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Ipeonazaemcea ananumuyeckuil Memoo peuietus 3a0ai 0 c60600HBIX KONCOAHUAX ¢ 3amyXanuem
cnoucmeix OANOK, COCMOAUUX U3 OBYX GHEUIHUX CO€E, COCOUHEHHBIX GHYMPEHHUM 6A3KOYRPY2UM
croem, KOMopwill paccMampueaemcs Kak OSYHANPAGIeHHOe SUHKIEPOECKoe OcHosatue. Bepxuuil
GHEWIHUL COU, HAZPYICEHHBIL 0CeBOll HOCMOAHHOU CUIOl, ORUCLIBAEMCS HA OCHO8E MOoOeny
FBepuynnu—Diinepa. Huocnuil enewnuii cnoit moderupyemes ¢ nomoupro modenu Tumoutenxo. Cgo-
bo0HbIe Konebanus ORUCLIBAIOMCT OOHOPOOHOU CUCMEMOU CEA3AHHbIX Juphepenyuanvnbix ypas-
Henuti 6 uwacmuvix npouszeoonvix. Ilocne pasdenenus nepemenuvix 6 UCXOOHOU cucmeme Ough-
epenyuanvuvix ypasnenull peuiaemcs Kpaesdas 3aoauda. B pesynemame noiyueno mpu KoMmiexc-
HObIX ypasHeHus O onpedeneHus 4acmom u Moo ceoOoduwix Konebanuil. 3adaua o c60600HbIX
KOAeOaHUAX paccMompenda Ons RPOU3GOTIbHbIX HAYATLHBIX YCAOGUN U PAZTULHBIX 0CEGbIX CUIL.

Introduction. In recent years, the Bernoulli-Euler and Timoshenko models
have been applied to the solution of various mechanical and building vibration
problems., The Bernoulli-Euler model has been used for the solution of the
problem of vibration of sandwich beams [1-3]. The problem of free vibration of
two axially loaded Bernoulli-Euler beams transversally coupled with discrete
springs without damping was studied in [1]. The problem of a complex
continuous dynamical system was considered in [2] with the use of the classical
method and the complete theory of non-damped vibrations. Vibrations of two
Bernoulli-Euler elastic beams connected by an elastic interlayer with moving
loads was solved in [3].

For the first time, the influence of transverse forces and rotational inertia
with the shearing coefficient in a beam was considered in [4]. Natural frequencies
for continuous Timoshenko models were studied in [5], and, for discrete-
continuous Timoshenko models, this problem was solved in [6].

The property of orthogonality of the complex modes of free vibration for
continuous systems with damping was demonstrated in [7-11]; for discrete and
discrete-continuous systems with damping, it was demonstrated in [12, 13].

The general method for the solution of problems of free vibration for
complex continuous one- and two-dimensional systems with damping for various
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boundary conditions and different initial conditions was presented in [1]. The
application of the Bernoulli-Euler and Timoshenko models to the solution of
free-vibration problems for different sandwich beams with damping was
considered in [2-4].

The purpose of this paper is the solution of the problem of free vibration of
an axially loaded sandwich beam with damping for various axial forces. The
calculations of the dynamic displacements for a two-directional interlayer are
compared with similar results for a one-directional interlayer.

Statement of the Problem. The physical model of the structural system is
an axially loaded sandwich beam with damping, which consists of two
homogenous elastic parallel beams of equal length coupled together by a soft
viscoelastic interlayer (Fig. 1). The upper external layer is simulated by the
Bernoulli-Euler model and is loaded by a constant axial force P. The lower
external layer is simulated by the Timoshenko model. The beams are supported at
their ends. The viscoelastic interlayer has the characteristics of a homogenous
continuous two-directional Winkler base [5] and is described by the Voigt-Kelvin
model [14-18].

Ei, i, ui

Fig. 1 Dynamical model of an axially loaded system of two beams connected by a two-parameter
viscoelastic interlayer.

The mathematical model of the problem is represented by the following
system of conjugate partial differential equations describing small transverse
vibrations of the physical system:

(1)
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where
R,=E\I,, Ry=E,],, N=kG,F,,

k

M= o =0k Ba=poly, Ky =0 s

w; =wy(x,t) and w, =w,(x,¢) are transverse deflections of beams I and II,
Y, =9(x,t) and ¥, =9, (x,¢) are the angles of rotation of the cross sections
of beams I and II, E; and E, are the elastic moduli of the material for beams I
and II, 7; and 7, are the moments of inertia of the cross sections of beams I
and II, P is the axial force, F| and F, are the areas of the cross sections of
beams I and II, G, is the Kirchhoff modulus of the material of beam 1I, p; and
p, are the mass densities of the material of beams I and 1I, &’ is the shearing
coefficient, k is the transverse coefficient of elasticity of the interlayer, &, is the
longitudinal coefficient of elasticity of the interlayer, ¢ is the coefficient of
viscosity of the interlayer, 4; and %, are the heights of beams I and II, A is
the height of the interlayer, and / is the length of beams I and II. The bending
moment and transverse force in beam 11 were determined by Timoshenko [9] in
the form

82W1 83W1 81/)2 ,
My=-R——, 0 :—R1a—3, My==Ry—=, 0, =k'Gy,Fyy,, (2
X
an 8W2 . . .
where a—=1/)1, a—=1/)2 +v,,and ¥, =v,(x,t) is the angle of shearing in
X X

beam 11.
Solution of the Boundary-Value Problem. Substituting

[wi] [7(0)]
|, I=1 W, () lexp(ive) (3)
szJ W, (x)

for w;, w,,and 1, in the system of differential equations (1), we represent the
homogenous system of conjugate ordinary differential equations describing the
complex modes of vibration of the beams in the following form:

( d4W IV
|R1 (P+k 1)_//£1W1’V2+(k+iCV)(W1_W2)—k}72d—2=O’
x
|
lN Vs 1+ Wav? + (k +icv)(W, —W,) =0,
| \ dx? dx | H2P2 (k + icv)(W 2) @)
| a*w o[
R2 2 2_1112 +EZIP2V2—kN21P2 " dWl:O’
dx dx
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where
2

' h2 1" h 1" ' hih
plzjlkpa pZZTka: p1= p2: 142kp [3]9

W, =W(x) and W, =W,(x) are the complex transverse vibration modes of
beams I and II, W, =W, (x) is the complex rotation mode of vibration of beam
II, v is the complex frequency of vibration of beams I and II, and ¢ is time.

Seeking a particular solution of the system of differential equations (4) in the

form
(w1 [4]
| W, = 5 |exp(rx), (5)
sz S

we obtain the following homogeneous system of linear algebraic equations:

(A[R,#* —(P+ k) r? —puw? +k+icv]— Bk +icv) = O kl,pr =0,
A(k+icv)+ B(N r* + u,v? — k—icv)— ONr =0, (6)

[Ak;;lr— BNr—O(Ryr® — N +Epv? — kijy)=0.

Expanding the determinant of the characteristic matrix of the system of
equations (6) and equating it to zero, namely,

Ryt —(P+kp)r? +ny —(k+icv) —kiyr
(k + icv) (Nr? = n,) —Nr =0, (7)

we obtain the characteristic equation in the form of an algebraic equation, namely,
P 4 ayr® +aprt +agrt +ay =0, (8)

with the roots r; =(=1)/"'id,, j=(Qv—1),20,v=1,2,3, 4, where n; =k +
ticv —uw?, ny=k+icv—p,v?, and ay, as, az;, and a,, are constant

coefficients.
After application of the Euler formulas, the solution of the system of
differential equations (4) consists of the fundamental system of solutions

4
Wi(x)= ZAZ sinA,x + A4, cosd,x,

v=1
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4
Wo(x)= ZBZ sind,x + B}, cosA,x,

v=1

4
Wy (x)= ) O cosd,x + O sind,x,

v=1

9)

dw,

where W (x)=——, 4,4, ,B,,B,,0,, and O, are constants, and
x

Ay =a, + i, is a parameter that describes the roots of the characteristic
equation (8).

In agreement with (6), the constants in (9) satisfy the following relations:

au = : ] au = :* ] bu = : b} bu = :k b (10)
A’U A’U A’U A’U
where
. . b1 N —(k+ icv)RR,
a, =a, =a, 3
(NV) + NNzRRz
11
\ 'l kNt = (k+icr)RRy | " ()
bu:bu: - RRI—(k+iC1/) 3 , buz_bu:
kpzr (NV) + NNzRRz

RRy =R r* —(P+ky)r>+n, RRy=Ryr’—N+v’E)=k},,

NN, = Nr* —n,.

Substituting (10) in (9), we obtain the general solution of the system of
differential equations (4) in the following form:

4
Wi(x)= ZAZ sinA,x + A4, cosdx,

v=1

4
W (x)= Z}.UAZ cosA,x — ApA, sind,x,
v=1
4 (12)
W,(x)= Zau (A, sinA,x + A4, cos A,x),

v=1

4
Wy (x)= D by (4 cos ,x — Ay sinA,x).

v=1
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In order to solve the boundary-value problem, we use the following
boundary conditions:
wi(0)=0, W, ()=0,

Wy (0)=0, W, ())=0,

dlpl CLo=o M =, (13)
dx

dlpz(o) 0, &(1):0_
dx

Substituting (12) in (13), we obtain the homogenous system of linear
algebraic equations. The matrix of the system obtained has the following form:

YX =0, (14)

where X = [A], 45 45,45, 47, 45, 45, 451 is the vector of unknowns of the
system of equations and
[ i ]8*8 (15)

is the characteristic matrix of the system of equations (14).
The first four equations in (14) are represented in the form

lf 1 1 1 1 Tar]
|

. S I e (16)

4 3
\‘_}”Ibl _}”sz _13173 _l4b4J|_A:;*J

It follows from the system of equations (16) that 4, = 45 = 43 = 4, =0.
The other four equations in (14) give the following system of equations:

[ sind; ! sind, [ sinA;/ sindgl (47
| a;siniy/ a,sini, [ azsindy/ agsiniyl I ;l
| _R2sind, 1 —Rsind, ] —Aisingl  —Alsind,l |I ;Izo(n)
{ Arbysindy ]l —Aybysindy 1 —Azbysindy ] —Aub,sindy lJLAZJ

A condition for the solvability of the system of equations (17) is vanishing of
the characteristic determinant, i.c.,
[ sind,!/ sind, / sindy / sind, /]
| a,sind,! arsind,/ aysinds/ agsinigl |
| _.2 2 2 2 |=0. (18)
Asin,/ A5 sind, A3 sindyl Aasindyl
\‘ }, bl Slnlll _}”sz Sin}yzl _13173 Sinl3l _14174 Sil’ll4l
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Expanding the determinant (18), we obtain the following characteristic
equation:
sinA,/sind,/sinA4/sind, /=0, (19)

where }.1 :}yz 213 214 =A
The characteristic equation (19) can be rewritten in the form

sinAl =0, (20)
where

A=a+ip (21)

are complex numbers in the general case.
Substituting (21) in (20), we get the equation

sinalch fl+ icosalsh Bl =0, (22)

which has the following roots:
aﬁ%, B,=0, s=1,2,3,... (23)
In view of (23), relation (21) yields the following identity:
Ag=a,=—. (24)

Substituting 7 =iA, in equation (8) and carrying out the corresponding
transformations, we obtain the equation for frequency

V6+b111/5 +b221/4+b331/4 +b551/+b66=0’ (25)
from which we determine the sequence of complex natural frequencies
v,=im,*o,, (26)

where n=(3s—2),(3s—1),3s, and by, b9y, b33, by, bss,and b are constant
coefficients.

Substituting equation (26) in equations (11), we obtain the following
formulas for the coefficients of amplitudes:

K NE + (k+icv )RR,
(NA,)? = NN, RR,
1 FRRI_(k+iwn)k;1mi+(k+icvn)RR21
{ (ML) = NN,RR,

n

(27)

n T ..,
ikl A
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RR1=R1},‘;+(P+k 1)}.2"‘7[1, RR2=_R2}~ —N+v '—‘2_kp2’

2
NN2 :_le_nz.

Substituting the sequences A and a,, b, in (12), we get the following four
sequences of modes for the free vibration of two beams;

W, (x)=sinlx,

W, (x)=A,coslx,
Wy, (x)=a,sindx,
W,, (x)=b,cosdx.

(28)

Solution of the Initial-Value Problem. The complex equation of motion
T =®dexp(ive), (29)
in the case v =v, can be rewritten in the form
T,=®,exp(iv,t), (30)
where @, is the Fourier coefficient.

Free vibration of beams is represented in the form of a Fourier series based
on the complex eigenfunctions [17], i.e.,

NIE

Wln(x) |
! |

bk

{
|_W1n-| |
[ 10, | =]
2n |
|

|

L

Ms

Wy () }cbn exp(iv 1) 31

|
%n(x)Jl

3
Il
—_

wZnJ

NIE

n=1
From the system of equations (4), after performing algebraic transformations,
adding the equations together, and then integrating them on the sides from 0 to /,
we establish the property of orthogonality of the eigenfunctions for two beams
coupled together by a two-directional viscoelastic interlayer:

!
f[i(Vn TV ) WAV 1 Wi + W Wy + E0W0, Vs, ) +
0

+ C(Wln - W2n )(Wlm - W2m )]dx = Nnémn > (32)

where o is the Kronecker delta and

mn
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l

Ny = [ 20 (Wi, + W5, + B W3, + ey, = Wa,) 1dx. (33)
0

The following initial conditions form the basis for the solution of the
problem of free vibrations:
wi(x,00=wor, wa(x,00=wey, ¥a(x,0)=%0,

34
W0 =wl, wir0)=wl. pIx.0=pd,. 34

Applying conditions (34) to series (31) and taking into account the property of
orthogonality (32), we obtain the following formula for the Fourier coefficients:

¢, = N (35)

where

!
= f{m(i’/ i Wor + Wi, wor) + o (v o, woy + W, wis ) +
0
+E, (v, Wa, ¥ gn + Vo0 02) + LWy, — Way ) (o — woo )1 3dx. (36)

Substituting (28), (30), and (35) in (31) and performing trigonometric and
algebraic transformations, we determine the final free vibration of beams [2—4]:

e}

n=1

e}

e}

z o
=1

WlnHCDn‘[cos(a)nt+ A T

@, |[cos(@ £+ 22, + 01, (37)

v,, ‘CD ‘[cos(a) t+0,,+¢,),

where
‘Wln‘ VX1n+Y1n: WZn‘_VX2n+Y2n: lPZn‘_\/A +Q%n:
X1n —arngn, Xop =AaIg W2n9 02n _argIPZnﬂ (38)
‘CI)n‘=w/C,% +D,%, o, =argd,,
and

X1n=ReW1n, Y1n=ImW2n, X1n=ReW2n, Y2n=ImW2m,
A,,=ReW, ., Q, =ImW,, C,=Red,, D, =Imd,. O
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WL, m

Fig. 2. Distribution of the dynamic displacements w(x,t) (a) and w2(x,t) (b) ofbeams I and Il for
the axial force P = —4-105N and x =0.5/.

Numerical Results. On the basis of the method developed, the
investigation of sandwich system was carried out. Calculations were performed
for the following data: E1=E2=E =2.1-100 N-m-2, E0 =108 N-m-2, k =
=(Eob0)/ h0, kp=k/[2(1+v0)], I=6m, pl=p2=7.8-103N-s2/m4,
k'=0.84, P ={-4-105, 4-105}N, G2=E2/[2(1+v0)], c=2-102 N-s-m-2,
bi=b2=b0o=0.07m, h1=01m, h2=02m, ho=0.2m, F1= b1hl,F2 = b2h2,
11=(b1h3) /12,12 = (b2h3)/12,v0 = 0.2.

In order to find the Fourier coefficient » n (35), the following initial
conditions were assumed:
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Wor =0.01sin ™ j,wel =0,

w2 = —0.001sin  j, w02 =0, (40)

(nx\
\p02 = —0.001C0S [, \p02 = 0.

Fig. 3. Distribution of the dynamic displacements wi(x,t) (a) and w2(x,t) (b) of beams I and 1l for
the axial force P =4-105N and x =0.5I.

The effect of various axial forces in the sandwich beams with damping is
shown in Figs. 2-3. The distributions of displacements for external layers
described according to the Bernoulli-Euler model are displayed in Figs. 2a and
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3a. The distributions of displacements for lower external layers represented using
the Timoshenko model are displayed in Figs. 2b and 3b. Figures 2—3 show the
motion of the sandwich beams with time ¢ for x =0.5/. Calculations of the
dynamic displacements for a two-directional interlayer k#0 and k,#0 are
compared with a one-directional interlayer k£ # 0 and k, = 0. It follows from the
comparison of the results for one- and two-directional interlayers that, as time ¢
increases, the dynamic displacements rapidly decay in the sandwich beams for
which the interlayer corresponds to a two-directional Winkler base &, #0. This
difference becomes more substantial in the case of loading of sandwich
constructions by compressing forces.

The dynamic displacements w;(x,?) and w,(x,¢) of beams I and II for
various loadings by axial forces rapidly decay with time t in the sandwich beams
for which the interlayer corresponds to a two-directional Winkler base &, #0.

Pe3wme

3amponoHOBaHO AHATITHYHUM METOJ PO3B’SA3KY 3aj1ad IPO BLIbHI KOJMBAHHA 31
3racaHHsAM IMIAPyBaTHX OajoK, M0 CKJIAJAIOTHCS 3 JBOX 30BHILIHIX MIApiB, 3’€l-
HAHWX BHYTPIIIHIM B’A3KONPY:KHUM IapoM. OcTaHHIH pO3TIISIA€ThC B SIKOCTI
JBOHANPSMIICHOT BIHKICPIBCHKOI OCHOBH. BepxHiii 30BHINIHIA mIap, M0 HaBaH-
TAXYETHCS OCHOBOIO MOCTIHHOIO CHIIOI0, ONMCYETHCS HA OCHOBI Mojaenl bepHyn-
mi-Einepa. Hyxuid 30BHIMIHIA map MOJCTIOETBCA 33 MOJC/LII0 THMOIICHKA.
BinpHi KOOMBAaHHS ONMCYIOTHCS OJHOPIIHOIO CHCTEMOIO 3B’S3aHMX JH(epeHii-
TPHUX PIBHAHD B YACTHMHHUX IOXigHKX. [licyis po3niieHHs 3MIHHUX Y BHXITHIHA
crcteMl TUdepeHIlIaATbHIX PIBHAHE PO3B’SIBYETHCS KpaioBa 3a1a4da. Y pe3ynbTari
OTPUMAHO TPH KOMIUICKCHHX PIBHSHHA /ISl BU3HAYCHHS YacTOT 1 MO BUIBHHX
KOJIMBaHb. 3aj1a4a PO BUIbHI KOJHBAHHS PO3TJISIHYTA JUIS IOBUIBHIX IOYaTKOBHX
YMOB 1 Pi3HHX OCBOBHX CHIL
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