НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ

УДК 539.4

Прочность, ресурс и безопасность технических систем

К. В. Фролов, Н. А. Махутов, Г. Х. Хуршудов, М. М. Гаденин

Институт машиноведения РАН, Москва, Россия

Рассматривается эволюция подходов к решению проблем динамики и прочности машин на основе определения статических и динамических номинальных и локальных напряжений от эксплуатационных нагрузок. Показано, как в качестве основополагающих критериальных параметров деформативности и прочности конструкционных материалов последовательно использовались характеристики прочности и пластичности материала, характеристики циклической прочности в области обычной и малоцикловой усталости, характеристики высокотемпературной длительной прочности и ползучести, а также характеристики линейной и нелинейной механики разрушения.

Особое внимание уделено результатам исследований по безопасности машин и механике катастроф. При этом рассматриваются комплексные подходы к решению проблем прочности и безопасности потенциально опасных объектов (атомные электростанции, ракетно-космические комплексы, летательные аппараты, химические производства и др.) на основе анализа всех стадий их жизненного цикла, включая проектирование, изготовление, испытания и эксплуатацию.

Ключевые слова: прочность, ресурс, инженерная безопасность, напряжение, деформация, повреждение, усталость, ползучесть, механика разрушения

Институт машиноведения (ИМАШ) РАН и Институт проблем прочности (ИПП) НАН Украины на протяжении многих десятилетий вели фундаментальные и прикладные исследования в рамках проблемных академических планов, государственных научно-технических программ и крупных проектов. Основная задача этих исследований – получение фазовых закономерностей процессов деформирования и разрушения материалов и элементов конструкций при экстремальных штатных и аварийных режимах [1-3]. ИМАШ РАН и ИПП НАН Украины во взаимодействии с ведущими институтами и конструкторскими бюро использовали полученные результаты при обосновании прочности, ресурса и безопасности сложных технических систем в энергетике, ракетно-космической и авиационной технике, в транспортных комплексах. Существенная роль в организации и координации этих исследований принадлежала и принадлежит руководителям и ведущим специалистам ИПП НАН Украины (академики Г. С. Писаренко, В. Т. Трощенко, А. А. Лебедев и Н. В. Новиков) и ИМАШ РАН (академики А. А. Благонравов, К. В. Фролов и С. В. Серенсен).

Прочность и безопасность машин и конструкций стали одним из актуальных направлений технического развития по мере роста их рабочих пара-

метров и повышения потенциальной опасности высокорисковых систем "человек – машина – среда".

Основополагающим разделом указанных выше проблем были и остаются вопросы динамики и прочности машин [1–7]. При этом решение задач теории упругости, теории колебаний, теории пластин и оболочек сводилось к определению статических и динамических номинальных и локальных напряжений σ^3 от эксплуатационных нагрузок P^3 . В качестве критериальных параметров деформативности и прочности конструкционных материалов использовались модуль упругости E, пределы текучести $\sigma_{\rm T}$ и прочности σ_b

$$\sigma^{9} = f(P^{9}) \le \left\{ \frac{\sigma_{T}}{n_{T}}, \frac{\sigma_{b}}{n_{b}} \right\}, \tag{1}$$

где $n_{\rm T}$, n_b — соответствующие запасы текучести и прочности.

Уравнение (1) получило и получает приложения при создании автомобилей, сельскохозяйственной техники, энергетического и технологического оборудования широкого применения.

В годы Великой Отечественной войны и первые послевоенные годы были поставлены исследования по усталости и долговечности материалов. К основным параметрам эксплуатационной нагруженности машин были отнесены напряжения σ^3 и число циклов нагружения N^3 . В дополнение к уравнению (1) сформулированы условия циклической прочности:

$$\sigma_a^{\mathfrak{I}} = f(P^{\mathfrak{I}}, N^{\mathfrak{I}}) \leq \left\{ \frac{\sigma_{-1}}{n_{\sigma}(K_{\sigma}\overline{\sigma}_{a}^{\mathfrak{I}})\varepsilon_{\sigma} + \psi_{\sigma}\overline{\sigma}_{m}^{\mathfrak{I}}} \right\}, \tag{2}$$

где $\overline{\sigma}_a^{\mathfrak{I}}$, $\overline{\sigma}_m^{\mathfrak{I}}$ — амплитуды и среднее напряжение цикла ($\overline{\sigma}=\sigma/\sigma_{-1}$); σ_{-1} — предел выносливости конструкционного материала; K_{σ} , ε_{σ} , ψ_{σ} — характеристики чувствительности материала к концентрации напряжений, абсолютным размерам и асимметрии цикла.

По уравнениям (1) и (2) рассчитывались прочность и долговечность несущих узлов в авиации, на транспорте, в гидроэнергетике. Для анализа местных напряжений были развиты методы фотоупругости и тензометрии.

С освоением районов Сибири и Севера и созданием объектов криогенной техники в 50–60-е годы возникла задача об исследовании низкотемпературной прочности с определением характеристик хладноломкости. В анализ прочности дополнительно были введены [1–4] характеристики низкотемпературного локального сопротивления отрыву $S_{\rm от}$:

$$\sigma_a^{\mathfrak{I}} = f(P^{\mathfrak{I}}, N^{\mathfrak{I}}, t^{\mathfrak{I}}) \le \left\{ \frac{S_{\text{ot}}}{n_{\sigma} K_{\sigma}} \right\},$$
 (3)

где K_{σ} – коэффициент концентрации напряжений с учетом перераспределения напряжений за счет местных пластических деформаций.

Важное значение при этом имели исследования по локальным структурным физико-механическим процессам формирования микродеформаций и микроповреждений в материале с использованием методов рентгенографии и микроскопии.

Для интенсивно развивавшихся в 60-е годы отраслей авиационного, энергетического и нефтехимического машиностроения были поставлены систематические исследования по малоцикловой усталости [1, 2, 4, 5]. Создание в зонах действия концентрации и температурных напряжений областей неупругого циклического деформирования потребовало перехода от расчетов в локальных напряжениях к расчетам в локальных деформациях:

$$\{\sigma^{3}, e^{3}, N^{3}\} = f(P^{3}, N^{3}, t^{3}, m) \leq \left\{ \left[\left(\frac{\sigma_{c}}{n_{\sigma}} \right) \left(\frac{e_{c}}{n_{e}} \right) \left(\frac{N_{c}}{n_{N}} \right) \right] f(\sigma_{T}, \psi_{k}, m_{p}, m_{e}) \right\}, \quad (4)$$

где σ_c, e_c, N_c – предельные напряжения, деформации и число циклов,

$$\sigma_c = S_{\text{ot}}, \quad e_c = \frac{1}{1 - \psi_L};$$

m – характеристика упрочнения в упругопластической области; ψ_k – сужение при однократном разрушении; m_p , m_e – характеристики кривой малоциклового разрушения.

Для определения σ^3 , e^3 были развиты методы фотоупругих наклеек, муара, малобазных сеток и малобазной тензометрии [1, 2, 5, 6].

Применительно к новым задачам сверхзвуковой авиации, теплоэнергетики, нефтехимии, металлургии были поставлены исследования по ползучести, высокотемпературной кратковременной длительной и циклической (500...3000°С) прочности, в том числе при программных и двухчастотных режимах нагружения [1, 2, 4–9]. К уравнениям (1), (2) и (4) при расчетах деталей машин были добавлены уравнения длительной (по времени эксплуатации τ^3) прочности $\sigma^{\tau}_{\pi,\Pi}$

$$\{\sigma^{3}, e^{3}, \tau^{3}, N^{3}\} = f(P^{3}, \tau^{3}, N^{3}, t^{3}) \leq \left\{ \left(\frac{\sigma_{\pi, \Pi}^{\tau}}{n_{\sigma}}, \frac{e_{c}^{\tau}}{n_{e}}, \frac{\tau_{c}}{n_{\tau}} \right), f(m_{\tau}) \right\}, \quad (5)$$

где n_{τ} — запас по времени τ ; m_{τ} — характеристика кривой длительной прочности.

Измерения локальных напряжений и деформаций выполнялись высокотемпературными методами тензометрии и муара на технических объектах в нашей стране и за рубежом [6, 9, 10]. Развитие и обобщение большого цикла работ по прочности и долговечности в 60–70-е годы привело к формированию одного из важных разделов проектирования, изготовления и эксплуатации машин – разделу обеспечения их надежности и ресурса [1, 2, 4, 5]. Это, в первую очередь, относилось к изделиям общего машиностроения, работающим при переменных режимах термоциклического нагружения. Для развития уравнений (1) и (2) в расчет по кривым усталости $\sigma-N$ были введены коэффициенты вариации эксплуатационной нагруженности ν_{σ} , пределов выносливости ν_{σ_a} , а также конструкторско-технологических факторов $(K_{\sigma}, \varepsilon_{\sigma}, \psi_{\sigma})$. Эти подходы распространились и на малоцикловую усталость.

В конце 60-х и начале 70-х годов большое внимание уделялось развитию линейной и нелинейной механики статического, циклического и динамического разрушений [1, 2, 5, 8]. При этом расчеты трещиностойкости машин стали базироваться на местных напряжениях $\sigma^{\mathfrak{I}}$ и деформациях $e^{\mathfrak{I}}$, коэффициентов интенсивности напряжений $K_{\mathfrak{I}}^{\mathfrak{I}}$ и деформаций $K_{\mathfrak{I}e}^{\mathfrak{I}}$, температурных условий нагружения $t^{\mathfrak{I}}$:

$$\{\sigma^{3}, e^{3}, K_{I}^{3}, K_{Ie}^{3}\} = f(P^{3}, t^{3}, l^{3}) \le \left\{\frac{\sigma_{c}}{n_{\sigma}}, \frac{e_{c}}{n_{e}}, \frac{K_{Ic}}{n_{k}}, \frac{K_{Iec}}{n_{ke}}\right\},$$
 (6)

где n_k , n_{ke} — запасы по коэффициентам интенсивности напряжений и деформаций.

Уравнение (6) получило нормативное применение в расчетах прочности атомных реакторов, сосудов давления, трубопроводов [1, 2, 5, 11, 12].

В 80-е годы на базе ранее выполненных комплексных исследований с учетом новых задач в области ракетостроения, атомной и термоядерной энергетики получили развитие методы анализа прочности, ресурса, трещиностойкости и живучести машин с учетом повреждений технологического и эксплуатационного происхождения [1, 2, 5, 11, 12].

К уравнениям (1)–(6) были добавлены уравнения для оценки ресурса с учетом длительного и циклического развития трещин:

$$\{\sigma^{3}, e^{3}, K_{Ie}^{3}, N^{3}, \tau^{3}, t^{3}\} = f(P^{3}, t^{3}, l^{3}) \le \left\{\frac{\sigma_{c}}{n_{\sigma}}, \frac{e_{c}}{n_{e}}, \frac{N_{c}}{n_{N}}, \frac{\tau_{c}}{n_{\tau}}, \frac{t_{c}}{n_{t}}\right\}, \quad (7)$$

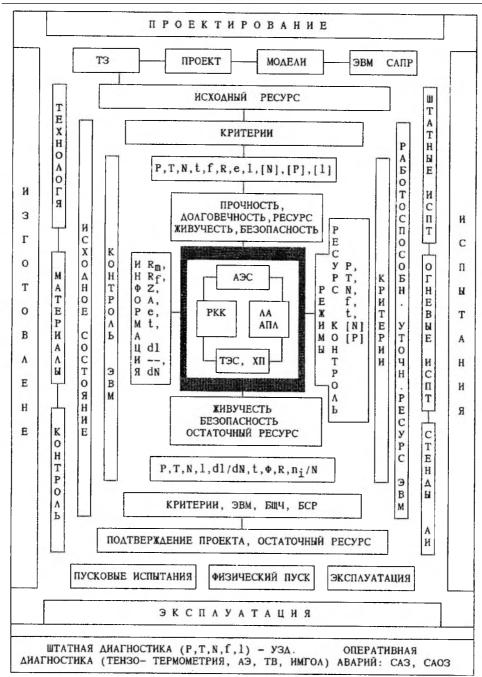
где c – индекс для критических характеристик; n_N , n_{τ} , n_t – запасы по числу циклов, времени и температурам.

Расчетные характеристики N_c и τ_c определяются интегрированием кинетических диаграмм разрушения

$$\{N_c, \tau_c\} = F\left\{ (\Delta K_{Ie}^3), \left(\frac{dl^3}{dN}, \frac{dl^3}{d\tau}\right) \right\},\tag{8}$$

где ΔK_{1e}^{3} – размах коэффициентов интенсивности деформаций.

Для анализа процессов повреждения использовались методы импульсной голографии, термовидения, тензочувствительных покрытий, рентгенографии, микроструктурного анализа виброметрии [1, 4, 5, 9, 10].


В последнее десятилетие были поставлены и начаты исследования по безопасности машин и механике катастроф [13–15]. Применительно к потенциально опасным объектам эти разработки включают комплексные исследования по всем перечисленным выше направлениям с использованием аналитических, численных и экспериментальных методов анализа напряженно-деформированных и предельных состояний.

На основе уравнений (1)–(8) был внесен большой вклад в реализацию крупнейших проектов страны — уникальные гидравлические и тепловые турбины мощностью 200–1200 МВт, атомные энергетические реакторы (на тепловых ВВЭР, РБМК, АСТ и быстрых нейтронах ВН) мощностью 210–1000 МВт (для АЭС в бывших СССР и Чехословакии, Финляндии, Германии, Болгарии, Венгрии), термоядерные установки Т-14, Т-15, Ангара-5, крупнейшие аэродинамические трубы Т-128 и Т-1110, авиационные и ракетные двигатели НК и АЛ, головные образцы летательных аппаратов авиационной (ТУ, МИ) и космической (Р-7, Н-1) техники. Важнейшие работы были проведены при создании космической системы "Энергия—Буран", объектов оборонной техники, ядерного над- и подводного флотов.

Проведение фундаментальных и прикладных исследований по нелинейной механике деформирования и разрушения позволяет реализовать базовую схему определения и регулирования безопасности на всех этапах их жизненного цикла [1, 2, 13–15].

На рисунке приведена комплексная блок-схема решения проблем прочности и базопасности таких потенциально опасных объектов, как атомные электростанции (АЭС), ракетно-космические комплексы (РКК), летательные аппараты (ЛА), атомные подводные лодки (АПЛ), теплоэлектростанции (ТЭС), химические производства (ХП). Эти проблемы охватывают все стадии жизненного цикла объектов: проектирование, изготовление, испытание и эксплуатацию.

Проектирование включает в себя разработку и согласование технического задания (ТЗ) с введением базовых требований по прочности, ресурсу и безопасности. Сама разработка проекта состоит из ряда стадий (принципиальные схемы, предэскизный, технический и рабочий проекты). На этой стадии разрабатываются физические и математические модели с применением ЭВМ и систем автоматизированного проектирования (САПР). На стадии проектирования анализируется прочность на основании нормативных и дополнительных расчетов и обосновывается исходный ресурс. Основными критериями и характеристиками таких расчетов являются: эксплуатационные нагрузки P^3 , температуры T(t), числа циклов N, частоты f, характеристики сопротивления материалов $R(\sigma_{\rm T},\sigma_b,\sigma_{\rm д.п})$, деформации e, дефекты І. В качестве допустимых с использованием уравнений (1)–(8) обосновываются параметры [N], [P], [I] с соответствующими заданными запасами п. По комплексу расчетных и эксплуатационных исследований составляется заключение о прочности, долговечности, ресурсе, живучести и безопасности.

Блок-схема анализа прочности и безопасности машин и конструкций.

На стадии изготовления решаются вопросы выбора, обоснования и развития технологий материалов и контроля. Для изготовленных элементов, систем и объектов в целом устанавливаются исходные состояния: фактические механические свойства и их отклонения от технических требований, уровень реальной дефектности несущих узлов, геометрические формы и их отклонения. Уточненные данные контроля заносятся в паспорта и память

ЭВМ. Все эти данные являются исходной информацией о характеристиках прочности $R_m(\sigma_b)$, $R_f(S_{\text{от}})$, деформативности A (удлинении δ), Z (сужении ψ), деформациях e, температуре t, скорости роста трещин dl/dN (или $dl/d\tau$). На их основе уточняются проектные параметры прочности, долговечности, ресурса, живучести и безопасности.

Стадия испытаний включает их различные виды и комбинации: автономное испытание (АИ) узлов, стендовые испытания узлов, агрегатов и изделий, огневые и имитационные испытания. Завершающими оказываются штатные испытания головных образцов с воспроизведением реальных эксплуатационных и экстремальных режимов.

С использованием тех же критериев, что и для стадий проектирования и изготовления, дополнительно уточняются допустимые предельные нагрузки [P] и долговечность [N] или $[\tau]$. На этой основе составляется заключение о ресурсе, методах последующего контроля и назначаются уточненные режимы эксплуатации.

Для стадии ввода в эксплуатацию осуществляются предпусковые и пусковые испытания (холодная и горячая обкатка), физический пуск (с корректировкой всех систем поддержания эксплуатации) и ввод в эксплуатацию. При этом назначается и уточняется система штатной диагностики основных параметров: нагрузок P, температур T, циклов N, частот f, дефектов I (с использованием преимущественно штатных систем ультразвуковой диагностики (УЗД)). Для объектов высокой потенциальной опасности разрабатываются, создаются и применяются методы и системы оперативной диагностики аварийных ситуаций (с использованием тензотермометрии, акустической эмиссии (АЭ), термовидения (ТВ), импульсной голографии (ИМГОЛ)). Получаемые при этом данные могут давать исходную информацию для включения систем автоматической защиты (САЗ) и систем автоматической оперативной защиты (САОЗ).

Таким образом, на начальной стадии эксплуатации получаем важнейшую информацию для подтверждения или корректировки проектных решений о прочности, долговечности, ресурсе живучести и безопасности. По мере исчерпания уточненного проектного ресурса оценивается остаточный ресурс безопасной эксплуатации. С целью согласования всей информации для всех стадий жизненного цикла объекта должны использоваться унифицированные критерии и компьютерные программы. При этом данные о ресурсе могут выводиться на блочные щиты управления (БЩУ) и бортовые счетчики ресурса (БСР) — n_i / N.

Применительно к стадии эксплуатации важным научно-техническим и экономическим вопросам становится вопрос о безопасном выводе объектов из эксплуатации (особенно в случаях накопленных остаточных радиоактивных излучений Φ , химических воздействий, рабочих и аварийных воздействий на объекты, персонал и окружающую среду).

Одной из важнейших задач при решении проблем обеспечения прочности, ресурса и безопасности современных мощных установок и машин всегда являлось определение напряженно-деформированных состояний (НДС) несущих элементов конструкций при эксплуатации [1, 6, 9–12, 16–18].

Для решения указанных задач наряду с современными расчетными методами с использованием ЭВМ успешно применяются эффективные методы экспериментальной механики на всех основных этапах создания машин (рисунок), включая стадии проектирования, доводки опытных образцов, и, особенно, в реальных условиях эксплуатации. В ряде случаев при сложностях в проведении прямых экспериментальных исследований уникальных конструкций применяются комбинированные расчетно-экспериментальные методы, сочетающие преимущества каждого из используемых методов на различных этапах исследований, что обеспечивает получение необходимой информации по НДС, в том числе в зонах, недоступных для измерений [10]. Проведение экспериментальных исследований НДС конструкций атомного, термоядерного, теплоэнергетического, химического и другого оборудования потребовало значительного развития существовавших методов измерений и создания новых, обеспечивающих выполнение модельных, стендовых и натурных исследований на всех этапах создания машин и конструкций (таблица).

Для этого были созданы методы и средства высокотемпературной натурной тензо-, термо- и виброметрии для исследований напряженного состояния высокорисковых объектов с применением разработанных специальных информационно-измерительных комплексов и проведены впервые в отечественной практике исследования при стендовых, заводских и пусковых испытаниях, а также при длительных испытаниях в экстремальных условиях эксплуатации. При этом основные возможности и достижения применяемого метода натурной тензометрии атомного, термоядерного, теплоэнергетического и ракетно-космического оборудования обеспечивают:

возможность тензометрических исследований статических, квазистатических, динамических деформаций (напряжений) в условиях высоких (до 550° C) и низких (до -296° C) температур;

в режиме стационарного и резконестационарного изменения температур (со скоростью $V_t = 5-10^{\circ} \text{C} \cdot \text{c}^{-1}$);

при установке первичных преобразователей на внутренней поверхности корпусных узлов с выводом коммуникационных линий через специальные гермовыводы, при внутреннем давлении (20–30 МПа) и пульсации давления ($p_{\min}=0.002$ МПа);

при потоках теплоносителя (газового, пароводяного, жидкометаллического) со скоростью 50–300 м/с и более;

при воздействии радиации до флюенса $\Phi_{\it th}=7,7\cdot 10^{19}$ нейтрон/см $^{-2}$ (реакторы ВВЭР-440; ВВЭР-1000) и сильных магнитных полей с магнитной индукцией до 20 Тл (термоядерные установки Т-10 и Т-15).

Длительность исследований во многом зависит от реального ресурса стабильной работы первичных преобразователей в условиях эксплуатации и, например, при исследованиях ВВЭР-1000 в условиях эксплуатации на АЭС при t = 300-350 °C составила около 1 года при общей длительности исследования одного объекта до 7 лет.

Разработаны и применяются несколько новых типов хрупких тензочувствительных покрытий, предназначенных для различных условий испы-

таний конструкций: канифольные покрытия газопламенного нанесения и наносимые без нагрева, оксидные и стеклоэмалевые покрытия с тензочувствительностью по деформациям, регулируемой в пределах 0,1-0,4%, обладающие стабильностью и обеспечивающие количественные изменения с погрешностью 10-20%. Покрытия получили эффективное использование при исследованиях напряженного состояния на поверхности деталей и узлов конструкций при статической и динамической нагрузках, измерениях в экстремальных условиях низких и высоких температур в диапазоне от -250 до +400°C, а также в различных средах (вода, масло, жидкий водород, азот и др.) и широко используются при проектировании и испытаниях конструкций различного назначения (узлы самолетных и турбинных конструкций, реакторов, ракетных двигателей).

Схема методов и целей исследований

Этап	Объект	Метод	Задача (цель)
работы Эскизный проект	исследования Модели из полимерных материалов	исследования Поляризационно-оптические измерения, тензометрия, хрупкие лаковые покрытия	исследований Обоснование основных конструктивных решений
Технический проект	Модели метал- лические и из полимерных ма- териалов	То же	Обоснование проекта, уточнение расчета, разра- ботка схемы для стендовой и натурной тензометрии
Рабочий проект	Модели из поли- мерных материа- лов	» »	Уточнение формы и размеров деталей, оптимизация конструкций
Изготовление оборудования на заводе	J1 .	Натурная тензометрия, хрупкие лаковые покры- тия, оптически чувстви- тельные покрытия, дефек- тоскопия	Проверка допустимости технологических отклонений с уточнением НДС в конструкции, учет повреждений, накопленных при изготовлении
Пуско-наладоч-	Натурный объект	Натурная тензометрия, термовиброметрия, дефектоскопия	Тензометрический контроль при режимах пусконаладочных испытаний, рекомендации по режимам нагружения
Освоение мощности, начальный период эксплуатации	То же	То же	Определение действительной нагруженности, уточнение истории нагружения, текущего и остаточного ресурсов. Рекомендации по оптимизации режимов эксплуатации усовершенствованной конструкции
Эксплуатация, продление ресурса, вывод из эксплуатации	» »	Натурная тензометрия, термовиброметрия, образ- цовые и безобразцовые ис- пытания, дефектоскопия	Определение нагруженно- сти и повреждаемости. Заключение о прочности и безопасности

Получили развитие и применение разработанные расчетно-экспериментальные методы, позволяющие с решением обратных задач экспериментальной механики расширить объем информации о действительном напряженном состоянии натурных объектов в условиях эксплуатации, упростить постановку и объем экспериментальных исследований, дать объективную оценку уровня напряженности в неудобных для измерений участках поверхности, особенно на внутренних зонах корпусов и патрубков атомного и теплоэнергетического оборудования.

Полученные в ИМАШ РАН и ИПП НАН Украины совместно с НИИ и КБ отраслей результаты теоретических и экспериментальных исследований деформаций и напряжений в несущих элементах высокорисковых объектов гражданского и оборонного комплексов явились основой для анализа прочности, ресурса и безопасности с применением нормативных и уточненных методов, а также позволяли и позволяют устанавливать, определять, назначать и продлевать проектный, фактический, исходный и остаточный ресурсы безопасной эксплуатации.

Резюме

Розглядається еволюція підходів до вирішення проблем динаміки і міцності машин на основі визначення статичних і динамічних номінальних та локальних напружень від експлуатаційних навантажень. Показано, як в якості обгрунтованих критерійних параметрів деформаційності та міцності конструкційних матеріалів послідовно використовувались характеристики міцності й пластичності матеріалу, характеристики циклічної міцності в області звичайної і малоциклової втоми, характеристики високотемпературної тривалої міцності та повзучесті, а також характеристики лінійної і нелінійної механіки руйнування.

Особливу увагу приділено результатам досліджень безпеки машин і механіки руйнувань. При цьому розглядаються комплексні підходи до вирішення проблем міцності та безпеки потенційно небезпечних об'єктів (атомні електростанції, ракетно-космічні комплекси, літальні апарати, хімічні виробництва та ін.) на основі аналізу всіх стадій їх життєвого циклу, включаючи проектування, виготовлення, випробовування й експлуатацію.

- 1. Писаренко Г. С., Квитка А. Л., Козлов И. А. и др. Прочность материалов и элементов конструкций в экстремальных условиях. Киев: Наук. думка, 1980. Т. 1. 536 с.; Т. 2. 772 с.
- 2. *Серенсен С. В.* Избранные труды. Киев: Наук. думка, 1985. Т. 1. 262 с.; Т. 2. 256 с.; Т. 3. 232 с.
- 3. Ужик Γ . B. Сопротивление отрыву и прочность металлов. М.: Изд-во АН СССР, 1950. 255 с.
- 4. *Серенсен С. В., Когаев В. П., Шнейдерович В. М.* Несущая способность и расчеты деталей машин на прочность. М.: Машиностроение, 1975. 488 с.

- 5. *Махутов Н. А.* Деформационные критерии разрушения и расчет элементов конструкций на прочность. М.: Машиностроение, 1981. 273 с.
- 6. *Пригоровский Н. И. и др.* Напряжения и деформации в деталях и узлах машин. М.: Машиностроение, 1961. 563 с.
- 7. *Работнов Ю. Н.* Ползучесть элементов конструкций. М.: Наука, 1966. 572 с.
- 8. Махутов Н. А., Воробьев А. З., Гаденин М. М. и др. Прочность конструкций при малоцикловом нагружении. М.: Наука, 1983. 270 с.
- 9. *Пригоровский Н. И. и др.* Напряжения и деформации в деталях и узлах машин. М.: Машиностроение, 1961. 563 с.
- 10. Пригоровский Н. И. Методы и средства определения полей деформаций и напряжений. М.: Машиностроение, 1983. 248 с.
- 11. *Махутов Н. А., Стекольников В. В., Фролов К. В. и др.* Конструкции и методы расчета водо-водяных энергетических реакторов. М.: Наука, 1987.-231 с.
- 12. *Махутов Н. А., Стекольников В. В., Фролов К. В. и др.* Прочность и ресурс водо-водяных энергетических реакторов. М.: Наука, 1988. 310 с.
- 13. *Проблемы* разрушения, ресурса и безопасности технических систем. Красноярс: Кодас, 1997. 519 с.
- ГНТП "Безопасность". Концепция и итоги работы 1991 1992 гг. Итоги науки и техники. – М.: ВИНИТИ, 1993. – Т. 1. – 350 с.; Т. 2. – 470 с.
- 15. *Безопасность* России. Функционирование и развитие сложных народнохозяйственных, технических, энергетических, транспортных систем, систем связи и коммуникаций. М.: МГФ "Знание", 1999. Т. 1. 444 с.; Т. 2. 410 с.
- 16. Дайчик М. Л., Пригоровский Н. И., Хуршудов Г. Х. Методы и средства натурной тензометрии: Справочник. М.: Машиностроение, 1989. 240 с.
- 17. *Махутов Н. А., Фролов К. В., Стекольников В. В. и др.* Экспериментальные исследования деформаций и напряжений в водо-водяных энергетических реакторах. М.: Наука, 1990. 296 с.
- 18. *Митенков Ф. М., Стекольников В. В., Махутов Н. А. и др.* Тензометрические исследования конструкций энергетического оборудования // Пробл. машиностр. и автомат. 1988. Вып. 22. С. 33 43.

Поступила 29. 06. 2000