УДК 539.3:620.198

Расчет напряженного состояния тел с многослойными тонкими покрытиями

В. А. Шевчук

Институт прикладных проблем механики и математики им. Я. С. Подстригача НАН Украины, Львов, Украина

Разработана методика расчета напряженно-деформированного состояния элементов конструкций с тонкими многослойными покрытиями, основанная на моделировании таких покрытий оболочками с соответствующими геометрическими и механическими свойствами покрытия. При таком подходе влияние покрытий на механическое состояние всей системы тело-покрытие описывается специальными обобщенными граничными условиями. Эффективность предложенного подхода иллюстрируется сравнением результатов, полученных с помощью этого приближенного подхода, с точным решением тестовой задачи Ламе о нагружении сплошного цилиндра с п-слойным покрытием.

Обозначения

$(\alpha_1,\alpha_2,\gamma)$	—	триортогональная смешанная система координат
n	—	число слоев покрытия
δ	_	толщина покрытия
δ_i	_	толщина <i>i</i> -го слоя покрытия (<i>i</i> = 1, <i>n</i>)
S ₀	—	базисная поверхность оболочки
A_1, A_2	_	коэффициенты Ламе базисной поверхности S_0
k_1, k_2	—	главные кривизны базисной поверхности S_0
$\vec{\sigma}_3$	—	вектор напряжений, действующий на поверхности
		$\gamma = \text{const}$
σ_{j3}	_	компоненты вектора напряжений ${ar \sigma}_3$
\vec{U}_i	_	вектор перемещения точек <i>i</i> -го слоя покрытия
u_1, v_1, w_1	-	компоненты вектора перемещения точек покрытия
		на поверхности контакта покрытие-тело
\vec{U}_{T}	—	значение вектора перемещения точек тела на границе
		контакта с покрытием
$u_{_{ m T}}$, $v_{_{ m T}}$, $w_{_{ m T}}$	_	компоненты вектора перемещения точек тела на
		границе контакта с покрытием
N, Q, S, M, H	-	усилия и моменты, возникающие в покрытии
N_1, N_2, S	_	нормальные и симметричное сдвигающее усилия
N_{12}, N_{21}	_	касательные усилия

© В. А. ШЕВЧУК, 2000 136

Q_1, Q_2	_	перерезывающие силы
M_1, M_2, H	_	изгибающие и симметричный скручивающий
		моменты
M_{12}, M_{21}	_	скручивающие моменты
$N_{j}^{i}, Q_{j}^{i}, S^{i}, M_{j}^{i}, H^{i}$	_	усилия и моменты, возникающие в <i>i</i> -м слое
		покрытия
$\varepsilon_1, \varepsilon_2, \varepsilon_{12}, \kappa_1, \kappa_2, \kappa_{12}$	_	компоненты деформации базисной
		поверхности S ₀
G_{jl}	_	жесткостные характеристики покрытия
C_1, C_2, D_1, D_2	_	некоторые константы
L_{jl} , p_{jl}	_	дифференциальные операторы
Δ	_	оператор Лапласа в криволинейных
		ортогональных координатах
$\partial_j = \frac{\partial}{\partial \alpha_j}, \ \partial_j^2 = \frac{\partial^2}{\partial \alpha_j^2},$	$A_{j,l}$ =	$=\frac{\partial A_j}{\partial \alpha_l}, \ j, l=1,2$
δ_{jl}	_	символ Кронеккера
e _{jl}	-	компоненты тензора деформаций тела
e_{jl}^{T}	_	граничные значения компонент тензора
		деформаций тела на поверхности контакта
		с покрытием
ν	-	коэффициент Пуассона
E	_	модуль Юнга
Р	-	внешнее давление в задаче Ламе
R	-	радиус сплошного цилиндра в задаче Ламе
$S_+(\rho)$	_	асимметричная единичная функция
ε	—	относительная жесткость покрытия
і, с, т	—	индексы, относящие величины к <i>i</i> -му слою
		покрытия, среде и телу соответственно

В связи с широким использованием в практике элементов конструкций с нанесенными на их несущие поверхности тонкими защитными покрытиями становится актуальной разработка эффективных методик расчета напряженно-деформированного состояния таких систем. Решению подобных задач для тел с одно- и многослойными покрытиями посвящены работы [1–14]. Одним из наиболее рациональных представляется подход, в котором для описания напряженно-деформированного состояния в массивных элементах конструкций (подложке) используются уравнения теории упругости,

а для расчета состояния в тонкостенных элементах конструкций (покрытии) – уравнения теории оболочек [2, 6, 7, 14, 15–18]. При этом в работе [1] для случая однородного покрытия был предложен подход, позволивший исключить из рассмотрения покрытие, моделируемое тонкой оболочкой, и лишь косвенно учитывать его геометрические и механические параметры в специальных обобщенных граничных условиях механического сопряжения тела со средой через тонкое покрытие, что существенно упрощает исходную задачу. Подобного рода неклассические граничные условия другими методами получены в работах [4, 11].

В данном сообщении проведено обобщение и уточнение подхода [1] для случая многослойных тонких покрытий.

Схема для расчета напряженного состояния тела с п-слойным покрытием.

Рассмотрим покрытие как многослойную тонкую изотропную по механическим свойствам оболочку толщиной $\delta = \sum_{i=1}^{n} \delta_i$, отнесенную к триортогональной смешанной системе координат ($\alpha_1, \alpha_2, \gamma$), являющихся соответственно линиями главных кривизн поверхности раздела тело-покрытие и нормалью к ней (рисунок). Примем, что на границе покрытие-среда задан вектор напряжений

$$\vec{\sigma}_{3}^{\pi} = \vec{\sigma}_{3}^{c} \quad \text{при} \quad \gamma = \gamma_{n} = \sum_{i=1}^{n} \delta_{i} = \delta, \qquad (1)$$

а на поверхностях контакта слоев покрытия и покрытия с телом выполняются условия идеального механического контакта:

$$\vec{U}_i = \vec{U}_{i-1}$$
 при $\gamma = \gamma_{i-1} = \sum_{j=1}^{i-1} \delta_j$, $i = \overline{2, n}$; $\vec{U}_1 = \vec{U}_T$ при $\gamma = \gamma_0$; (2a)

$$\vec{\sigma}_{3}^{i} = \vec{\sigma}_{3}^{i-1}$$
 при $\gamma = \gamma_{i-1}, \quad i = \overline{2, n}; \quad \vec{\sigma}_{3}^{1} = \vec{\sigma}_{3}^{T}$ при $\gamma = \gamma_{0},$ (26)

где $\vec{\sigma}_3$ – вектор напряжений, действующий на поверхности $\gamma = \text{const:}$ $\vec{\sigma}_3 = \sigma_{13}\vec{e}_1 + \sigma_{23}\vec{e}_2 + \sigma_{33}\vec{e}_3; \vec{e}_1, \vec{e}_2, \vec{e}_3$ – орты координатного триэдра на базисной поверхности S_0 оболочки; δ_i, \vec{U}_i – толщина и вектор перемещения точек *i*-го слоя $(i=\overline{1,n}); \vec{U}_T$ – значение вектора перемещений точек тела (подложки) на границе контакта с покрытием.

Уравнения равновесия слоистой оболочки в отсутствие массовых сил при учете условий контакта (26) и условия (1) запишем в виде [19]

$$\begin{cases} \frac{\partial (A_{l}N_{j})}{\partial \alpha_{j}} - \frac{\partial A_{l}}{\partial \alpha_{j}} N_{l} + \frac{\partial (A_{j}N_{lj})}{\partial \alpha_{l}} + \frac{\partial A_{j}}{\partial \alpha_{l}} N_{jl} + A_{1}A_{2}k_{j}Q_{j} + A_{1}A_{2}q_{j} = 0; \\ \frac{\partial (A_{2}Q_{1})}{\partial \alpha_{1}} + \frac{\partial (A_{1}Q_{2})}{\partial \alpha_{2}} - A_{1}A_{2}k_{1}N_{1} - A_{1}A_{2}k_{2}N_{2} + A_{1}A_{2}q_{3} = 0; \\ \frac{\partial (A_{l}M_{j})}{\partial \alpha_{j}} - \frac{\partial A_{l}}{\partial \alpha_{j}} M_{l} + \frac{\partial (A_{j}M_{lj})}{\partial \alpha_{l}} + \frac{\partial A_{j}}{\partial \alpha_{l}} M_{jl} - A_{1}A_{2}Q_{j} + A_{1}A_{2}m_{j} = 0, \quad (3) \\ N_{12} - k_{2}M_{21} - N_{21} + k_{1}M_{12} = 0, \quad j, l = 1, 2; \quad j \neq l; \\ q_{j} = \sigma_{j3}^{c}(1 + \delta k_{1})(1 + \delta k_{2}) - \sigma_{j3}^{T}, \quad j = 1, 2, 3; \\ m_{j} = \delta\sigma_{j3}^{c}(1 + \delta k_{1})(1 + \delta k_{2}), \quad j = 1, 2. \end{cases}$$

Здесь N, Q, M – усилия и моменты, возникающие в покрытии; A_1, A_2, k_1, k_2 – коэффициенты Ламе и главные кривизны базисной поверхности S_0 .

Исключая в выражениях (3) перерезывающие силы и пренебрегая слагаемыми высшего порядка малости (с учетом $k_1\delta$, $k_2\delta << 1$), представим их следующим образом:

$$\sigma_{j3}^{\mathrm{T}} - \frac{1}{A_{1}A_{2}} \left[\frac{\partial(A_{l}N_{j})}{\partial\alpha_{j}} - \frac{\partial A_{l}}{\partial\alpha_{j}} N_{l} + \frac{\partial(A_{j}S)}{\partial\alpha_{l}} + \frac{\partial A_{j}}{\partial\alpha_{l}} S + k_{j} \left(\frac{\partial(A_{l}M_{j})}{\partial\alpha_{j}} - \frac{\partial A_{l}}{\partial\alpha_{j}} M_{l} + 2 \frac{\partial(A_{j}H)}{\partial\alpha_{l}} \right) + 2k_{l} \frac{\partial A_{j}}{\partial\alpha_{l}} H \right] = \sigma_{j3}^{c},$$

$$j = 1, 2; \ l = 3 - j;$$

$$\sigma_{33}^{\mathrm{T}} - \frac{1}{A_1 A_2} \frac{\partial}{\partial \alpha_1} \left[\frac{1}{A_1} \left(\frac{\partial (A_2 M_1)}{\partial \alpha_1} - \frac{\partial A_2}{\partial \alpha_1} M_2 + \frac{\partial (A_1 H)}{\partial \alpha_2} - \frac{\partial A_1}{\partial \alpha_2} H \right) \right] -$$

$$-\frac{1}{A_{1}A_{2}}\frac{\partial}{\partial\alpha_{2}}\left[\frac{1}{A_{2}}\left(\frac{\partial(A_{1}M_{2})}{\partial\alpha_{2}}-\frac{\partial A_{1}}{\partial\alpha_{2}}M_{1}+\frac{\partial(A_{2}H)}{\partial\alpha_{1}}+\frac{\partial A_{2}}{\partial\alpha_{1}}H\right)\right]+k_{1}N_{1}+k_{2}N_{2}=$$
$$=\sigma_{33}^{c}+\frac{\delta}{A_{1}A_{2}}\left(\frac{\partial(A_{2}\sigma_{13}^{c})}{\partial\alpha_{1}}+\frac{\partial(A_{1}\sigma_{23}^{c})}{\partial\alpha_{2}}\right),$$
(4)

где

$$S = N_{12} - k_2 M_{21} = N_{21} - k_1 M_{12}; \quad H = \frac{(M_{12} + M_{21})}{2}.$$

Принимая кинематическую гипотезу недеформируемых нормалей для всего пакета *n*-слойной оболочки [20] (что обеспечивает, в частности, автоматическое выполнение условий контакта для перемещений (2а)), но, учитывая при этом нормальные поперечные напряжения согласно [20], запишем соотношения упругости, т.е. соотношения между усилиями, моментами и компонентами деформации $\varepsilon_1, \varepsilon_2, \varepsilon_{12}, \kappa_1, \kappa_2, \kappa_{12}$ базисной поверхности в виде

$$\begin{cases} N_{j} = G_{1j}\varepsilon_{1} + G_{1l}\varepsilon_{2} + G_{2j}\kappa_{1} + G_{2l}\kappa_{2} + N_{q}; \\ M_{j} = G_{2j}\varepsilon_{1} + G_{2l}\varepsilon_{2} + G_{3j}\kappa_{1} + G_{3l}\kappa_{2} + M_{q}, \ j = 1, 2; \ l = 3 - j; \\ S = G_{13}\varepsilon_{12} + 2G_{23}\kappa_{12}; \ H = G_{23}\varepsilon_{12} + 2G_{33}\kappa_{12}, \end{cases}$$
(5)

где

$$N_q = C_1 \sigma_{33}^c + C_2 \sigma_{33}^{\rm T}; \quad M_q = D_1 \sigma_{33}^c + D_2 \sigma_{33}^{\rm T},$$

а жесткостные характеристики -

$$\begin{split} G_{j1} &= \int_{0}^{\gamma_{n}} \frac{E}{1-\nu^{2}} \gamma^{j-1} d\gamma = \frac{1}{j} \sum_{i=1}^{n} \frac{E_{i}}{1-\nu_{i}^{2}} (\gamma_{i}^{j} - \gamma_{i-1}^{j}); \\ G_{j2} &= \int_{0}^{\gamma_{n}} \frac{E}{1-\nu^{2}} \nu \gamma^{j-1} d\gamma = \frac{1}{j} \sum_{i=1}^{n} \frac{E_{i}\nu_{i}}{1-\nu_{i}^{2}} (\gamma_{i}^{j} - \gamma_{i-1}^{j}); \\ G_{j3} &= \frac{1}{2} \int_{0}^{\gamma_{n}} \frac{E}{1+\nu} \gamma^{j-1} d\gamma = \frac{1}{2j} \sum_{i=1}^{n} \frac{E_{i}}{1+\nu_{i}} (\gamma_{i}^{j} - \gamma_{i-1}^{j}), \ j = 1, 2, 3; \\ C_{1} &= \sum_{i=1}^{n} \frac{\nu_{i}}{1-\nu_{i}} \left(\frac{\gamma_{i}^{3} - \gamma_{i-1}^{3}}{\delta^{2}} - \frac{\gamma_{i}^{4} - \gamma_{i-1}^{4}}{2\delta^{3}} \right); \quad C_{2} &= \sum_{i=1}^{n} \frac{\nu_{i}}{1-\nu_{i}} \delta_{i} - C_{1}; \\ D_{1} &= \sum_{i=1}^{n} \frac{\nu_{i}}{1-\nu_{i}} \left(\frac{3}{4} \frac{\gamma_{i}^{4} - \gamma_{i-1}^{4}}{\delta^{2}} - \frac{2}{5} \frac{\gamma_{i}^{5} - \gamma_{i-1}^{5}}{\delta^{3}} \right); \quad D_{2} &= \sum_{i=1}^{n} \frac{\nu_{i}}{1-\nu_{i}} \frac{\gamma_{i}^{2} - \gamma_{i-1}^{2}}{2} - D_{1}. \end{split}$$

Компоненты деформации отсчетной поверхности раздела тело-покрытие связаны с перемещениями этой поверхности соотношениями

$$\varepsilon_{1} = \frac{1}{A_{1}} \frac{\partial u_{1}}{\partial \alpha_{1}} + \frac{1}{A_{1}A_{2}} \frac{\partial A_{1}}{\partial \alpha_{2}} v_{1} + k_{1}w_{1};$$

$$\varepsilon_{2} = \frac{1}{A_{2}} \frac{\partial v_{1}}{\partial \alpha_{2}} + \frac{1}{A_{1}A_{2}} \frac{\partial A_{2}}{\partial \alpha_{1}} u_{1} + k_{2}w_{1};$$

$$\varepsilon_{12} = \frac{A_{1}}{A_{2}} \frac{\partial}{\partial \alpha_{2}} \left(\frac{u_{1}}{A_{1}}\right) + \frac{A_{2}}{A_{1}} \frac{\partial}{\partial \alpha_{1}} \left(\frac{v_{1}}{A_{2}}\right);$$

$$\kappa_{1} = -\frac{1}{A_{1}} \frac{\partial}{\partial \alpha_{1}} \left(\frac{1}{A_{1}} \frac{\partial w_{1}}{\partial \alpha_{1}} - k_{1}u_{1}\right) - \frac{1}{A_{1}A_{2}} \frac{\partial A_{1}}{\partial \alpha_{2}} \left(\frac{1}{A_{2}} \frac{\partial w_{1}}{\partial \alpha_{2}} - k_{2}v_{1}\right);$$

$$\kappa_{2} = -\frac{1}{A_{2}} \frac{\partial}{\partial \alpha_{2}} \left(\frac{1}{A_{2}} \frac{\partial w_{1}}{\partial \alpha_{2}} - k_{2}v_{1}\right) - \frac{1}{A_{1}A_{2}} \frac{\partial A_{2}}{\partial \alpha_{1}} \left(\frac{1}{A_{1}} \frac{\partial w_{1}}{\partial \alpha_{1}} - k_{1}u_{1}\right);$$

$$\kappa_{12} = -\frac{1}{A_{1}A_{2}} \left(\frac{\partial^{2} w_{1}}{\partial \alpha_{1}\partial \alpha_{2}} - \frac{1}{A_{1}} \frac{\partial A_{1}}{\partial \alpha_{2}} \frac{\partial w_{1}}{\partial \alpha_{1}} - \frac{1}{A_{2}} \frac{\partial A_{2}}{\partial \alpha_{1}} \frac{\partial w_{1}}{\partial \alpha_{2}} \right) + k_{1} \frac{A_{1}}{A_{2}} \frac{\partial}{\partial \alpha_{2}} \left(\frac{u_{1}}{A_{1}}\right) + k_{2} \frac{A_{2}}{A_{1}} \frac{\partial}{\partial \alpha_{1}} \left(\frac{v_{1}}{A_{2}}\right) \quad \text{при} \quad \gamma = \gamma_{0} = 0.$$
(6)

Подставляя (5), (6) в (4) и учитывая непрерывность смещений на границе тело-покрытие (2а), получим

$$\sigma_{j3}^{\mathrm{T}} - \frac{C_2}{A_j} \partial_j \sigma_{33}^{\mathrm{T}} + L_{j1} u_{\mathrm{T}} + L_{j2} v_{\mathrm{T}} + L_{j3} w_{\mathrm{T}} = \sigma_{j3}^c + \frac{C_1}{A_j} \partial_j \sigma_{33}^c, \ j = 1, 2;$$

$$(1 - D_2 \Delta) \sigma_{33}^{\mathrm{T}} + L_{31} u_{\mathrm{T}} + L_{32} v_{\mathrm{T}} + L_{33} w_{\mathrm{T}} = (1 + D_1 \Delta) \sigma_{33}^c - \frac{\delta}{A_1 A_2} [(A_{2,1} + A_2 \partial_1) \sigma_{13}^c + (A_{1,2} + A_1 \partial_2) \sigma_{23}^c], \qquad (7)$$

$$\Delta = \frac{1}{A_1 A_2} \left[\partial_1 \left(\frac{A_2}{A_1} \partial_1 \right) + \partial_2 \left(\frac{A_1}{A_2} \partial_2 \right) \right],$$

где

$$\Delta = \frac{1}{A_1 A_2} \left(\partial_1 \left(\frac{A_2}{A_1} \partial_1 \right) + \partial_2 \left(\frac{A_1}{A_2} \partial_2 \right) \right),$$

а дифференциальные операторы L_{jl} имеют следующий вид:

$$\begin{split} & -\frac{G_{13}}{A_1A_2}\partial_{3-j}\left(\frac{A_j}{A_{3-l}}\right)\partial_{3-j} - \frac{G_{11}}{A_j}\partial_j\left(\frac{A_{3-l,l}}{A_1A_2}\right) + \frac{G_{13}}{A_{3-j}}\partial_{3-j}\left(\frac{A_{l,3-l}}{A_1A_2}\right) - \\ & -\frac{G_{11}+G_{13}}{A_1A_2}\left(\frac{A_{j,l}}{A_j}\partial_j - \frac{A_{l,j}}{A_l}\partial_l\right) + \frac{2\partial_{ij}G_{13}}{A_1A_2}\left(\partial_j\left(\frac{A_{3-j,j}}{A_j}\right) + \frac{A_{j,3-j}^2}{A_1A_2}\right); \\ & L_{j3} = \frac{G_{21}}{A_j^3}\left[\partial_j^3 + b_1^j\partial_j\partial_{3-j}^2 + b_2^j\partial_j^2 + \frac{A_j}{A_{3-j}}\partial_j\left(\frac{A_j}{A_{3-j}}\right)\partial_1\partial_2 - 2b_3^j\partial_{3-j}^2 + \\ & +A_j^2b_4^j\partial_j + A_j^2\partial_j\left(\frac{A_j}{A_{3-j}^2}\partial_{3-j}\left(\frac{A_{3-j,j}}{A_j}\right)\right)\partial_{3-j}\right] - b_6^j\partial_j - \frac{2G_{13}(k_j - k_{3-j})A_{3-j,j}A_{142}}{A_1A_2}; \\ & L_{3j} = -\frac{G_{21}}{A_j^3}\left[\partial_j^3 + b_1^j\partial_j\partial_{3-j}^2 + \frac{A_j^3}{A_{3-j}^2}\partial_j\left(\frac{A_j^2}{A_{3-j}^3}\right)\partial_j^2 - b_j^jA_j\partial_1\partial_2 + \\ & + b_3^j\partial_{3-j}^2 + \frac{A_j^3}{A_{3-j,j}}\partial_{3-j}\left(\frac{A_{2-j,j}}{A_jA_{3-j}^3}\right)\partial_{3-j}\right] - \left[\frac{G_{21}}{A_1A_2}\left(\partial_j\left(\frac{1}{A_j}\partial_j\left(\frac{A_{3-j}}{A_j}\right)\right)\right) + \\ & + \frac{A_{3-j}}{A_j}\partial_j\left(\frac{A_{3-j,j}}{A_{142}}\right) - \partial_{3-j}\left(\frac{A_{j,3-j}}{A_{142}}\right)\right) - b_6^j\right]\partial_j - G_{21}\Delta\left(\frac{A_{3-j,j}}{A_{142}}\right) + \\ & + \frac{2G_{23}}{A_1A_2}\partial_j(A_jb_5^j) + \frac{(G_{11}k_{3-j} + G_{12}k_j)A_{3-j,j}}{A_{142}}, j, l = 1, 2; \\ & L_{33} = \sum_{j=2}^2\left\{\frac{G_{31}}{A_j^4}\left[\partial_j^4 - 2b_2^j\partial_j^3 + b_1^j\partial_j^2\partial_{3-j}^2 - 2A_jb_1^j\partial_j^2\partial_{3-j}\right] + \\ & + \frac{G_{31}}{A_1A_2}\left(\partial_j^2\left(\frac{A_{3-j}}{A_j^3}\right) + \frac{A_{3-j}}{A_j}\partial_j\left(\frac{A_{3-j}}{A_{3-j}}\right)\right)\partial_j\partial_j - j \right] + \\ & + G_{31}\Delta\left(\frac{1}{A_1A_2}\partial_j\left(\frac{A_{3-j}}{A_j^3}\right) + \frac{A_{3-j}}{A_j}\partial_j\left(\frac{A_{3-j}}{A_{3-j}}\right)\right)\partial_j - \\ & + G_{31}\Delta\left(\frac{1}{A_j}\partial_j\left(\frac{A_{3-j}}{A_j}\right)\right)\partial_j - \\ & + G_{31}\Delta\left(\frac{1}{A_j}\partial_j\left(\frac{A_{3-j}}{A_j^3}\right) + \frac{A_{3-j}}A_{j}\partial_j\left(\frac{A_{3-j}}{A_{3-j}}\right)\right)\partial_j - \\ &$$

$$-\frac{2G_{33}}{A_1A_2} \left[b_5^j \partial_j^2 + \partial_j (b_5^j) \partial_j + (k_j - k_{3-j}) \partial_j \left(\frac{A_{3-j}}{A_j} \right) \right] - \frac{2(G_{21}k_j + G_{22}k_{3-j})}{A_1A_2} \left(\frac{A_{3-j}}{A_j} \partial_j^2 + \partial_j \left(\frac{A_{3-j}}{A_j} \right) \right) \right\} - \frac{G_{11}(k_1^2 + k_2^2) + 2G_{12}k_1k_2}{A_1A_2}.$$

Здесь

$$b_{1}^{j} = \frac{A_{j}^{2}}{A_{3-j}^{2}}; \ b_{2}^{j} = \frac{A_{3-j}}{A_{j}^{3}} \partial_{j} \left(\frac{A_{j}^{3}}{A_{3-j}} \right); \ b_{3}^{j} = b_{1}^{j} A_{3-j,j};$$
$$b_{4}^{j} = \partial_{j} \left(\frac{1}{A_{1}A_{2}} \partial_{j} \left(\frac{A_{3-j}}{A_{j}} \right) \right); \ b_{5}^{j} = \frac{1}{A_{j}^{2}} \left(\partial_{1} \left(\frac{A_{2,1}}{A_{1}} \right) + \partial_{2} \left(\frac{A_{1,2}}{A_{2}} \right) \right);$$

$$b_{6}^{j} = \frac{2G_{23}}{A_{3-j}}b_{5}^{j} + \frac{G_{11}k_{j} + G_{12}k_{3-j}}{A_{j}}; \ b_{7}^{j} = \frac{1}{A_{3-j}^{3}}\partial_{3-j}(A_{1}A_{2}),$$

где

$$\partial_j = \frac{\partial}{\partial \alpha_j}; \ \partial_j^2 = \frac{\partial^2}{\partial \alpha_j^2}; \ A_{j,l} = \frac{\partial A_j}{\partial \alpha_l}, \ j, l = 1, 2.$$

Поскольку соотношения (7) связывают компоненты тензора напряжений и вектора перемещений на границе тела с компонентами заданной поверхностной нагрузки, то их можно трактовать как граничные условия на механические переменные тела.

Для частного случая напряженно-деформированного состояния, при котором отсутствуют изгибные деформации поверхности раздела тело–покрытие $\kappa_1 = \kappa_2 = \kappa_{12} = 0$, можно получить упрощенный вариант обобщенных граничных условий, в которых будут присутствовать лишь компоненты тензора напряжений.

В этом случае ввиду непрерывности тангенциальных деформаций $\varepsilon_1 = e_{11}^{T}$, $\varepsilon_2 = e_{22}^{T}$, $\varepsilon_{12} = 2e_{12}^{T}$ усилия и моменты в покрытии можно выразить лишь через граничные значения тензора деформации тела:

$$N_{j} = G_{1j}e_{11}^{T} + G_{1l}e_{22}^{T} + N_{q}; \ S = 2G_{13}e_{12}^{T};$$

$$M_{j} = G_{2j}e_{11}^{T} + G_{2l}e_{22}^{T} + M_{q}; \ H = 2G_{23}e_{12}^{T}, \ j = 1, 2; \ l = 3 - j.$$
(8)

После подстановки соотношений (8) в уравнения (4) с учетом закона Гука для тела

$$e_{jl} = \frac{1 + v_{\mathrm{T}}}{E_{\mathrm{T}}} \sigma_{jl} - \frac{v_{\mathrm{T}}}{E_{\mathrm{T}}} \sigma_{ll} \delta_{jl}$$
(9)

(δ_{jl} – символ Кронеккера) запишем

ISSN 0556-171Х. Проблемы прочности, 2000, № 1

143

$$\sigma_{j3}^{\mathsf{T}} + p_{j1}\sigma_{11}^{\mathsf{T}} + p_{j2}\sigma_{22}^{\mathsf{T}} + p_{j3}\sigma_{33}^{\mathsf{T}} + p_{j4}\sigma_{12}^{\mathsf{T}} = \sigma_{j3}^{c} + \frac{C_{1}}{A_{j}}\partial_{j}\sigma_{33}^{c}, \ j = 1, 2;$$

$$(1 + p_{33})\sigma_{33}^{\mathsf{T}} + p_{31}\sigma_{11}^{\mathsf{T}} + p_{32}\sigma_{22}^{\mathsf{T}} + p_{34}\sigma_{12}^{\mathsf{T}} = (1 + D_{1}\Delta)\sigma_{33}^{c} - \frac{\delta}{A_{1}A_{2}}[(A_{2,1} + A_{2}\partial_{1})\sigma_{13}^{c} + (A_{1,2} + A_{1}\partial_{2})\sigma_{23}^{c}], \qquad (10)$$

где дифференциальные операторы *p*_{jl} имеют следующий вид:

$$\begin{split} p_{jl} &= \frac{1}{A_j} \frac{v_{\mathrm{T}}(G_{1s} - G_{1r})}{E_{\mathrm{T}}} \partial_j - \frac{2A_{3-j,j}}{A_1A_2} \frac{1 + v_{\mathrm{T}}}{E_{\mathrm{T}}} (-1)^{j+1} G_{13}; \\ p_{j3} &= \frac{1}{A_j} \left[\frac{v_{\mathrm{T}}(G_{11} + G_{12})}{E_{\mathrm{T}}} - C_2 \right] \partial_j; \\ p_{j4} &= -\frac{2(1 + v_{\mathrm{T}})G_{13}}{E_{\mathrm{T}}} \left(\frac{1}{A_{3-j}} \partial_{3-j} + \frac{2A_{j,3-j}}{A_1A_2} \right); \\ p_{3l} &= \sum_{m=1}^2 \left\{ \frac{v_{\mathrm{T}}G_{2t} - G_{2l}}{E_{\mathrm{T}}A_m^2} \partial_m^2 + (-1)^l \frac{2(1 + v_{\mathrm{T}})G_{23}}{E_{\mathrm{T}}A_1A_2} \partial_m \left(\frac{A_{3-m,m}}{A_m} \right) + \right. \\ &+ \frac{1}{A_m^2} \left[\frac{G_{2l} - v_{\mathrm{T}}G_{2t}}{E_{\mathrm{T}}} \frac{A_{m,m}}{A_m} - \frac{(2 + v_{\mathrm{T}})G_{2l} - (1 + 2v_{\mathrm{T}})G_{2t}}{E_{\mathrm{T}}} \frac{A_{3-m}}{A_{3-m}} \right] \partial_m \right\} + \\ &+ \frac{(G_{1l} - v_{\mathrm{T}}G_{1t})k_1 + (G_{1t} - v_{\mathrm{T}}G_{1t})k_2}{E_{\mathrm{T}}}; \\ p_{33} &= \left(\frac{v_{\mathrm{T}}}{E_{\mathrm{T}}} (G_{21} + G_{22}) - D_2 \right) \Delta - \frac{v_{\mathrm{T}}(G_{11} + G_{12})(k_1 + k_2)}{E_{\mathrm{T}}}; \\ p_{34} &= -\frac{4}{A_1A_2} \frac{1 + v_{\mathrm{T}}}{E_{\mathrm{T}}} G_{23} \left(\partial_1 \partial_2 + \frac{A_{1,2}}{A_1} \partial_1 + \frac{A_{2,1}}{A_2} \partial_2 + \partial_1 \left(\frac{A_{1,2}}{A_1} \right) + \partial_2 \left(\frac{A_{2,1}}{A_2} \right) \right), \\ &= 1, 2; \ t = 3 - l; \ s = 1 + \delta_{jl}; \ r = 3 - s. \end{split}$$

После нахождения напряженно-деформированного состояния тела с помощью уравнений трехмерной теории упругости и обобщенных граничных условий (7) или (10) интегральные усилия и моменты по всему покрытию могут быть определены по соотношениям (5) с учетом (6) и (2а).

Аналогично можно вычислить усилия и моменты отдельно в каждом слое покрытия по формулам

$$\begin{split} N_{j}^{i} &= \frac{E_{i}}{1 - \nu_{i}^{2}} \bigg[(\varepsilon_{j} + \nu_{i}\varepsilon_{3-j})\delta_{i} + (\kappa_{j} + \nu_{i}\kappa_{3-j})\frac{\gamma_{i}^{2} - \gamma_{i-1}^{2}}{2} \bigg] + N_{q}^{i}; \\ M_{j}^{i} &= \frac{E_{i}}{1 - \nu_{i}^{2}} \bigg[(\varepsilon_{j} + \nu_{i}\varepsilon_{3-j})\frac{\gamma_{i}^{2} - \gamma_{i-1}^{2}}{2} + (\kappa_{j} + \nu_{i}\kappa_{3-j})\frac{\gamma_{i}^{3} - \gamma_{i-1}^{3}}{3} \bigg] + M_{q}^{i}; \\ S^{i} &= \frac{E_{i}}{2(1 + \nu_{i})} (\varepsilon_{12}\delta_{i} + \kappa_{12}(\gamma_{i}^{2} - \gamma_{i-1}^{2})); \\ H^{i} &= \frac{E_{i}}{1 + \nu_{i}} \bigg[\varepsilon_{12}\frac{\gamma_{i}^{2} - \gamma_{i-1}^{2}}{4} + \kappa_{12}\frac{\gamma_{i}^{3} - \gamma_{i-1}^{3}}{3} \bigg], \ i = \overline{1, n}; \ j = 1, 2, \end{split}$$
e
$$N_{q}^{i} &= \frac{\nu_{i}}{1 - \nu_{i}} \bigg[(\sigma_{33}^{c} - \sigma_{33}^{c}) \bigg(\frac{\gamma_{i}^{3} - \gamma_{i-1}^{3}}{\delta^{2}} - \frac{\gamma_{i}^{4} - \gamma_{i-1}^{4}}{\delta^{3}} \bigg) + \sigma_{33}^{c}\delta_{i} \bigg]; \\ M_{q}^{i} &= \frac{\nu_{i}}{1 - \nu_{i}} \bigg[(\sigma_{33}^{c} - \sigma_{33}^{c}) \bigg(\frac{3\gamma_{i}^{4} - \gamma_{i-1}^{4}}{\delta^{2}} - \frac{2\gamma_{i}^{5} - \gamma_{i-1}^{5}}{\delta^{3}} \bigg) + \sigma_{33}^{c}\frac{\gamma_{i}^{2} - \gamma_{i-1}^{2}}{2} \bigg]. \end{split}$$

где

Для случая
 $\kappa_1 = \kappa_2 = \kappa_{12} = 0$ напряжения в покрытии определяются формулами

$$\sigma_{33}^{i}(\gamma) = \frac{\sigma_{33}^{c} + \sigma_{33}^{T}}{2} - \frac{1}{2} \left(1 - 2\frac{\gamma}{\delta} \right) \left(3 - \left(1 - \frac{\gamma}{\delta} \right)^{2} \right) \frac{\sigma_{33}^{c} - \sigma_{33}^{T}}{2};$$

$$\sigma_{jj}^{i}(\gamma) = \frac{E_{i}}{E_{T}(1 - \nu_{i}^{2})} \left[(1 - \nu_{i}\nu_{T})\sigma_{jj}^{T} + (\nu_{i} - \nu_{T})\sigma_{ll}^{T} - \nu_{T}(1 + \nu_{i})\sigma_{33}^{T} \right] + \frac{\nu_{i}}{1 - \nu_{i}} \sigma_{33}^{i}(\gamma);$$

$$\sigma_{12}^{i} = \frac{E_{i}(1 + \nu_{T})}{E_{T}(1 + \nu_{i})} \sigma_{12}^{T}, \ j = 1, 2; \ l = 3 - j; \ 0 < \gamma < \delta, \tag{11}$$

которые следуют из представления касательных тангенциальных напряжений в покрытии через деформации, нормальных тангенциальных напряжений – через деформации и нормальные поперечные напряжения согласно [20] при использовании условий непрерывности тангенциальных деформаций на поверхности раздела тело-покрытие и соотношений закона Гука.

Отметим, что для данного вывода обобщенных граничных условий в отличие от [1] характерен учет нормальных поперечных напряжений в уравнениях состояния (5). Объясняется это тем, что специфической особенностью большинства реальных задач о нагружении элементов конструкций с тонкими покрытиями является близость значений нормальных поперечных напряжений на границе тела с покрытием и со средой именно в силу малости толщины покрытия по сравнению с соответствующим размером тела. Поэтому необходимо отказаться от статической гипотезы Кирхгофа– Лява.

В качестве тестового примера рассмотрим задачу Ламе о нагружении внешним давлением P закрепленного по торцам от осевых перемещений сплошного цилиндра радиуса R с *n*-слойным покрытием. Для этого случая третье обобщенное граничное условие (10) примет вид (первые два удовлетворяются тождественно) при r = R

$$\left(1 - \frac{\nu_{\rm T}(G_{11} + G_{12})}{RE_{\rm T}}\right)\sigma_{rr}^{\rm T} + \frac{G_{12} - \nu_{\rm T}G_{11}}{RE_{\rm T}}\sigma_{zz}^{\rm T} + \frac{G_{11} - \nu_{\rm T}G_{12}}{RE_{\rm T}}\sigma_{\theta\theta}^{\rm T} = P. \quad (12)$$

Воспользовавшись представлением решения уравнений теории упругости в напряжениях [21] $\sigma_{rr}^{T} = a + b / r^{2}$, $\sigma_{\theta\theta}^{T} = a - b / r^{2}$, с учетом условий $\sigma_{rr}^{T}|_{r=0} \neq \infty$, $\varepsilon_{zz} \equiv 0$, соотношений закона Гука (9) и обобщенного граничного условия (12) находим

$$\sigma_{rr}^{\rm T} = \sigma_{\theta\theta}^{\rm T} = \frac{\sigma_{zz}^{\rm T}}{2\nu_{\rm T}} = \frac{P}{1 + \frac{1 - \nu_{\rm T} - 2\nu_{\rm T}^2}{RE_{\rm T}}}.$$
(13)

Подставив (13) в (11), имеем

$$\sigma_{rr}^{i} = \frac{P + \sigma_{rr}^{T}}{2} - \frac{1}{2} \left(1 - 2\frac{r - R}{\delta} \right) \left(3 - \left(1 - 2\frac{r - R}{\delta} \right)^{2} \right) \frac{P - \sigma_{rr}^{T}}{2}; \quad (14)$$

$$\sigma_{\theta\theta}^{i} = \frac{E_{i}(1 - \nu_{\rm T} - 2\nu_{\rm T}^{2})}{E_{\rm T}(1 - \nu_{i}^{2})}\sigma_{rr}^{\rm T} + \frac{\nu_{i}}{1 - \nu_{i}}\sigma_{rr}^{i};$$
(15)

$$\sigma_{zz}^{i} = \frac{E_{i}\nu_{i}(1-\nu_{\rm T}-2\nu_{\rm T}^{2})}{E_{\rm T}(1-\nu_{i}^{2})}\sigma_{rr}^{\rm T} + \frac{\nu_{i}}{1-\nu_{i}}\sigma_{rr}^{i}.$$
 (16)

Точное решение поставленной задачи, полученное аналогично подходу [22], таково:

$$\sigma_{rr}(\rho) = \frac{X(\rho)}{X(1)}P; \ \sigma_{\theta\theta}(\rho) = \frac{Y(\rho)}{Y(1)}P; \ \sigma_{zz}(\rho) = \frac{Z(\rho)}{Z(1)}P.$$
(17)

Здесь

$$\begin{split} X(\rho) &= \frac{E(\rho)}{(1+\nu(\rho))(1-2\nu(\rho))} \left\{ 1 - \sum_{i=1}^{n-1} S_+(\rho - \rho_i) \left[1 + (1-2\nu(\rho)) \frac{\rho_i^2}{\rho^2} \right] a_{i+1} \right\};\\ Y(\rho) &= \frac{E(\rho)}{(1+\nu(\rho))(1-2\nu(\rho))} \left\{ 1 - \sum_{i=1}^{n-1} S_+(\rho - \rho_i) \left[1 - (1-2\nu(\rho)) \frac{\rho_i^2}{\rho^2} \right] a_{i+1} \right\};\\ Z(\rho) &= \frac{2E(\rho)\nu(\rho)}{(1+\nu(\rho))(1-2\nu(\rho))} \left\{ 1 - \sum_{i=1}^{n-1} a_{i+1} \right\}, \quad \rho = \frac{r}{R+\delta}, \end{split}$$

где

$$\begin{aligned} a_{i} &= c_{i} - \sum_{j=2}^{i-1} a_{j} (c_{i} + d_{i} \rho_{j-1}^{2}); \ c_{i} = \frac{1}{2(1 - \nu_{i})} \left(1 - \frac{E_{i-1}(1 + \nu_{i})(1 - 2\nu_{i})}{E_{i}(1 + \nu_{i-1})(1 - 2\nu_{i-1})} \right); \\ d_{i} &= \frac{1 - 2\nu_{i}}{2(1 - \nu_{i})\rho_{i}^{2}} \left(1 - \frac{E_{i-1}(1 + \nu_{i})}{E_{i}(1 + \nu_{i-1})} \right), \ i = \overline{2, n}; \ S_{+}(\rho - \rho_{i}) = \begin{cases} 0, \ r \leq r_{i}; \\ 1, \ r > r_{i}. \end{cases} \end{aligned}$$

Для количественного сравнения приближенного и точного решений в табл. 1 и 2 приведены значения межслойных безразмерных окружных напряжений $\tilde{\sigma}_{\theta\theta} = \sigma_{\theta\theta} / P$, рассчитанных по приближенным формулам (15) и по точным (17) в зависимости от относительной толщины покрытия δ / R и относительной жесткости материала покрытия $\varepsilon = E_1 / E_T$. При этом в первом столбце представлены значения напряжений в теле $\tilde{\sigma}_{\theta\theta}^{T} = \lim_{r \to R-0} \sigma_{\theta\theta}^{T}(r) / P$, в остальных – граничные значения $\tilde{\sigma}_{\theta\theta}^{i} = \lim_{r \to R+\delta_i - \delta_1 + 0} \sigma_{\theta\theta}^{i}(r) / P$ в *i*-м слое покрытия. При расчетах принимали n = 3, $E_1:E_2:E_3 = 4:15:2; \nu_T = 0,3, \nu_1 = 0,2, \nu_2 = 0,35, \nu_3 = 0,4; \delta_1 = \delta_2 = 0,5\delta_3 = = 0,25\delta$.

Анализ полученных данных показывает, что независимо от величины относительной жесткости покрытия ε при $\delta / R \le 0,03$ приближенное решение (13), (15) отличается от точного (17) менее чем на 1,5%. Зависимость погрешности получаемого решения лишь от малости толщины покрытия делает предлагаемый подход к расчету напряженно-деформированного состояния тел с тонкими покрытиями более общим по сравнению с описанным в работе [4].

Таблица 1

δ / R	$\widetilde{\sigma}_{ heta heta}^{\mathrm{T}}$	$\widetilde{\sigma}^{1}_{ heta heta}$	$\widetilde{\sigma}_{ heta heta}^2$	$\widetilde{\sigma}^3_{ heta heta}$				
0,001	1,00013	0,46673	1,42753	0,79054				
	1,00013	0,46673	1,42815	0,79063				
0,010	1,00130	0,46727	1,42910	0,79107				
	1,00128	0,46726	1,43529	0,79204				
0,020	1,00258	0,46787	1,43082	0,79166				
	1,00260	0,46783	1,44310	0,79357				
0,030	1,00384	0,46846	1,43250	0,79223				
	1,00365	0,46837	1,45079	0,79506				

Расчет контактных напряжений в зависимости от относительной толщины покрытия при $\varepsilon = 0.4$

Примечание. Здесь и в табл. 2 в верхних строках приведены значения напряжений, рассчитанные по приближенным формулам (15), в нижних строках – значения напряжений, рассчитанные по точным формулам (17).

Таблица 2

ε	$\widetilde{\sigma}_{ heta heta}^{\mathrm{T}}$	$\widetilde{\sigma}^1_{ heta heta}$	$\widetilde{\sigma}_{ heta heta}^2$	$\widetilde{\sigma}^3_{ heta heta}$				
0,1	1,00383	0,30533	0,76327	0,69901				
	1,00380	0,30532	0,77155	0,70009				
1	0,99629	0,78873	2,75075	0,97381				
	0,99628	0,78872	2,75278	0,97456				
10	0,92672	5,25140	21,0989	3,51065				
	0,92682	5,25198	21,0456	3,50870				
100	0,54567	29,6934	121,592	17,3992				
	0,54610	29,7167	121,315	17,4049				

Расчет контактных напряжений в зависимости от относительной жесткости материала покрытия при $\delta/R = 0.01$

Резюме

Розроблено методику розрахунку напружено-деформованого стану елементів конструкцій з тонкими багатошаровими покриттями, яка грунтується на моделюванні таких покрить оболонками з відповідними механічними властивостями покриття. При такому підході вплив покрить на механічний стан всієї системи тіло-покриття описується спеціальними узагальненими граничними умовами. Ефективність запропонованого підходу ілюструється порівнянням результатів, отриманих за допомогою цього наближеного підходу, з точним розв'язком тестової задачі Ламе про навантаження суцільного циліндру з *п*-шаровим покриттям.

- 1. Подстригач Я. С., Шевчук П. Р. Температурные поля и напряжения в телах с тонкими покрытиями // Тепловые напряжения в элементах конструкций. 1967. Вып. 7. С. 227 233.
- 2. *Черепанов Г. П.* Механика разрушения композиционных материалов. М.: Наука, 1983. 296 с.

- 3. Воячек А. И. Расчет упругих тел с поверхностным слоем // Изв. вузов. Машиностроение. 1986. № 4. С. 11 15.
- 4. Пелех Б. Л., Флейиман Ф. Н. Приближенный метод решения задач теории упругости для тел с тонкими криволинейными покрытиями // Изв. АН СССР. Механика твердого тела. 1988. № 5. С. 36 41.
- 5. Ивашко В. С., Луцко Н. Я. Методика расчета напряженно-деформированного состояния деталей с многослойным покрытием // Порошк. металлургия. 1988. № 12. С. 9 13.
- Ольшанский В. П. Исследование напряженно-деформированного состояния покрытий при действии локальной нагрузки // Прочность, жесткость и технологичность изделий из композиционных материалов: Тез. докл. 3 Всесоюзн. конф. (24 – 26 окт. 1989 г.) – Запорожье, 1989. – С. 140.
- 7. Сухорольский М. А., Зашкильняк И. М., Колесник В. М., Мусий Р. С. Расчет упругих цилиндрических тел с многослойными покрытиями при силовом и температурном воздействиях // Там же. С. 198 199.
- 8. *Третьяченко Г. Н., Барило В. Г.* Тепловое и напряженное состояние многослойных покрытий // Пробл. прочности. 1993. № 1. С. 41 43.
- Долгов Н. А., Ляшенко Б. А., Рущицкий Я. Я. и др. Влияние различия характеристик упругости основы и покрытия на напряженно-деформированное состояние композиции. Сообщ. 1 // Там же. – 1995. – № 9. – С. 37 – 44.
- Долгов Н. А., Ляшенко Б. А., Рущицкий Я. Я. и др. Влияние различия характеристик упругости основы и покрытия на напряженно-деформированное состояние композиции. Сообщ. 2 // Там же. – 1996. – № 5. – С. 63 – 67.
- Curtin M. E., Murdoch A. I. Surface stress in solids // Int. J. Solids Structures. - 1978. - 14. - P. 431 - 440.
- 12. *Suhir E.* An approximate analysis of stresses in multilayered elastic thin films // Trans. ASME: J. Appl. Mech. 1988. 55, N 1. P. 343 348.
- 13. Vilms L., Kerps D. Simple stress formula for multilayered thin films on a thick substrate // J. Appl. Phys. 1982. 53, N 3. P. 1536 1537.
- 14. Beevers C. E. Some static problems for elastic bodies with a crust // Meccanica. - 1985. - 20, N 1. - P. 38 - 42.
- Капустин С. А. Численный анализ нелинейных квазистатических процессов деформирования составных конструкций // Прикл. пробл. прочности и пластичности. – 1979. – Вып. 10. – С. 68 – 80.
- Савула Я. Г., Дыяк И. И., Дубовик А. В. Применение комбинированной модели для расчета напряженно-деформированного состояния пространственных конструкций // Прикл. механика. – 1989. – 25, № 9. – С. 62 – 67.

- 17. *Савула Я. Г., Муха І. С., Дубовик А. В.* Адаптивне чисельне моделювання пружних конструкцій // Доп. АН УРСР. – 1993. – № 1. – С. 49 – 53.
- 18. *Surana K. S.* Transition finite elements for three dimensional stress analysis // Int. J. Numer. Meth. Eng. 1980. **15**, N 7. P. 991 1000.
- 19. Григоренко Я. М., Василенко А. Т. Методы расчета оболочек. Теория оболочек переменной жесткости. Киев: Наук. думка, 1981. Т. 4. 544 с.
- 20. Амбарцумян С. А. Общая теория анизотропных оболочек. М.: Наука, 1972. 446 с.
- 21. *Работнов Ю. Н.* Механика деформируемого твердого тела. М.: Наука, 1979. 744 с.
- 22. Вигак В. М., Ригин А. М. Температурные напряжения в многослойном кусочно-однородном цилиндре // Матем. методы и физ.-мех. поля. 1982. Вып. 15. С. 63 67.

Поступила 01. 04. 98