), P_{p1,j} = p(t_{j-1}), P_{x1,j} = x(t_{j-1})$. При решении термоупругопластической задачи методом начальных напряжений предполагается учет зависимостей механических свойств от температуры, давления и концентрации фаз (при условии линейной аппроксимации T и x_a в пределах временного шага). Решение задачи на каждом временном шаге считаем достигнутым лишь после выполнения всех условий сходимости:

$$\max |T_{n,j} - T_{n-1,j}| < \Delta_T, \quad \max |p_{n,j} - p_{n-1,j}| < \Delta_p, \quad \max |x_{n,j} - x_{n-1,j}| < \Delta_x,$$

где Δ_T , Δ_p , Δ_x – сравнительно малые величины.

Если на каждом временном шаге соответствующие приращения $\{\delta T\}$, $\{\delta p\}$ и $\{\delta x_a\}$ незначительны и не вызывают существенных изменений свойств материалов, задачу можно решать безытерационно. В этом случае свойства материалов на последующем временном шаге вычисляются по соответствующим полям, полученным на предыдущем шаге. Отметим также, что решение задачи проводится в деформированной конфигурации, т.е. с учетом изменения координат узлов конечноэлементной сетки.

На основании предложенной модели и вычислительного алгоритма разработано программное обеспечение для моделирования связанных процессов деформирования и электрического нагрева материалов, претерпевающих фазовые превращения первого рода. Данная вычислительная методика прошла апробацию при решении большого количества как тестовых [7], так и прикладных задач [8–10].

Моделирование физико-механического состояния реакционной ячейки АВД. Решение задачи совместного определения полей давления, температуры и концентрации алмазных частиц рассматривается с момента нагрева АВД. Поле давления в холодном состоянии (до нагрева АВД) получено из решения контактной упругопластической задачи о сжатии контейнера и реакционной смеси в ячейке твердотельного АВД [6, 11].

Для моделирования физико-механических полей в реакционном объеме АВД использовались две расчетные схемы аппарата типа наковальни с углублениями диаметром 35 мм. Первая включала всю конструкцию аппарата для решения задачи электронагрева и состояла из 1176 узлов и 2193 треугольных элементов. Вторая расчетная схема для решения термоупругопластической задачи состояла из матрицы, контейнера, реакционной зоны с торцовым нагревателем, которые были разбиты на 981 узел и 1724 элемента, причем на реакционную смесь приходилось 185 узлов и 323 элемента. В процессе решения связанной задачи электро-, теплопроводности и термопластичности применялась процедура поэлементного переноса с одной конечноэлементной сетки на другую значений температуры, давления, концентраций различных фаз реакционной смеси.

Граничные и начальные условия для расчета полей электропотенциала и температуры определялись экспериментально [5]. В качестве начальных условий для решения термоупругопластической задачи приняты поля напряжений, накопленных пластических деформаций (параметр Одквиста) и объемных деформаций, полученные после сжатия матрицы и снаряженного контейнера в АВД [6, 11]. По этим же полям напряжений определялись узловые усилия на боковой и торцевой поверхностях матрицы, которые использовались в качестве статических граничных условий и в процессе решения задачи не изменялись. На оси симметрии и в горизонтальной плоскости симметрии задавались кинематические граничные условия в виде равенства нулю нормальных к этим границам перемещений. Свойства используемых в АВД материалов взяты из [12]. Торцовый нагреватель представляет собой смесь графита и литографского камня в массовом соотношении 1:1, реакционная смесь до образования алмазов состоит из графита и металлического сплава Ni–Mn–C в массовом соотношении 1,5:1. Константы, входящие в уравнения фазового перехода графит – алмаз, следующие: $Q_a = 180 \cdot 10^3 \text{ Дж/моль};$ $B = 2,9 \cdot 10^5 \text{ c}^{-1,5}; h = 1.5; R = 8,314 \text{ Дж/(моль} \cdot ^{\circ}\text{C}).$

Анализ напряженного состояния АВД в холодном состоянии [11] показал, что в области деформируемого уплотнения имеют место большие упругопластические деформации, достигающие 200%. В области нагревателя и реакционной смеси давление составляет 4,7 ГПа. При этом компоненты девиатора тензора напряжений не превышают пределы текучести соответствующих материалов. Следовательно, можно считать, что частицы смеси и объем нагревателя находятся в упругом состоянии.

Условие пластического течения контейнера принято в форме Шлейхера–Надаи с учетом зависимости предела текучести литографского камня от давления, температуры и параметра Одквиста [13].

В результате численного решения поставленной задачи получены поля температуры, давления и концентрации алмазных частиц в реакционной зоне АВД. На рис. 2 приведены распределения термодинамических параметров, когда зона алмазной кристаллизации определялась из условия плавления металлического сплава и превышения давления над равновесным для системы графит-алмаз [14]. Алмазные частицы начинают образовываться в центре реакционной зоны через 35 с от начала нагрева аппарата при $T = 1119^{\circ}$ С и p = 5,5 ГПа, затем область возможного фазового перехода расширяется. Перепад температуры по вертикальной оси в 4-5 раз больше, чем по горизонтальной. В начальный момент времени синтеза напряжения распределяются сравнительно однородно: разброс значений давления не превышает 0,15 ГПа. С увеличением концентрации алмазных частиц давление падает вследствие уменьшения удельного объема реакционной смеси (графит трансформируется в более плотную модификацию углерода – алмаз) и распределяется существенно неоднородно: разброс значений составляет порядка 0,75 ГПа при t = 63 с. Преобладающее влияние на формирование полей давления оказывают фазовые превращения. Поэтому качественная картина изобар становится подобной полю концентрации алмазов.

Более подробную информацию можно получить при анализе графиков изменения термодинамических параметров в реакционном объеме в процессе нагрева АВД и кристаллизации алмазов (рис. 3). Как видно, в начале нагрева давление повышается. К моменту начала превращений (t=35 с) прирост давления в центре реакционного объема составляет порядка 0,8 ГПа при $T=1100^{\circ}$ С, что хорошо согласуется с экспериментом [15]. В дальнейшем с увеличением концентрации алмазных частиц наблюдается монотонное падение давления. При t=51 с рост алмазных частиц в центре реакционной ячейки прекращается. Этот момент характеризуется уменьшением давления в ячейке ниже линии фазового равновесия графит–алмаз. Затем давление начинает опять возрастать, и рассматриваемая точка при t=55 с возвращается в область кристаллизации. Далее вновь продолжается

А. А. Лещук, Н. В. Новиков, В. И. Левитас

рост концентрации алмазных частиц до следующего момента падения давления ниже равновесного. Процесс повторяется неоднократно. Увеличение давления при постоянной концентрации алмазных частиц обусловлено повышением температуры, жесткости реакционной смеси и главное фазовыми переходами в близлежащих к рассматриваемой точках реакционной зоны при постоянном усилии в горизонтальном сечении аппарата. Таким образом проявляется периодический характер изменений давления в реакционной ячейке АВД при кристаллизации алмазных частиц, что объясняет возможность производства высококачественных алмазов при сильно неоднородных распределениях давления и температуры.

Рис. 2. Рассчитанные поля температуры, $^{\circ}$ С (*a*), давления, I'IIa (б) и концентрации алмазных частиц, $^{\circ}$ (*b*) в реакционной зоне в различные моменты времени нагрева.

При моделировании физико-механических полей в реакционной зоне область кристаллизации алмазов можно определять по двум критериям превращения графита в алмаз. Вышеприведенные результаты получены с учетом критерия, когда область кристаллизации алмазов определяется условием плавления сплава-растворителя и ростом эффективного давления выше равновесного. Рассмотрим результаты расчета с использованием термодинамического критерия, позволяющего учесть область гистерезиса превращения, которая характеризует отклонение реального давления превращения графит → алмаз от равновесного.

Рис. 3. Изменение термодинамических параметров в центре реакционной зоны в процессе нагрева АВД и кристаллизации алмазных частиц.

Как видно из рис. 4, давление в начальный момент роста алмазов монотонно падает. Согласно первому варианту учета условий фазового перехода (кривая 1), его падение продолжается до значения концентрации алмазов ~ 10%. С этого момента рост алмазов прекращается, что говорит о снижении давления ниже равновесного для системы графит–алмаз. Затем при постоянной концентрации алмазов давление в рассматриваемой точке повышается, и, как только оно становится выше равновесного, возобновляется рост алмазов, давление снова падает, и т.д. Изменение давления в процессе кристаллизации для второго варианта учета условий фазового перехода представлено на рис. 4 кривой 2, которая в начальный момент совпадает с кривой 1. Однако при концентрации ~ 6% рост алмазов прекращается, что свидетельствует о снижении давления ниже кривой превращения графит–алмаз, полученной из термодинамического критерия фазового вого перехода. Далее наблюдается эффект саморегуляции давления вокруглинии фазового превращения.

Таким образом, с учетом в критерии фазового превращения графиталмаз области гистерезиса, в которой фазовые переходы отсутствуют, рассчитано изменение давления в зависимости от концентрации алмазных частиц. Результаты существенно отличаются от полученных согласно первому варианту учета условий фазового перехода. Так, например, 10%-ной концентрации алмазных частиц соответствует давление 4,7 ГПа и 5,1 ГПа соответственно для первого и второго вариантов учета условий фазового перехода.

Рис. 5. Изменение эффективного давления в центре реакционной зоны (1) и локального давления на алмазную частицу (2).

На рис. 5 представлено изменение давления в центре реакционной зоны и на межфазной поверхности алмаз – металлический расплав в процессе кристаллизации. В рассмотренном интервале изменения концентрации алмазных частиц эффективное давление в исследуемой точке реакционной зоны падает с увеличением концентрации и повышается при постоянной концентрации. В отличие от этого локальное давление на алмазную частицу практически всегда повышается, и только, начиная с 10%-ной концентрации, оно незначительно падает. Монотонное повышение давления в процессе роста частицы можно объяснить увеличением жесткости системы алмаз – металлический расплав – графит и концентрацией напряжений вблизи межфазной границы расплав – графит. При малых концентрациях алмазных частиц, соответствующих стадии зародышеобразования, отличие давлений в смеси и на алмазной частице достигает 1 ГПа, а, например, при 6%-ной концентрации разность давлений составляет уже 2,3 ГПа и далее увеличивается.

Таким образом, представленные результаты свидетельствуют о значительном отличии эффективного давления в реакционной смеси от давления в одной из ее компонент — образовавшейся алмазной частице.

Рис. 6. Распределение напряжений в локальной системе алмаз – металлический расплав – графит для различных уровней эффективного давления в реакционной зоне p и концентрации алмазных частиц x_a : a - p = 5,52 ГПа, $x_a = 0,9\%$; $\delta - p = 5,13$ ГПа, $x_a = 5,7\%$; e - p = 5,30 ГПа, $x_a = 7,7\%$; e - p = 5,40 ГПа, $x_a = 12,0\%$.

Рассмотрим, как распределяются радиальные σ_r и тангенциальные σ_{θ} напряжения в тройной системе алмаз – металлический расплав – графит в зависимости от величины приложенного давления p и размера алмазного кристалла.

На рис. 6 приведено изменение напряжений в зависимости от приведенного радиуса системы алмаз – металлический расплав – графит при различной концентрации алмазных частиц x_a . Внешнее давление, приложенное к графиту, использовали из решения задачи для макроуровня, т.е. для реакционной смеси.

Как видно, в графите имеет место существенная неоднородность и негидростатичность напряженного состояния. Так, при 0,9%-ной концентрации алмазных частиц (рис. 6,*a*) перепад радиальных напряжений дости-

гает 1,2 ГПа, тангенциальных – 0,5 ГПа. Непосредственно на межфазной границе расплав–графит скачок напряжений σ_{θ} составляет 2,3 ГПа. Полагаем, что по алмазным частицам и в расплаве напряжения распределены однородно, и эти фазы находятся в условиях гидростатического сжатия ($\sigma_r = \sigma_{\theta} = 6,7$ ГПа).

С ростом концентрации алмазных частиц в реакционной ячейке неоднородность напряженного состояния в графитовой составляющей увеличивается. Скачок тангенциальных напряжений $\Delta \sigma_{\theta}$ на межфазной поверхности расплав-графит при x = 5,7% составляет 5 ГПа (рис. 6, δ), при x = 7,7% - 5,8 ГПа (рис. 6, ϵ), при x = 12% - 7,5 ГПа (рис. 6, ϵ). Зависимости $\Delta \sigma_{\theta}(x_{a})$ и $\Delta \sigma_{r}(x_{a})$ приведены на рис. 7 ($\Delta \sigma_{r}$ – разность радиальных напряжений на межфазной границе расплав-графит и внешней поверхности графитового слоя).

Рис. 7. Изменение неоднородности напряженного состояния в локальной системе в процессе роста концентрации алмазных частиц.

Полученные распределения напряжений на локальном масштабном уровне в системе алмаз – металлический расплав – графит характеризуют наличие неоднородности энергии внутренних напряжений и используются при расчете условий превращения, которые, в свою очередь, применяются при моделировании процесса кристаллизации алмазных частиц на эффективном уровне реакционной смеси. Таким образом учитывается одна из особенностей связи решений на двух масштабных уровнях: реакционная смесь ⇔ локальная система алмаз–расплав–графит.

Выводы

1. Разработана модель процесса синтеза алмазов в реакционной ячейке АВД и исследовано термомеханическое состояние реакционной ячейки при спонтанной алмазной кристаллизации на макро- и микроуровнях.

2. Приведено сравнение результатов для двух вариантов учета условий фазового перехода графит → алмаз и установлен характер саморегуляции давления вблизи линии превращения. Получены кривые изменения давления в реакционной смеси и на межфазной поверхности алмаз – металлический расплав.

3. Проанализировано напряженное состояние в локальной системе алмаз-расплав-графит в зависимости от приложенного давления и размера алмазных частиц. Установлена степень влияния концентрации алмазных частиц на неоднородность и негидростатичность напряженного состояния в объеме реакционной ячейки.

Резюме

Розглянуто скінченноелементне моделювання зв'язаних нелінійних нестаціонарних процесів електро-, теплопровідності і термопластичності з урахуванням фазових переходів у матеріалах. Розроблено методику комп'ютерного моделювання процесу спонтанної кристалізації алмазів як практичний додаток. Розв'язано задачу по визначенню полів температури, напружень і концентрації в реакційному об'ємі апарата високого тиску та в локальній системі алмаз–розплав–графіт у процесі кристалізації алмазів. Установлено суттєву зв'язаність цих полів, взаємовплив рішень для реакційної суміші і локальної системи, ефект саморегуляції тиску в реакційній зоні, що заключається в коливальному характері зміни тиску щодо лінії фазового переходу графіт–алмаз.

- 1. Новиков Н. В., Лещук А. А. Термомеханические аспекты процесса спонтанной кристаллизации алмаза // Механіка руйнування матеріалів і міцність конструкцій (випуск 2): В З т. / Під заг. ред. В. В. Панасюка. Львів: Каменяр, 1999. Т. 1. С. 104 108.
- 2. *Лещук А. А.* Конечноэлементная модель процесса спонтанной кристаллизации алмаза в аппарате высокого давления // Вест. СевГТУ: Механика, энергетика, экология. – 2000. – Вып. 25. – С. 12 – 20.
- 3. Zienkiewicz O. C. and Morgan K. Finite Elements and Approximation. New York: John Wiley & Sons, 1983.
- 4. *Норри Д., де Фриз Ж.* Введение в метод конечных элементов. М.: Мир, 1981. 304 с.
- 5. *Новиков Н. В., Левитас В. И., Шестаков С. И. и др.* Моделирование электрических, температурных полей и полей термонапряжений в АВД методом конечных элементов // Сверхтвердые материалы. 1983. № 3. С. 3 8.
- 6. *Idesman A. V. and Levitas V. I.* Finite element procedure for solving contact thermoplastic problems at large strain, normal and high pressures // Comp. Meth. Appl. Mech. Eng. 1995. **126**. P. 39 66.

- А. А. Лещук, Н. В. Новиков, В. И. Левитас
 - 7. Новиков Н. В., Левитас В. И., Золотарев Р. А. и др. Тестирование пакетов программ, предназначенных для решения задач термомеханики // Докл. АН УССР. Сер. А. 1985. № 4. С. 30 35.
 - Levitas V. I., Idesman A. V., Leshchuk A. A., and Polotnyak S. B. Numerical modeling of thermomechanical processes in high pressure apparatus applied for superhard materials synthesis // High Pressure Science and Technology (Proc. XIth AIRAPT Int. Conf.). – Kiev: Naukova Dumka, 1989. – Vol. 4. – P. 38 – 40.
 - Novikov N. V., Levitas V. I., Leshchuk A. A., and Idesman A. V. Mathematical modeling of diamond synthesis process // High Pres. Res. – 1991. – 7. – P. 195 – 197.
- Leshchuk A. A., Novikov N. V., and Maydanyuk A. P. Thermomechanical state of a HPA reaction cell at the graphite-to-diamond phase transition // High Pressure Science and Technology (Proc. of the Joint XV AIRAPT and XXXIII EHPRG Int. Conf.). – Singapore: World Scientific Publishing Co. Pte. Ltd., 1996. – P. 225 – 227.
- 11. Идесман А. В., Левитас В. И. Напряженно-деформированное состояние элементов АВД с учетом больших деформаций // Получение и применение сверхтвердых материалов. Киев: Ин-т сверхтвердых материалов АН УССР, 1986. С. 80 85.
- 12. Разработка уточненной математической модели процесса синтеза алмазных кристаллов в твердофазовых аппаратах высокого давления: Отчет о НИР: Ин-т сверхтвердых материалов НАН Украины. – № ГР UA01002074; Инв. № 6720. – Киев, 1994. – 112 с.
- Levitas V. I. Large Deformation of Materials with Complex Rheological Properties at Normal and High Pressure. – New York: Nova Science Publishers, 1996. – 374 p.
- 14. *Новиков Н. В., Левитас В. И., Лецук А. А., Идесман А. В.* Моделирование процесса синтеза алмаза в реакционной зоне аппарата высокого давления // Докл. АН УССР. Сер. А. 1988. № 7. С. 40 43.
- 15. Шульженко А. А., Масленко Ю. С., Белоусов И. С. и др. Исследование изменения давления в условиях высоких температур при синтезе сверхтвердых материалов // Влияние высоких давлений на вещество. – Киев: Ин-т пробл. материаловедения АН УССР, 1977. – С. 113 – 117.

Поступила 20. 03. 2001