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HGHaFOFI/I‘IGCKI/Iﬁ YHUBECPCUTET, OTACIICHUC MATCMATUHYCCKUX TCXHOJIOTUH U €CTECTBCH-
HBIX HAYK Texauueckoro WHCTUTYTA, BBIHFOHI, Ilonpmra

Bemnonnen Ounamuueckuti anaiu3 YunuHOpUHecKux 00010YeK U U3YHeHbl HOGble MeXaHUYecKue
appexmor 6 pacnpedenenuu nanpsicenuti, depopmayutl u nepemewjenuti. Lununopuveckue obo-
oYKy paccmampusaromes Ha ochoge eunomesvt Kupxeopa—/Inea u ymounennou moodenu Tumo-
WEHKO.

Cylindrical shells with wide range of geometrical and physicomechanical
parameters are component parts of many modern structures subject to the action
of different loads. The development of various vibration models becomes an
urgent problem due to the structural features of layered shells operating under
different conditions of mechanical loading. The classical theory of cylindrical
shells, which is based on the Kirchhoff~Love hypothesis, is widely used for the
evaluation of the stress-strain state or vibration of isotropic thin elastic shells.
Among numerous precise models applied to the investigation of shells made of
modern materials due to their practical validity, visualization, and completeness,
the Timoshenko shear model is used. The behavior of thick-walled shells under
such conditions is fairly peculiar and complex and requires a more detailed
vestigation taking into account the changes in geometry, material behavior,
mode of loading, conditions of the boundary, and many other factors.

The dynamic problem of elastic homogeneous bodies was presented in [1, 2].
The problem of simulation of the acoustic properties of the larger human blood
vessel was considered in [3]. Simple and complex vibration systems were
considered in [4]. The coupled problems of the thermomechanical behavior of
viscoelastic bodies under harmonic loading were presented in [5]. The problem of
nonaxisymmetric deformation of flexible rotational shells was solved in [6] with
the use of the classical Kirchhoff~Love model and improved Timoshenko model.
Free vibrations of the elements of shell constructions were described in [7].

The goal of this paper is to perform the dynamic analysis of cylindrical shells
and discover new mechanical effects in the distribution of stresses, deformations,
and displacements. We present the dynamic analysis of elastic layered cylindrical
shells of finite length / for different values of thickness 4. We consider two
models of deformation of a straight line shell element that is normal to the
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undeformed coordinate surface. The first one is based on the Kirchhoff-Love
hypothesis according to which this element remains straight and normal and its
length does not change in the process of deformation. The second one is the
improved Timoshenko model, which is also based on the hypothesis of straight
line, but, in this case, the shell element, initially normal to the surface, does not
remain normal to the deformed surface. These kinematic assumptions are
supplemented with static assumptions according to which the normal stresses on
the squares that are parallel to the coordinate surface, as compared with the
stresses on the other squares, can be neglected. The inertial forces associated with
the displacement of a surface element along the coordinate axes are also taken
into account. The layers of the shell are deformed without mutual separation on
the entire surface of contact.

Due to the assumptions made, the displacements and deformations of
arbitrary points of the shell are determined by the displacements and deformations
of the coordinate surface. Thus, the displacements of the shell points located at a
distance z from the coordinate surface are determined as a near function of the
displacements of this surface:

U(S,Q,V,t) = u(S,e,t) + }’l/)l(sﬂeat)a
V(s,0,r,t)=v(s,0,t)+ 1y, (s,0,1),
W(s.,0,r,1)=w(s,0,1),

where ¢, ¢, are the angles of rotation of the normal in the planes 0 = const and
s = const, respectively, for the classical version of the theory, or the full angles of
rotation for the improved version of the theory with shear deformations taken into
account.

Investigations were carried out for both models for radial displacements w in
the cylindrical coordinates », z, 0 (—h/2<r=<h/2,0<2z=<1,0< 6 < 2m) under
axisymmetric loading.

One-Layered Cylindrical Shell. According to the assumptions of the
classical Kirchhoff-Love theory, we have ¢, =¢_,. = €y, =0, the normal stresses
0,=0 and w(z,r,0,t)= f(z,r,t). In the mathematical model of the problem on
the basis of the classical Kirchhoff~-Love model, the system of conjugate partial
differential equations describing the phenomenon of small transverse vibrations in
the considered physical model has the form

—_ _:0’

1-v? d&z® R dz dt*
1
d*w Eh w du d>w M

2 s\ TV TP =0,
dz*  (1—v°)R\R  dz dt
where
3
D:Lz‘
12(1—v7)
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A solution of this problem was obtained in the following form:

W= Z ~t cos( )cos(a) t+¢,),
2)

_a_W
Po="

Function of stresses has been accepted as

Q
~
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B~ 1M
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. hAZ
or(r)sstma)t,

Q
I

M=

nauz .
OZ(r)cosTsma)t, (3)

=0 n=
T N
nnz
09 = Zog(r)cosTsma)t,
=0 n=1

T

where 0,(r), 0 ,(r), 0y(r) are functions varying across the thickness 4 and
length / of the shell at time ¢

Under the assumptions of the improved Timoshenko model, in which the
influences of forces of rotational inertia and shearing deformation are taken into
account, one has deformations ¢, #0, &g, #0 and normal stresses ¢, =0. The
mathematical model of the problem on the basis of the improved Timoshenko
model is represented by the following system of conjugate partial differential
equations

3 42
D wz+kthW z/)1 ph” dt/;2=0,
dz> Laz "7 12 4 \
dzw 1 Ta%w _dy, | Eh (w du) @
ph + —+v 0.
dt>  kK'Gh| 4z* dzJ (1-v*)R\R dz
In this case, we found a solution of the problem in the form
z N wz ph’ d*y |
w=2e +2 +k'Ghy ., |cos(w,t+¢,),
n=1 12 dt
(5)
= 1 [ En du d*w  d’w]
Y.= > e — (w+1/—)+ h——— cos(w 1+ ¢,).
Z kGh[(l—vz)R2 dz dt*  dz? J !

Here, w, u are displacements of the shell, 1, is the angle of rotation of a cross
section of the shell, p is the mass density of the material of the shell, /4 is the
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height of the shell, v is Poisson’s ratio, G is the Kirchhoff modulus of the
material of the shell, E is Young’s modulus of the material of the shell, k' is the
shear coefficient, and t is time.

First, we consider a cylindrical shell under load qgn= gqOsin(nnz/1)
distributed symmetrically with respect to z-axis. Elastic cylindrical shell with
finite length I, rigidity D, and external radius R is considered with free supports
on its ends:

W7=0=0 W7=1=0 (6)

Numerical calculations are performed for the following data: 1= 120 mm,
h=2,6 mm, E=21-101 N/mm2,v=0.3, n=1,2, 20.

Some results concerning the solution of the problem are shown in Figs. 1and
2. The diagrams present free vibrations for displacements w(z ,t) in the middle
section of the cylindrical shell for different thicknesses h /R = 1/10; 1/30 and the
initial condition w0 = 0.02sin(nnz /1) [m]. The two-dimensional diagrams
display the distribution with length 0< 7 < 0.21 at time t= 0.48 s for various
n,d = I/ nh. The diagrams marked with “a” correspond to the cases where the
classical Kirchhoff-Love model was applied, whereas the diagrams marked with
“b” correspond to the cases where the improved Timoshenko model was used.

w b

Fig. 1 Distribution of free vibrations of the cylindrical shell for h/R =1/10.
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Fig. 2. Distribution of free vibrations of the cylindrical shell for h/R =1/30.
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Analyzing the results for h/R = 1/10, 6=1, 2 (Fig. 1) and h/R = 1/30,
6 = 3, 6 (Fig. 2), one can note that, as n = 1, 10, 20 increases, the free vibrations
w decrease and the difference between the results obtained for the Timoshenko
and Kirchhoff-Love models increases. As 6 decreases, the difference between
the values of displacement for the two models considered increases.

The distributions of stresses az,ar,a0,trz and deformations er, ez for
cylindrical shells for z = 0.51 across the thickness —h/2<r < h/2 are shown
in Fig. 3. The spatial curves of stresses and deformations are presented for the
external load gn = gOsin(nnz /1), which affects the cylindrical shell, with respect
to time. The components of stresses and deformations vary nonlinearly across the
thickness. The tangential stresses trz vary across the thickness according to the
parabolic law. The distribution of stresses t rz is symmetrical with respect to the
z = 0.51 axis. The normal stresses depend on r. Strain distribution ez, er (both
axial and radial ones) also have the form of a centrally symmetrical parabola.
Considering the section z = 0.21 we see that the longitudinal a z, radial ar, and
circular ag stresses reach values that are smaller than those for z = 0.51 by
approximately 60%, 6%, and 54%, respectively. The tangential stresses trz for
z = 0.21 reach values approximately 5% smaller than for z=0.51 For z = 0.2},
the deformations along the radial direction er reach values approximately 75%
smaller than for z=0.51For z=0.21 the deformation along the axial direction
ez reaches a value approximately 50% smaller than for z = 0.51

Fig. 3. Distribution of stresses az,ar,ae,trz and deformations er,ez for cylindrical shells for
z=051 across the thickness —h/2<r < h/2.
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The distributions of the radial displacement w(r,t) across the thickness
h,z=0.51 at time t are shown in Fig. 4. The diagrams marked with “a”
represent the distribution according to the Timoshenko model, and the diagrams
marked with “b” describe the distribution according to the Kirchhoff-Love
model. In the case of the Timoshenko model, the radial displacements vary across
the thickness and decrease with time. In the case of the Kirchhoff-Love model,
the radial displacements are described by a constant function across the thickness
and also decrease with time.

w(r,t)/103qohE 1 w(r,t)/103q0hE 1

a b
Fig. 4. Distribution of the radial displacement w(r,t) across the thickness h, z = 0.51 at time t

For cylindrical shells with h /R > 1/10 and d <3 subjected to nonuniform
loading, it is necessary to use the Timoshenko model. The application of the
classical Kirchhoff-Love model in these cases may lead to significant errors.

Sandwich Cylindrical Shell. In the case of a system of two cylindrical
shells coupled by a viscoelastic interlayer, the mathematical model of the problem
corresponding to the Timoshenko model is represented by the following system of
coupled partial differential equations describing small transverse vibrations of the
system:

)

p 2h2 S — T StV
dt2 k'G2h2 [ dz2 dz J (1—v2)R2VR2 dz

d
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where R, is the radius of the internal shell I, R, 1is the radius of the interlayer,
R5 is the radius of the external shell II, #; and h, are the heights of shells I and
II, p; and p, are the mass densities of the materials of shells I and II,
Wiy »Wap U1, and u,, are the displacements of shells I and 11, %, and v,, are
the angles of rotation of cross sections of shells I and II, £, and £, are Young’s
moduli of the materials of shells I and II, %' is the shear coefficient, £ is the
coefficient of elasticity of the interlayer, and ¢ is the coefficient of viscosity of
the interlayer,

The free vibration of a system of two cylindrical shells coupled by a
viscoelastic interlayer was determined with the use of the Timoshenko model as
follows:

Wi = e W, |, [coS(@, 1+ @, + 1),
n=1

= Dy U || @, [cos(@,t + @, + D),
n=1

Vi = Y e W@, [cos(@,t+ 9, +04,),
n=1

oo (8)

Wap = D€ W, ||, [cos(@,t+ 0, + 22,
n=1

Uy, = Y€ MU, || D, [os(,t+ ¢, +15,),
n=1

[ee)

Yo = D € "Wy, || @, [[cos(w, i+ @, +0,,),

n=1
where
| 2 LI 2 2 B 2

q)n= 2W1n+U1n+ 2‘P1n+W2n+U2n+ zlpzn +

12R; 12R3
2 T 2 2 h o
+ (W, —Wo,)” |dx | f Wiwio +U g + —5 Wi +
| % 12R;
2 2 hy oo
+Wauwao +U o + 12R2 Wa,a0 + Wy, = Way Xowyo — Wzo))dxa

2

Xin =argW1n9 X2n =argW2n9 ﬁln =argU1n9 ﬁZn =argU2n9

eln =argw1n: 02n =arg1/)2n, Pn =argq)n9

and v, =in, *w, are the complex natural frequencies.
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Fig. 5. Free vibration of a system of two cylindrical shells coupled by a viscoelastic interlayer for
z = 0.051 and different thicknesses of internal layers: a) R1 = 0.02m, R2 = 0.03m, R3 = 0.04 m, and
h=001lm; b)R: =0.02m, R2=0.04 m, R3=0.05m, and h= 0.02m; ¢) R1= 0.02m, R2 = 0.05m,
R3=0.06m, and h=003m; d) R1=0.02m, R2=0.06 m, R3=0.07m, and h= 0.04 m.
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According to the Kirchhoff~Love model, the free vibration is described by
(2).

Some results concerning the time dependence of the distributions of
displacements w; and w, for the external layers I and II in the system of two
cylindrical shells coupled together by a viscoelastic interlayer for different
thicknesses of the internal layers in the case z=10.5/ are presented in Fig. 5. The
thicknesses of the external layers do not change. The internal layers are made of

the soft material with E=10% N/mm?, »=0.3 and are described by the

Voigt—Kelvin model. The external layers of the cylindrical shell are made of an
elastic material with E; = E, =2.1-10"" N/mm?, and v = 0.3. The displacements

of the internal layer for the thickness 4 =0,01m are shown in a Fig. 5a and reach
values approximately 15% smaller than those in Fig. 5b for the thickness
h=0,02 m. The displacements in Fig. 5b reach values approximately 8.5%
smaller than those in Fig. 5c¢ for £=0,03 m. The displacements in Fig. 5¢ reach
values approximately 5.3% smaller than those in Fig. 5d for #=0,04 m.

In conclusion, it may be noted that, as the thickness R; of the interlayer
increases, the free vibration of a sandwich system decays more slowly with time .

Pe3wme

[Iporeneno auHAMIUYHME aHATI3 HIWTHAPUYHUX OOOJOHOK Ta PO3MVIAHYTO HOBI
MeXaHiuHl e(eKTH B PpO3MOJAUICHHI HAIpPYXEHb, jedopmalii 1 mepeMillcHb.
Huninapuuni 000JOHKK po3riIAnaoThess Ha ocHOBI rinoresu Kipxroga—Jlssa it
YTOYHEHOT Mojeni THMOIICHKA.
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