Поверхностные напряжения в слое. Влияние температуры и примесей на прочность

Я. И. Бурак, Т. С. Нагирный, О. Р. Грицина, К. А. Червинка

Центр математического моделирования Института прикладных проблем механики и математики НАН Украины, Львов, Украина

С использованием локально-градиентного подхода исследованы поверхностные напряжения в растянутом термоупругом слое. На основании этого определено критическое значение интенсивности внешнего силового воздействия, приводящего к разрушению слоя. Изучены размерные эффекты, а также влияние температуры и примесей на параметры прочности.

Одной из основных задач механики деформируемого твердого тела является прогнозирование прочностных свойств элементов конструкций и приборов в реальных условиях их эксплуатации. Такие элементы в той или иной мере содержат примеси и находятся в условиях теплообмена с внешней средой. В связи с этим приобретают актуальность вопросы математического моделирования и изучения влияния температуры и примесей на параметры прочности.

В данной работе эти вопросы, а также исследование масштабного эффекта предела прочности рассматриваются на примере слоя в рамках модели локально-градиентного твердого раствора. Известно [1, 2], что локально-градиентные модели термомеханики учитывают неоднородность энергии взаимодействия и, следовательно, приповерхностную и приконтактную неоднородность. В работах [3, 4] отмечена важность учета поверхностных явлений при изучении термомеханических процессов.

Математическая модель. Рассмотрим N-компонентное деформируемое твердое тело, находящееся в условиях тепломассообмена с внешней средой. В качестве базовых принимаем процессы деформирования, тепло- и массопереноса. При формулировании системы уравнений модели будем использовать подходы и методы неравновесной термодинамики [5, 6]. В соответствии с этим механические, тепловые и диффузионные процессы должны удовлетворять балансовым уравнениям плотности полной энергии E, импульса механического поступательного движения, плотности энтропии и массы. Эти уравнения, записанные в локальной форме в пренебрежении конвективной составляющей производной по времени τ , имеют вид [1, 2]

$$\frac{\partial E}{\partial \tau} = \vec{\nabla} \cdot \left(\hat{\sigma} \cdot \vec{v} - T \, \vec{j}_s - H_k \, \vec{j}_{mk} + H_1 \frac{\partial \vec{\pi}_{m1}}{\partial \tau} \right); \tag{1}$$

$$\frac{\partial(\rho\vec{v})}{\partial\tau} = \vec{\nabla}\cdot\hat{\sigma}, \quad \frac{\partial S}{\partial\tau} + \vec{\nabla}\cdot\vec{j}_s = \sigma_s,$$

$$\frac{\partial}{\partial\tau}(\rho_1 - \vec{\nabla}\cdot\vec{\pi}_{m1}) + \vec{\nabla}\cdot\vec{j}_{m1} = 0, \quad \frac{\partial\rho_1}{\partial\tau} + \vec{\nabla}\cdot\vec{j}_{ml} = 0 \quad (l = 2 - N),$$
(2)

© Я. И. БУРАК, Т. С. НАГИРНЫЙ, О. Р. ГРИЦИНА, К. А. ЧЕРВИНКА, 2000 ISSN 0556-171Х. Проблемы прочности, 2000, № 6

35

Я. И. Бурак, Т. С. Нагирный, О. Р. Грицина, К. А. Червинка

где $\hat{\sigma}$ – тензор напряжений Копи; $\vec{v} = \partial \vec{u} / \partial \tau$, \vec{u} – векторы скорости и перемещения; T, S – температура и энтропия; σ_s – производство энтропии; $\rho = \sum \rho_k; \rho_k, H_k$ – плотность массы k-й компоненты и ее химический потенциал, k = 1 - N (N – количество компонент твердого раствора); $\vec{\pi}_{m1}$ – вектор смещения массы подсистемы 1 (скелета); \vec{j}_s, \vec{j}_{mk} – векторы потоков энтропии и массы k-й компоненты; $\vec{\nabla}$ – вектор-оператор Гамильтона; "·" – символ внутреннего произведения; здесь и далее индекс k = 1 соответствует скелету, k = 2 - N – примесям, по повторяющемуся в слагаемом индексу k проводится суммирование от 1 до N.

Отметим, что при формулировании системы уравнений (1), (2) для подсистем примесей принято приближение идеального газа, а для скелета учитываются эффекты локальной градиентности. В связи с этим в уравнение баланса массы скелета (третье уравнение системы (2)) входит вектор смещений массы $\vec{\pi}_{m1}$.

Для континуума центров масс из системы (2) следует балансовое уравнение

$$\frac{\partial}{\partial \tau} (\rho - \vec{\nabla} \cdot \vec{\pi}_{m1}) = 0.$$
(3)

Полагая, что полная энергия *E* является суммой внутренней *U* и кинетической энергий, из балансовых соотношений (1), (2) получаем обобщенное уравнение Гиббса

$$dU = TdS + H_k d\rho_k + \nabla H_1 \cdot d\vec{\pi}_{m1} + \hat{\sigma} \cdot d\hat{e}$$
⁽⁴⁾

и выражение для производства энтропии

$$\sigma_s = -\frac{\vec{\nabla}T}{T} \cdot \vec{j}_s - \frac{\vec{\nabla}H_k}{T} \cdot \vec{j}_{mk}, \qquad (5)$$

где \hat{e} – тензор деформации.

Уравнение Гиббса описывает изменение внутренней энергии при переходе от рассматриваемого равновесного состояния к близкому. Из формулы (4) следует, что использование локально-градиентного подхода приводит к расширению пространства состояния векторами $\vec{\pi}_{m1}$, $\vec{\nabla}H_1$. Следовательно, в равновесном состоянии допускается существование неоднородности химического потенциала скелета.

На основании соотношения (4) получаем такие уравнения состояния:

$$T = \frac{\partial U}{\partial S}; \quad H_k = \frac{\partial U}{\partial \rho_k}; \quad \vec{\nabla} H_1 = \frac{\partial U}{\partial \vec{\pi}_{m1}}; \quad \hat{\sigma} = \frac{\partial U}{\partial \hat{e}}. \tag{6}$$

Если принять енергию U квадратичной функцией в пространстве возмущений базовых параметров $s = S - S_*$, $\rho_k - \rho_{k*}$, $\vec{\pi}_{m1} - \vec{0}$, $\hat{e} - \hat{0}$ и линейную зависимость между термодинамическими потоками и силами, то определяющие и кинетические уравнения для изотропного тела можно записать в виде

$$\rho_{k} = \rho_{k*} + (3\lambda + 2\mu)\alpha_{m}^{k}e + \alpha_{m}^{kl}\eta_{l} + \alpha_{\theta m}^{k}\theta,$$

$$s = \frac{c_{v}}{T_{*}}\theta + (3\lambda + 2\mu)\alpha_{t}e + \alpha_{\theta m}^{l}\eta_{l},$$

$$\hat{\sigma} = 2\mu\hat{e} + [\lambda e - (3\lambda + 2\mu)(\alpha_{t}\theta + \alpha_{m}^{k}\eta_{k})]\hat{I}, \quad \vec{\pi}_{m1} = \beta_{m}\vec{\nabla}\eta_{1};$$
(7)

$$\vec{j}_{ml} = -\gamma_{l\theta} \vec{\nabla}\theta - \gamma_{lk} \vec{\nabla}\eta_k, \quad \vec{j}_s = -\gamma_{\theta} \vec{\nabla}\theta - \gamma_{k\theta} \vec{\nabla}\eta_k, \quad (8)$$

где $\theta \equiv T - T_*, \eta_k \equiv H_k - H_{k*}$ – возмущения температуры и химических потенциалов от начальных значений $T_*, H_{k*}; \hat{I}$ – единичный тензор; $e = \hat{e}:\hat{I}$ (":" – символ двойного внутреннего произведения); λ, μ – коэффициенты Ламе; α_m^k – коэффициент линейного расширения, обусловленного изменением химического потенциала *k*-й компоненты; α_t – коэффициент линейного температурного расширения; $\alpha_{\theta m}^k, \alpha_m^{kl}$ – коэффициенты, характеризующие изменение плотности компоненты *k* в зависимости от температуры и химического потенциала компоненты *l*; c_v – удельная теплоемкость при постоянных деформациях и химических потенциалах; β_m – жесткость смещения массы скелета, обусловленного изменением градиента его химического потенциала; $\gamma_{k\theta}, \gamma_{lk}, \gamma_{\theta}$ – кинетические коэффициенты.

Для замыкания данной системы уравнений к (2), (7), (8) следует присоединить соотношения Коши $\hat{e} = \frac{1}{2} [\vec{\nabla} \otimes \vec{u} + (\vec{\nabla} \otimes \vec{u})^{\mathrm{T}}]$ и уравнения совместности деформации $\vec{\nabla} \times \hat{e} \times \vec{\nabla} = 0$, где \times и \otimes – символы векторного и тензорного произведения; индекс "т" обозначает операцию транспонирования.

Ключевая система уравнений равновесной локально-градиентной термоупругости изотропного твердого раствора, записанная для вектора перемещений \vec{u} , возмущений температуры θ и химических потенциалов η_k , имеет вид

$$\mu \nabla^2 \vec{u} + (\lambda + \mu) \vec{\nabla} (\vec{\nabla} \cdot \vec{u}) - (3\lambda + 2\mu) (\alpha_t \vec{\nabla} \theta + \alpha_m^k \vec{\nabla} \eta_k) = 0; \qquad (9)$$

$$\beta_m \nabla^2 \eta_1 - \alpha_e \nabla \cdot \vec{u} - \alpha_* \theta - \alpha^k \eta_k = 0,$$

$$\nabla^2 (\gamma_{lk} \eta_k + \gamma_{l\theta} \theta) = 0 \quad (l = 2 - N);$$

$$\nabla^2 (\gamma_{\theta} \theta + \gamma_{k\theta} \eta_k) = 0.$$
(10)

При этом первое уравнение системы (10) является проинтегрированным уравнением баланса массы континуума центров масс с учетом нулевых начальных условий, а $\alpha_e = \sum_{k=1}^{N} \alpha_m^k$, $\alpha_* = \sum_{k=1}^{N} \alpha_{\theta m}^k$.

Используем сформулированную систему уравнений для изучения влияния температуры и примесей на равновесное состояние, масштабные эффекты и прочность растянутого двухкомпонентного слоя.

Поверхностные напряжения и прочность слоя. Рассмотрим деформируемый двухкомпонентный (N = 2) термоупругий слой, занимающий область $|x| \le l$ в прямоугольной декартовой системе координат (x, y, z). При $y \to \pm \infty$ слой находится под воздействием силовой нагрузки $\vec{F} = (0, 2\sigma_y^a l, 0)$, а на его поверхностях $x = \pm l$ заданы постоянные значения возмущений химических потенциалов η_k^a и температуры θ_a ($\eta_k^a \neq 0, \theta_a \neq 0, k = 1, 2$):

$$\vec{n} \cdot \hat{\sigma} = 0, \quad \eta_k = \eta_k^a, \quad \theta = \theta_a \quad (k = 1, 2) \quad \text{при } x = \pm l.$$
 (11)

В произвольных сечениях y = const, z = const слоя для компонент σ_y , σ_z тензора напряжений $\hat{\sigma}$ должны выполняться условия:

$$\int_{-l}^{l} \sigma_{y} dx = 2\sigma_{y}^{a} l, \quad \int_{-l}^{l} x \sigma_{y} dx = 0, \quad \int_{-l}^{l} \sigma_{z} dx = 0, \quad \int_{-l}^{l} x \sigma_{z} dx = 0.$$
(12)

Если пренебречь влиянием химических потенциалов на температуру, то в результате решения задачи (9)–(12) для химических потенциалов подсистем скелета $\eta_1(x)$ и примесей $\eta_2(x)$, температуры θ и ненулевых компонент $\sigma_y(x), \sigma_z(x)$ тензора напряжений получим следующие выражения:

$$\eta_1(x) = \eta_1^a + B\left(\frac{ch(\xi x)}{ch(\xi l)} - 1\right), \quad \eta_2(x) = \eta_2^a - aB\left(\frac{ch(\xi x)}{ch(\xi l)} - 1\right); \quad (13)$$

$$\theta(x) = \theta_a, \quad \sigma_y(x) = \sigma_y^a + AB\left(\frac{\operatorname{ch}(\xi x)}{\operatorname{ch}(\xi l)} - \frac{\operatorname{th}(\xi l)}{\xi l}\right),$$

$$\sigma_z(x) = AB\left(\frac{\operatorname{ch}(\xi x)}{\operatorname{ch}(\xi l)} - \frac{\operatorname{th}(\xi l)}{\xi l}\right),$$
(14)

где

$$B = \frac{\kappa^2 \eta_1^a + \kappa_m^2 \eta_2^a + \kappa_\sigma^2 \sigma_y^a + \kappa_t^1 \theta_a}{\xi^2 - 2AC\kappa_\sigma^2}; \quad C = 1 - \frac{\operatorname{th}(\xi l)}{\xi l}; \quad a_k = -2\mu \alpha_m^k \frac{3\lambda + 2\mu}{\lambda + 2\mu};$$

Поверхностные напряжения в слое. Влияние ...

$$\xi = \sqrt{\kappa^{2} - a\kappa_{m}^{2} + 2A\kappa_{\sigma}^{2}}; \quad A = a_{1} - aa_{2}; \quad a = \gamma_{12} / \gamma_{22};$$

$$\kappa^{2} = \frac{\alpha_{m}^{11} + \alpha_{m}^{12}}{\beta_{m}}; \quad \kappa_{m}^{2} = \frac{\alpha_{m}^{21} + \alpha_{m}^{22}}{\beta_{m}}; \quad \kappa_{\sigma}^{2} = \frac{\alpha_{m}^{1} + \alpha_{m}^{2}}{\beta_{m}}; \quad \kappa_{t}^{2} = \frac{\alpha_{\theta m}^{1} + \alpha_{\theta m}^{2}}{\beta_{m}}. \quad (15)$$

Видно, что температура однородна по толщине слоя. Зависимость химических потенциалов и напряжений от температуры линейная. Химические потенциалы компонент твердого раствора монотонно изменяются от заданных значений на поверхностях ($x = \pm l$)-слоя, равных η_1^a , η_2^a , достигая экспериментальных значений $\eta_1^a + B(1/ch(\xi l) - 1)$, $\eta_2^a - aB(1/ch(\xi l) - 1)$ на срединной поверхности. Параметром, характеризующим область приповерхностной неоднородности, служит величина ξ . Для толстых слоев ($\xi l > 1$) неоднородность в распределении $\eta_1(x)$, $\eta_2(x)$, $\hat{\sigma}(x)$ имеет приповерхностный характер, тогда как в тонких слоях она существенна для всей области тела. Напряжения σ_y в окрестностях поверхностей $x = \pm l$ являются растягивающими, а в срединных областях слоя – сжимающими. На рис. 1 показано распределение компоненты тензора напряжений σ_y при отсутствии внешнего силового воздействия ($\sigma_y^a = 0$).

Рис. 1. Распределение компоненты $\sigma_y / \sigma_* (\sigma_* = AB)$ тензора напряжений при различных ξl : $l - \xi l = 3; 2 - \xi l = 5; 3 - \xi l = 10; 4 - \xi l = 30.$

Если силовая нагрузка является растягивающей ($\sigma_y^a > 0$), то максимальными будут напряжения σ_y на поверхностях ($x = \pm l$)-слоя:

$$\sigma_{y}(\pm l) = \sigma_{y}^{a} + \frac{A}{D} (\kappa^{2} \eta_{1}^{a} + \kappa_{m}^{2} \eta_{2}^{\alpha} + \kappa_{t}^{2} \theta_{a} + \kappa_{\sigma}^{2} \sigma_{y}^{a}) \left(1 - \frac{\operatorname{th}(\xi l)}{\xi l}\right), \quad (16)$$

где $D = \xi^2 - 2A\kappa_{\sigma}^2 [1 - \text{th}(\xi l) / \xi l].$

ISSN 0556-171Х. Проблемы прочности, 2000, № 6

39

Я. И. Бурак, Т. С. Нагирный, О. Р. Грицина, К. А. Червинка

При увеличении толщины слоя l поверхностные напряжения монотонно возрастают, достигая значения $\sigma_y^a + A(\kappa^2 \eta_1^a + \kappa_m^2 \eta_2^a + \kappa_l^2 \theta_a + \kappa_\sigma^2 \sigma_y^a) / D$, т.е. поверхностные напряжения в толстых слоях больше, чем в тонких пленках. В зависимости от соотношения между характеристиками примесей и скелета насыщение тела примесями может привести как к увеличению (на рис. 2 кривые 3, 4), так и к уменьшению (кривыс 1, 2) поверхностных напряжений по сравнению с таковыми тела без примесей (на рис. 2 штриховая линия). Таким образом, соотношение (16) описывает размерный эффект поверхностных напряжений, а также учитывает влияние на их величину температуры и примесей.

Рис. 2. Зависимость поверхностного напряжения $\sigma_y / \sigma_0 (\sigma_0 = a_1 \eta_1^a)$ от параметра *a* при $\kappa l = 10, \kappa_m / \kappa = 0.5, \sigma_y^a = 0, \eta_2^a / \eta_1^a = 0.1$: $l - a_2 / a_1 = 0.5$; $2 - a_2 / a_1 = 0.4$; $3 - a_2 / a_1 = 0.2$; $4 - a_2 / a_1 = 0.1$.

Используем соотношение (16) и первую классическую теорию прочности [7] для расчета интенсивности внешнего силового нагружения σ_y^{ak} , приводящего к разрушению слоя. Согласно этой теории, предельное состояние тела наступает по достижении наибольшим главным напряжением σ_1 критического значения σ_p . В рассматриваемом случае σ_p необходимо интерпретировать как теоретический предел прочности. Учитывая, что расчетными являются поверхностные напряжения $\sigma_1 = \sigma_y(\pm l)$, из формулы (16) получаем

$$\sigma_{y}^{ak} = \frac{\sigma_{p} - \frac{A}{D} (\kappa^{2} \eta_{1}^{a} + \kappa_{m}^{2} \eta_{2}^{a} + \kappa_{l}^{2} \theta_{a}) \left(1 - \frac{\operatorname{th}(\xi l)}{\xi l}\right)}{1 + \frac{A}{D} \kappa_{\sigma}^{2} \left(1 - \frac{\operatorname{th}(\xi l)}{\xi l}\right)}.$$
(17)

Для больших *l* величина σ_y^{ak} не зависит от толщины слоя. Если σ_+ – критическая величина внешней нагрузки для безпримесного толстого слоя при начальной температуре $T_*(\theta=0)$, т.е.

$$\sigma_{+} = \frac{\sigma_{p} - a_{1}\eta_{1}^{a}}{1 + a_{1}\kappa_{\sigma}^{2} / \kappa^{2}},$$
(18)

то формулу (17) можно преобразовать к виду

$$\sigma_{y}^{ak} = \frac{1}{1 + \frac{A}{D}\kappa_{\sigma}^{2}\left(1 - \frac{\operatorname{th}(\xi l)}{\xi l}\right)} \left\{ \left(1 + a_{1}\frac{\kappa_{\sigma}^{2}}{\kappa^{2}}\right)\sigma_{+} + \left[a_{1} - \frac{A\kappa^{2}}{D}\left(1 - \frac{\operatorname{th}(\xi l)}{\xi l}\right)\right]\eta_{1}^{a} - \frac{A}{D}\left(1 - \frac{\operatorname{th}(\xi l)}{\xi l}\right)\left[\kappa_{m}^{2}\eta_{2}^{a} + \kappa_{l}^{2}\theta_{\alpha}\right] \right\}.$$

$$(19)$$

Пренебрегая влиянием тензора напряжений $\hat{\sigma}$ на химические потенциалы скелета η_1 и примесей η_2 , из формулы (19) получим

$$\sigma_{y}^{ak} = \sigma_{+} - M_{m} - M_{t} + \frac{\text{th}(sl)}{sl}(a_{1}\eta_{1}^{a} + M_{m} + M_{t}), \qquad (20)$$

где

$$s = \sqrt{\kappa^2 - a\kappa_m^2}; \quad M_m = \frac{a(a_1\kappa_m^2 - a_2\kappa^2)\eta_1^a - (a_1 - aa_2)\kappa_m^2\eta_2^a}{\kappa^2 - a\kappa_m^2};$$
$$M_t = \frac{(a_1 - aa_2)\kappa_t^2\theta_a}{\kappa^2 - a\kappa_m^2}.$$

Для толстых тел формулу (20) можно записать в виде

$$\sigma_{y}^{ak} = \sigma_{+} - M_{m} - M_{t}. \tag{21}$$

Анализ полученных соотношений показывает, что формула (20) описывает размерный эффект предела прочности, а также влияние на него температуры и примесей. Формулу (21) можно интерпретировать как такую, что описывает влияние температуры и примесей на предел прочности массивных тел. Аналогично, как и для поверхностных напряжений, наличие примесей в теле при постоянной температуре может способствовать как увеличению, так и уменьшению σ_y^{ak} . При постоянных характеристиках

примесей и скелета повышение температуры приводит к уменьшению критического значения интенсивности внешнего силового нагружения. При этом зависимость σ_v^{ak} от температуры линейная.

Согласно второй теории прочности, фактором, определяющим прочностные параметры материала, является относительное удлинение. Если в качестве отсчетного принять напряженно-деформированное состояние, обусловленное наличием поверхности тела, то в результате действия силовой нагрузки приращение деформации

$$\delta e_y = \frac{1}{\mu(3\lambda + 2\mu)} \sigma_y^a. \tag{22}$$

Оно не зависит от характерного размера тела, и, следовательно, размерный эффект предела прочности не описывается. Это согласуется с результатами экспериментального изучения предела прочности [8]. Как следует из приведенных результатов, согласование описания масштабных эффектов предела прочности на основании силовых и деформационных критериев достигается выбором во втором случае в качестве отсчетного недеформированного состояния тела, обусловленного наличием его поверхности.

Отметим, что результаты, полученны с помощью третьей теории прочности (теории наибольших касательных напряжений), такие же, как при использовании первой теории.

Работа выполнена при частичной финансовой поддержке Фонда фундаментальных исследований Министерства науки Украины.

Резюме

Із використанням локально-градієнтного підходу вивчено поверхневі напруження в розтягнутому термопружному шарі. На цій основі знайдено інтенсивність зовнішнього силового навантаження, що приводить до руйнування шару. Досліджено розмірні ефекти та вплив температури і домішок на параметри міцності.

- 1. Бурак Я. И., Нагирный Т. С., Грицина О. Р. О термодинамическом моделировании приповерхностных явлений в термомеханике // Докл. АН УССР. Сер. А. 1991. № 9. С. 66 70.
- 2. Бурак Я. И., Нагирный Т. С. Математическое моделирование локально-градиентных процессов в инерционных термомеханических системах // Прикл. механика. – 1992. – 28, № 12. – С. 3 – 23.
- 3. Бартенев Г. М., Зуев Ю. С. Прочность и разрушение высокоэластических материалов. – М.; Л.: Химия, 1964. – 388 с.
- 4. Лихтман В. И., Щукин Е. Д., Ребиндер П. А. Физико-химическая механика материалов. М.: Изд-во АН СССР, 1962. 304 с.

- 5. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. М.: Мир, 1973. 280 с.
- 6. *Дьярмати И.* Неравновесная термодинамика. М.: Мир, 1974. 190 с.
- 7. Панасюк В. В., Андрейкив А. Е., Партон В. С. Основы механики разрушения материалов // Механика разрушения и прочность материалов: Справ. пособие / Под ред. В. В. Панасюка: В 4 т. Киев: Наук. думка, 1988. Т. 1. 488 с.
- Jono M., Sugeta A., Kimura T., Konzaki S. Observations of fracture origins and evaluations of fracture strength of aluminium oxide ceramic thin films // J. Soc. Mater. Sci. Jap. – 1992. – 41, N 470. – P. 1668 – 1674.

Поступила 15. 10. 99