LIMIT BEHAVIOR OF NON-AUTONOMOUS RANDOM OSCILLATING SYSTEM OF THIRD ORDER UNDER RANDOM PERIODIC EXTERNAL DISTURBANCES IN RESONANCE CASE

Abstract

The asymptotic behavior of the general type third order non-autonomous oscillating system under the action of small non-linear random periodic perturbations of "white" and "Poisson" types in resonance case is investigated.

1. Introduction

The asymptotic behavior of the general type third order non-autonomous oscillating system under the action of small non-linear random periodic perturbations of "white" and "Poisson" types in the non-resonance case is investigated in O.D.Borysenko, O.V.Borysenko [1]. The overview of papers devoted to the averaging method, proposed by N.M.Krylov, N.N.Bogolyubov [2], and its applications to random oscillatory systems of different types is presented in O.D.Borysenko, O.V.Borysenko [3] with corresponding references.

In this paper we will investigate the behaviour, as $\varepsilon \rightarrow 0$, of the general type third order non-autonomous oscillating system driven by stochastic differential equation

$$
\begin{align*}
& x^{\prime \prime \prime}(t)+a x^{\prime \prime}(t)+b^{2} x^{\prime}(t)+a b^{2} x(t)= \\
& =\varepsilon^{k_{0}} f_{0}\left(\mu_{0} t, x(t), x^{\prime}(t), x^{\prime \prime}(t)\right)+f_{\varepsilon}\left(t, x(t), x^{\prime}(t), x^{\prime \prime}(t)\right) \tag{1}
\end{align*}
$$

[^0]with non-random initial conditions $x(0)=x_{0}, x^{\prime}(0)=x_{0}^{\prime}, x^{\prime \prime}(0)=x_{0}^{\prime \prime}$, where $\varepsilon>0$ is a small parameter, $f_{\varepsilon}\left(t, x, x^{\prime}, x^{\prime \prime}\right)$ is a random function such that
\[

$$
\begin{aligned}
& \int_{0}^{t} f_{\varepsilon}\left(s, x(s), x^{\prime}(s), x^{\prime \prime}(s)\right) d s= \\
& =\sum_{j=1}^{m} \varepsilon^{k_{j}} \int_{0}^{t} f_{j}\left(\mu_{j} s, x(s), x^{\prime}(s), x^{\prime \prime}(s)\right) d w_{j}(s)+ \\
& +\varepsilon^{k_{m+1}} \int_{0}^{t} \int_{\mathrm{R}} f_{m+1}\left(\mu_{m+1} s, x(s), x^{\prime}(s), x^{\prime \prime}(s), z\right) \tilde{\nu}(d s, d z)
\end{aligned}
$$
\]

$k_{j}>0, j=\overline{0, m+1} ; a>0, b>0 ; f_{j}, j=\overline{0, m+1}$ are non-random functions, periodic on $\mu_{j} t, j=\overline{0, m+1}$ with period $2 \pi ;\left\{w_{j}(t), j=\overline{1, m}\right\}$ are independent one-dimensional Wiener processes; $\tilde{\nu}(d t, d y)=\nu(d t, d y)-$ $\Pi(d y) d t, E \nu(d t, d y)=\Pi(d y) d t, \nu(d t, d y)$ is the Poisson measure independent on $w_{j}(t), j=\overline{1, m} ; \Pi(A)$ is a finite measure on Borel sets in R.

We will consider the equation (1) as a system of stochastic differential equations

$$
\begin{align*}
d x(t)= & x^{\prime}(t) d t \\
d x^{\prime}(t)= & x^{\prime \prime}(t) d t \\
d x^{\prime \prime}(t)= & {\left[-a x^{\prime \prime}(t)-b^{2} x^{\prime}(t)-a b^{2} x(t)+\right.} \\
& \left.+\varepsilon^{k_{0}} f_{0}\left(\mu_{0} t, x(t), x^{\prime}(t), x^{\prime \prime}(t)\right)\right] d t+ \\
& +\sum_{j=1}^{m} \varepsilon^{k_{j}} f_{j}\left(\mu_{j} t, x(t), x^{\prime}(t), x^{\prime \prime}(t)\right) d w_{j}(t)+ \tag{2}\\
& +\varepsilon^{k_{m+1}} \int_{\mathrm{R}} f_{m+1}\left(\mu_{m+1} t, x(t), x^{\prime}(t), x^{\prime \prime}(t), z\right) \tilde{\nu}(d t, d z), \\
& x(0)=x_{0}, x^{\prime}(0)=x_{0}^{\prime}, x^{\prime \prime}(0)=x_{0}^{\prime \prime} .
\end{align*}
$$

In what follows we will use the constant $K>0$ for the notation of different constants, which are not depend on ε.

From Borysenko O. and Malyshev I. [4], using the obvious modifications we obtain following results

Lemma. Let for each $x \in \mathrm{R}^{d}$ there exists

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{A}^{T+A} f(t, x) d t=\bar{f}(x)
$$

uniformly with respect to A, the function $\bar{f}(x)$ is bounded, continuous, function $f(t, x)$ is bounded and continuous in x uniformly with respect to (t, x) in any region $t \in[0, \infty),|x| \leq K$, and stochastic processes $\xi(t) \in \mathrm{R}^{d}, \eta(t) \in \mathrm{R}$ are continuous, then

$$
\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} f\left(\frac{s}{\varepsilon}+\eta(s), \xi(s)\right) d s=\int_{0}^{t} \bar{f}(\xi(s)) d s
$$

almost surely for all arbitrary $t \in[0, T]$.
Remark. Let $f(t, x, z)$ is bounded and uniformly continuous in x with respect to $t \in[0, \infty)$ and $z \in \mathrm{R}$ in every compact set $|x| \leq K, x \in \mathrm{R}^{d}$. Let $\Pi(\cdot)$ be a finite measure on the σ-algebra of Borel sets in R and let

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{A}^{T+A} f(t, x, z) d t=\bar{f}(x, z)
$$

uniformly with respect to A for each $x \in \mathrm{R}^{d}, z \in \mathrm{R}$, where $\bar{f}(x, z)$ is bounded, uniformly continuous in x with respect to $z \in \mathrm{R}$ in every compact set $|x| \leq K$. Then for any continuous processes $\xi(t) \in \mathrm{R}^{d}$ and $\eta(t) \in \mathrm{R}$ we have

$$
\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \int_{\mathrm{R}} f\left(\frac{s}{\varepsilon}+\eta(s), \xi(s), z\right) \Pi(d z) d s=\int_{0}^{t} \int_{\mathrm{R}} \bar{f}(\xi(s), z) \Pi(d z) d s
$$

2. Main Result

We will study the resonance case: $\mu_{j}=\frac{p_{j}}{q_{j}} \cdot b$ for some $j=\overline{0, m+1}$, where p_{j} and q_{j} are relatively prime integers. Let us consider the following representation of processes $x(t), x^{\prime}(t), x^{\prime \prime}(t)$:

$$
\begin{gathered}
x(t)=C(t) \exp \{-a t\}+A_{1}(t) \cos (b t)+A_{2}(t) \sin (b t), \\
x^{\prime}(t)=-a C(t) \exp \{-a t\}-b A_{1}(t) \sin (b t)+b A_{2}(t) \cos (b t), \\
x^{\prime \prime}(t)=a^{2} C(t) \exp \{-a t\}-b^{2} A_{1}(t) \cos (b t)-b^{2} A_{2}(t) \sin (b t), \\
N(t)=C(t) \exp \{-a t\} .
\end{gathered}
$$

Then

$$
\begin{gathered}
N(t)=\frac{b^{2} x(t)+x^{\prime \prime}(t)}{a^{2}+b^{2}} \\
A_{1}(t)=\cos \alpha \cos (b t+\alpha) x(t)-\frac{\sin b t}{b} x^{\prime}(t)-\frac{\sin \alpha \sin (b t+\alpha)}{b^{2}} x^{\prime \prime}(t) \\
A_{2}(t)=\cos \alpha \sin (b t+\alpha) x(t)+\frac{\cos b t}{b} x^{\prime}(t)+\frac{\sin \alpha \cos (b t+\alpha)}{b^{2}} x^{\prime \prime}(t)
\end{gathered}
$$

where $\alpha=\operatorname{arctg}(b / a)$. We can apply Ito formula [5] to stochastic process $\xi(t)=\left(N(t), A_{1}(t), A_{2}(t)\right)$ and obtain for the process $\xi(t)$ the system of stochastic differential equations

$$
\begin{gathered}
d N(t)=-a N(t) d t+\frac{1}{a^{2}+b^{2}} d M(t) \\
d A_{1}(t)=-\frac{\sin \alpha \sin (b t+\alpha)}{b^{2}} d M(t), \quad d A_{2}(t)=\frac{\sin \alpha \cos (b t+\alpha)}{b^{2}} d M(t)
\end{gathered}
$$

$$
\begin{gather*}
d M(t)=\varepsilon^{k_{0}} \tilde{f}_{0}\left(\mu_{0} t, N(t), A_{1}(t), A_{2}(t), t\right) d t+ \tag{3}\\
+\sum_{j=1}^{m} \varepsilon^{k_{j}} \tilde{f}_{j}\left(\mu_{j} t, N(t), A_{1}(t), A_{2}(t), t\right) d w_{j}(t)+ \\
\left.+\varepsilon^{k_{m+1}} \int_{\mathrm{R}} \tilde{f}_{m+1}\left(\mu_{m+1} t, N(t), A_{1}(t), A_{2}(t), t, z\right) \tilde{\nu}(d t, d z)\right], \\
N(0)=\frac{b^{2} x_{0}+x_{0}^{\prime \prime}}{a^{2}+b^{2}}, A_{1}(0)=\frac{a^{2} x_{0}-x_{0}^{\prime \prime}}{a^{2}+b^{2}}, A_{2}(0)=\frac{a x_{0}^{\prime \prime}+\left(a^{2}+b^{2}\right) x_{0}^{\prime}+a b^{2} x_{0}}{b\left(a^{2}+b^{2}\right)},
\end{gather*}
$$

where $\tilde{f}_{j}\left(\mu_{j} t, N, A_{1}, A_{2}, t\right)=$
$f_{j}\left(\mu_{j} t, N+A_{1} \cos b t+A_{2} \sin b t,-a N-b A_{1} \sin b t+b A_{2} \cos b t, a^{2} N-\right.$ $\left.b^{2} A_{1} \cos b t-b^{2} A_{2} \sin b t\right), \quad j=\overline{0, m}, \quad \tilde{f}_{m+1}\left(\mu_{m+1} t, N, A_{1}, A_{2}, t, z\right)=$ $f_{m+1}\left(\mu_{m+1} t, N+A_{1} \cos b t+A_{2} \sin b t,-a N-b A_{1} \sin b t+b A_{2} \cos b t, a^{2} N-\right.$ $\left.b^{2} A_{1} \cos b t-b^{2} A_{2} \sin b t, z\right)$.

Theorem. Let $\Pi(\mathrm{R})<\infty, t \in\left[0, t_{0}\right], k=\min \left(k_{0}, 2 k_{j}, j=\overline{1, m+1}\right)$. Let us suppose, that functions $f_{j}, j=\overline{0, m+1}$ bounded and satisfy Lipschitz condition on $x, x^{\prime}, x^{\prime \prime}$. If given below matrix $\bar{\sigma}^{2}\left(A_{1}, A_{2}\right)$ is positive definite, then:

1. Let $\mu_{j}=\frac{p_{j}}{q_{j}} \cdot b$, for $j=\overline{0, m+1}$, where p_{j} and q_{j} some relatively prime integers. If $k_{0}=2 k_{j}, j=\overline{1, m+1}$, then the stochastic process $\xi_{\varepsilon}(t)=\xi\left(t / \varepsilon^{k}\right)$ weakly converges, as $\varepsilon \rightarrow 0$, to the stochastic process $\bar{\xi}(t)=$ $\left(0, \bar{A}_{1}(t), \bar{A}_{2}(t)\right)$, where $\bar{A}(t)=\left(\bar{A}_{1}(t), \bar{A}_{2}(t)\right)$ is the solution of the system of stochastic differential equations

$$
\begin{gather*}
d \bar{A}(t)=\bar{\alpha}(\bar{A}(t)) d t+\bar{\sigma}(\bar{A}(t)) d \bar{w}(t), \tag{4}\\
\bar{A}(0)=\left(A_{1}(0), A_{2}(0)\right)
\end{gather*}
$$

where $\bar{\alpha}(\bar{A})=\left(\bar{\alpha}^{(1)}\left(A_{1}, A_{2}\right), \bar{\alpha}^{(2)}\left(A_{1}, A_{2}\right)\right)$,

$$
\begin{aligned}
& \bar{\alpha}^{(1)}\left(A_{1}, A_{2}\right)=-\frac{1}{4 \pi^{2} b\left(a^{2}+b^{2}\right)} \times \\
& \sum_{p_{0} n+q_{0} l=0} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \hat{f}_{0}\left(\psi, A_{1}, A_{2}, t\right)(a \sin \psi+b \cos \psi) e^{-i(n \psi+l t)} d t d \psi \\
& \bar{\alpha}^{(2)}\left(A_{1}, A_{2}\right)=\frac{1}{4 \pi^{2} b\left(a^{2}+b^{2}\right)} \times \\
& \sum_{p_{0} n+q_{0} l=0} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \hat{f}_{0}\left(\psi, A_{1}, A_{2}, t\right)(a \cos \psi-b \sin \psi) e^{-i(n \psi+l t)} d t d \psi
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\sigma}\left(A_{1}, A_{2}\right)=\left\{\bar{B}\left(A_{1}, A_{2}\right)\right\}^{\frac{1}{2}}=\left\{\frac{1}{4 \pi^{2} b^{2}\left(a^{2}+b^{2}\right)^{2}} \times\right. \\
& {\left[\sum_{j=1}^{m} \sum_{p_{j} n+q_{j} l=0} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \hat{f}_{j}^{2}\left(\psi, A_{1}, A_{2}, t\right) B(\psi) e^{-i(n \psi+l t)} d t d \psi+\right.} \\
& \left.\left.\sum_{p_{m+1} n+q_{m+1} l=0} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \int_{R} \hat{f}_{m+1}^{2}\left(\psi, A_{1}, A_{2}, t, z\right) B(\psi) e^{-i(n \psi+l t)} \Pi(d z) d t d \psi\right]\right\}^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{gathered}
B(\psi)=\left(B_{i j}(\psi), i, j=1,2\right), \quad B_{11}(\psi)=(a \sin \psi+b \cos \psi)^{2} \\
B_{12}(\psi)=B_{21}(\psi)=-(a \sin \psi+b \cos \psi)(a \cos \psi-b \sin \psi) \\
B_{22}(\psi)=(a \cos \psi-b \sin \psi)^{2} \\
\hat{f}_{j}\left(\psi, A_{1}, A_{2}, t\right)=\tilde{f}_{j}\left(\psi, 0, A_{1}, A_{2}, t\right), j=\overline{0, m} \\
\hat{f}_{m+1}\left(\psi, A_{1}, A_{2}, t, z\right)=\tilde{f}_{m+1}\left(\psi, 0, A_{1}, A_{2}, t, z\right)
\end{gathered}
$$

$\bar{w}(t)=\left(\bar{w}_{j}(t), j=1,2\right), \bar{w}_{j}(t), j=1,2-$ independent one-dimensional Wiener processes.
2. If $k<k_{0}$ then in the averaging equation (4) we must put $\hat{f}_{0} \equiv 0$; if $k<2 k_{j}$ for some $1 \leq j \leq m+1$, then in the averaging equation (4) we must put $\hat{f}_{j} \equiv 0$ for all such j.
3. If $\mu_{j} \neq \frac{p_{j}}{q_{j}} \cdot b$ for some $j=\overline{0, m+1}$ and arbitrary relatively prime integers p_{j} and q_{j}, then in averaging coefficients in (4) we must put $l=n=0$ in corresponding sums containing \hat{f}_{j}.

Proof. Let us make a change of variable $t \rightarrow t / \varepsilon^{k}$ in equation (3) and obtain for the process $\xi_{\varepsilon}(t)=\left(N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)\right)=\left(N\left(t / \varepsilon^{k}\right), A_{1}\left(t / \varepsilon^{k}\right), A_{2}\left(t / \varepsilon^{k}\right)\right)$ the system of stochastic differential equations

$$
\begin{align*}
& d N_{\varepsilon}(t)= {\left[-\frac{a}{\varepsilon^{k}} N_{\varepsilon}(t)+\frac{\varepsilon^{k_{0}-k}}{a^{2}+b^{2}} \tilde{f}_{0}\left(\mu_{0} t / \varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), t / \varepsilon^{k}\right)\right] d t+} \\
&+ \sum_{j=1}^{m} \frac{\varepsilon^{k_{j}-k / 2}}{a^{2}+b^{2}} \tilde{f}_{j}\left(\mu_{j} t / \varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), t / \varepsilon^{k}\right) d w_{j}^{\varepsilon}(t)+ \\
&+\frac{\varepsilon^{k_{m+1}}}{a^{2}+b^{2}} \int_{\mathrm{R}} \tilde{f}_{m+1}\left(\mu_{m+1} t / \varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), t / \varepsilon^{k}, z\right) \tilde{\nu}_{\varepsilon}(d t, d z), \\
& d A_{1}^{\varepsilon}(t)=-\frac{\sin \alpha \sin \left(b t / \varepsilon^{k}+\alpha\right)}{b^{2}}\left[\varepsilon^{k_{0}-k} \tilde{f}_{0}\left(\mu_{0} t / \varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)\right) d t+\right. \tag{5}\\
&+\sum_{j=1}^{m} \varepsilon^{k_{j}-k / 2} \tilde{f}_{j}\left(\mu_{j} t / \varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)\right) d w_{j}^{\varepsilon}(t)+
\end{align*}
$$

$$
\begin{aligned}
& \left.+\varepsilon^{k_{m+1}} \int_{\mathrm{R}} \tilde{f}_{m+1}\left(\mu_{m+1} t / \varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), z\right) \tilde{\nu}_{\varepsilon}(d t, d z)\right] \\
d A_{2}^{\varepsilon}(t)= & \frac{\sin \alpha \cos \left(b t / \varepsilon^{k}+\alpha\right)}{b^{2}}\left[\varepsilon^{k_{0}-k} \tilde{f}_{0}\left(\mu_{0} t / \varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), t / \varepsilon^{k}\right) d t+\right. \\
& +\sum_{j=1}^{m} \varepsilon^{k_{j}-k / 2} \tilde{f}_{j}\left(\mu_{j} t / \varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), t / \varepsilon^{k}\right) d w_{j}^{\varepsilon}(t)+ \\
+ & \left.\varepsilon^{k_{m+1}} \int_{\mathrm{R}} \tilde{f}_{m+1}\left(\mu_{m+1} t / \varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), t / \varepsilon^{k}, z\right) \tilde{\nu}_{\varepsilon}(d t, d z)\right],
\end{aligned}
$$

where $w_{j}^{\varepsilon}(t)=\varepsilon^{k / 2} w_{j}\left(t / \varepsilon^{k}\right), \tilde{\nu}_{\varepsilon}(t, A)=\nu\left(t / \varepsilon^{k}, A\right)-\Pi(A) t / \varepsilon^{k}$, here A is Borel set in R. For any $\varepsilon>0$ the processes $w_{j}^{\varepsilon}(t), j=\overline{1, m}$ are the independent Wiener processes and $\tilde{\nu}_{\varepsilon}(t, A)$ is the centered Poisson measure independent on $w_{j}^{\varepsilon}(t), j=\overline{1, m}$.

Since we have relationship $N_{\varepsilon}(t)=\exp \left\{-a t / \varepsilon^{k}\right\} C\left(t / \varepsilon^{k}\right)$ and process $C_{\varepsilon}(t)=C\left(t / \varepsilon^{k}\right)$ satisfies the stochastic equation

$$
\begin{aligned}
& C_{\varepsilon}(t)=C(0)+\varepsilon^{k_{0}-k} \int_{0}^{t} \frac{e^{a s / \varepsilon^{k}}}{a^{2}+b^{2}} \tilde{f}_{0}\left(\mu_{0} s / \varepsilon^{k}, N_{\varepsilon}(s), A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s), s / \varepsilon^{k}\right) d s+ \\
& \quad+\sum_{j=1}^{m} \varepsilon^{k_{j}-k / 2} \int_{0}^{t} \frac{e^{a s / \varepsilon^{k}}}{a^{2}+b^{2}} \tilde{f}_{j}\left(\mu_{j} s / \varepsilon^{k}, N_{\varepsilon}(s), A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s), s / \varepsilon^{k}\right) d w_{j}^{\varepsilon}(s)+ \\
& +\varepsilon^{k_{m+1}} \int_{0}^{t} \int_{\mathrm{R}} \frac{e^{a s / \varepsilon^{k}}}{a^{2}+b^{2}} \tilde{f}_{m+1}\left(\mu_{m+1} s / \varepsilon^{k}, N_{\varepsilon}(s), A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s), s / \varepsilon^{k}, z\right) \tilde{\nu}_{\varepsilon}(d t, d z)
\end{aligned}
$$

where $C(0)=\frac{b^{2} x_{0}+x_{0}^{\prime \prime}}{a^{2}+b^{2}}$, we can obtain estimate

$$
\mathrm{E}\left|N_{\varepsilon}(t)\right|^{2} \leq K\left[e^{-2 a t / \varepsilon^{k}}+\varepsilon^{k}\left(1-e^{-2 a t / \varepsilon^{k}}\right)\left(t \varepsilon^{2\left(k_{0}-k\right)}+\sum_{j=1}^{m+1} \varepsilon^{2 k_{j}-k}\right)\right]
$$

Therefore $\lim _{\varepsilon \rightarrow 0} \mathrm{E}\left|N_{\varepsilon}(t)\right|^{2}=0$ and it is sufficient to study the behaviour, as $\varepsilon \rightarrow 0$, of solution to the system of stochastic differential equations

$$
\begin{gather*}
d A_{1}^{\varepsilon}(t)=-\frac{\sin \alpha \sin \left(b t / \varepsilon^{k}+\alpha\right)}{b^{2}}\left[\varepsilon^{k_{0}-k} \hat{f}_{0}\left(\mu_{0} t / \varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)\right) d t+\right. \\
\quad+\sum_{j=1}^{m} \varepsilon^{k_{j}-k / 2} \hat{f}_{j}\left(\mu_{j} t / \varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)\right) d w_{j}^{\varepsilon}(t)+ \\
\left.+\varepsilon^{k_{m+1}} \int_{\mathrm{R}} \hat{f}_{m+1}\left(\mu_{m+1} t / \varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), z\right) \tilde{\nu}_{\varepsilon}(d t, d z)\right], \\
d A_{2}^{\varepsilon}(t)= \tag{6}\\
\frac{\sin \alpha \cos \left(b t / \varepsilon^{k}+\alpha\right)}{b^{2}}\left[\varepsilon^{k_{0}-k} \hat{f}_{0}\left(\mu_{0} t / \varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), t / \varepsilon^{k}\right) d t+\right.
\end{gather*}
$$

$$
\begin{gathered}
+\sum_{j=1}^{m} \varepsilon^{k_{j}-k / 2} \hat{f}_{j}\left(\mu_{j} t / \varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), t / \varepsilon^{k}\right) d w_{j}^{\varepsilon}(t)+ \\
\left.+\varepsilon^{k_{m+1}} \int_{\mathrm{R}} \hat{f}_{m+1}\left(\mu_{m+1} t / \varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), t / \varepsilon^{k}, z\right) \tilde{\nu}_{\varepsilon}(d t, d z)\right]
\end{gathered}
$$

with initial conditions $A_{1}^{\varepsilon}(0)=A_{1}(0), A_{2}^{\varepsilon}(0)=A_{2}(0)$.
Let us denote $A_{\varepsilon}(t)=\left(A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)\right)$. Using conditions on coefficients of equation (6) and properties of stochastic integrals we obtain estimates

$$
\begin{gathered}
\mathrm{E}\left\|A_{\varepsilon}(t)\right\|^{2} \leq K\left(1+t^{2} \varepsilon^{2\left(k_{0}-k\right)}+t \sum_{j=1}^{m+1} \varepsilon^{2 k_{j}-k}\right) \\
\mathrm{E}\left\|A_{\varepsilon}(t)-A_{\varepsilon}(s)\right\|^{2} \leq K\left(|t-s|^{2} \varepsilon^{2\left(k_{0}-k\right)}+|t-s| \sum_{j=1}^{m+1} \varepsilon^{2 k_{j}-k}\right) .
\end{gathered}
$$

Similarly for the process $\zeta_{\varepsilon}(t)=\left(\zeta_{1}^{\varepsilon}(t), \zeta_{2}^{\varepsilon}(t)\right)$, where

$$
\begin{aligned}
& \zeta_{1}^{\varepsilon}(t)=-\sum_{j=1}^{m} \varepsilon^{k_{j}-k / 2} \int_{0}^{t} \frac{\sin \alpha \sin \left(\frac{b s}{\varepsilon^{k}}+\alpha\right)}{b^{2}} \hat{f}_{j}\left(\frac{\mu_{j} s}{\varepsilon^{k}}, A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s), \frac{s}{\varepsilon^{k}}\right) d w_{j}^{\varepsilon}(s)- \\
& \left.-\varepsilon^{k_{m+1}} \int_{0}^{t} \int_{\mathrm{R}} \frac{\sin \alpha \sin \left(\frac{b s}{\varepsilon^{k}}+\alpha\right)}{b^{2}} \hat{f}_{m+1}\left(\frac{\mu_{m+1} s}{\varepsilon^{k}}, A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s), \frac{s}{\varepsilon^{k}}, z\right) \tilde{\nu}_{\varepsilon}(d s, d z)\right] \\
& \zeta_{2}^{\varepsilon}(t)=\sum_{j=1}^{m} \varepsilon^{k_{j}-k / 2} \int_{0}^{t} \frac{\sin \alpha \cos \left(\frac{b s}{\varepsilon^{k}}+\alpha\right)}{b^{2}} \hat{f}_{j}\left(\frac{\mu_{j} s}{\varepsilon^{k}}, A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s), \frac{s}{\varepsilon^{k}}\right) d w_{j}^{\varepsilon}(s)+ \\
& \left.+\varepsilon^{k_{m+1}} \int_{0}^{t} \int_{\mathrm{R}} \frac{\sin \alpha \cos \left(\frac{b s}{\varepsilon^{k}}+\alpha\right)}{b^{2}} \hat{f}_{m+1}\left(\frac{\mu_{m+1} s}{\varepsilon^{k}}, A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s), \frac{s}{\varepsilon^{k}}, z\right) \tilde{\nu}_{\varepsilon}(d s, d z)\right]
\end{aligned}
$$

we derive estimates

$$
\mathrm{E}\left\|\zeta_{\varepsilon}(t)\right\|^{2} \leq K t \sum_{j=1}^{m+1} \varepsilon^{2 k_{j}-k}, \mathrm{E}| | \zeta_{\varepsilon}(t)-\zeta_{\varepsilon}(s) \|^{2} \leq K|t-s| \sum_{j=1}^{m+1} \varepsilon^{2 k_{j}-k}
$$

Therefore for stochastic process $\eta_{\varepsilon}(t)=\left(A_{\varepsilon}(t), \zeta_{\varepsilon}(t)\right)$ conditions of weak compactness [6] are fulfilled

$$
\begin{gathered}
\lim _{h \downarrow 0} \varlimsup_{\varepsilon \rightarrow 0} \sup _{|t-s|<h} \mathrm{P}\left\{\left|\eta_{\varepsilon}(t)-\eta_{\varepsilon}(s)\right|>\delta\right\}=0 \text { for any } \delta>0, t, s \in[0, T] \\
\lim _{N \rightarrow \infty} \varlimsup_{\varepsilon \rightarrow 0} \sup _{t \in[0, T]} \mathrm{P}\left\{\left|\eta_{\varepsilon}(t)\right|>N\right\}=0,
\end{gathered}
$$

and for any sequence $\varepsilon_{n} \rightarrow 0, n=1,2, \ldots$ there exists a subsequence $\varepsilon_{m}=\varepsilon_{n(m)} \rightarrow 0, m=1,2, \ldots$, probability space, stochastic processes
$\bar{A}_{\varepsilon_{m}}(t)=\left(\bar{A}_{1}^{\varepsilon_{m}}(t), \bar{A}_{2}^{\varepsilon_{m}}(t)\right), \bar{\zeta}_{\varepsilon_{m}}(t), \bar{A}(t)=\left(\bar{A}_{1}(t), \bar{A}_{2}(t)\right), \bar{\zeta}(t)$ defined on this space, such that $\bar{A}_{\varepsilon_{m}}(t) \rightarrow \bar{A}(t), \bar{\zeta}_{\varepsilon_{m}}(t) \rightarrow \bar{\zeta}(t)$ in probability, as $\varepsilon_{m} \rightarrow 0$, and finite-dimensional distributions of $\bar{A}_{\varepsilon_{m}}(t), \bar{\zeta}_{\varepsilon_{m}}(t)$ are coincide with finitedimensional distributions of $A_{\varepsilon_{m}}(t), \zeta_{\varepsilon_{m}}(t)$. Since we interesting in limit behaviour of distributions, we can consider processes $A_{\varepsilon_{m}}(t)$, and $\zeta_{\varepsilon_{m}}(t)$ instead of $\bar{A}_{\varepsilon_{m}}(t), \bar{\zeta}_{\varepsilon_{m}}(t)$. From (6) we obtain equation

$$
\begin{equation*}
A_{\varepsilon_{m}}(t)=A(0)+\int_{0}^{t} \alpha_{\varepsilon_{m}}\left(s, A_{\varepsilon_{m}}(s)\right) d s+\zeta_{\varepsilon_{m}}(t), \quad A_{0}=\left(A_{1}(0), A_{2}(0)\right), \tag{7}
\end{equation*}
$$

where $\alpha_{\varepsilon}(t, A)=\left(\alpha_{\varepsilon}^{(1)}\left(t, A_{1}, A_{2}\right), \alpha_{\varepsilon}^{(2)}\left(t, A_{1}, A_{2}\right)\right)$,

$$
\begin{aligned}
\alpha_{\varepsilon}^{(1)}\left(t, A_{1}, A_{2}\right) & =-\varepsilon^{k_{0}-k} \frac{\sin \alpha \sin \left(b t / \varepsilon^{k}+\alpha\right)}{b^{2}} \hat{f}_{0}\left(\mu_{0} t / \varepsilon^{k}, A_{1}, A_{2}, t / \varepsilon^{k}\right) \\
\alpha_{\varepsilon}^{(2)}\left(t, A_{1}, A_{2}\right) & =\varepsilon^{k_{0}-k} \frac{\sin \alpha \cos \left(b t / \varepsilon^{k}+\alpha\right)}{b^{2}} \hat{f}_{0}\left(\mu_{0} t / \varepsilon^{k}, A_{1}, A_{2}, t / \varepsilon^{k}\right)
\end{aligned}
$$

It should be noted that process $\zeta_{\varepsilon}(t)$ is the vector-valued square integrable martingale with matrix characteristic

$$
\begin{gathered}
\left\langle\zeta_{\varepsilon}^{(l)}, \zeta_{\varepsilon}^{(n)}\right\rangle(t)=\sum_{j=1}^{m} \int_{0}^{t} \sigma_{\varepsilon}^{(l, j)}\left(s, A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s)\right) \sigma_{\varepsilon}^{(n, j)}\left(s, A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s)\right) d s+ \\
+\frac{1}{\varepsilon^{k}} \int_{0}^{t} \int_{\mathrm{R}} \gamma_{\varepsilon}^{(l)}\left(s, A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s), z\right) \gamma_{\varepsilon}^{(n)}\left(s, A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s), z\right) \Pi(d z) d s, l, n=1,2
\end{gathered}
$$

where

$$
\begin{gathered}
\sigma_{\varepsilon}^{(1, j)}\left(s, A_{1}, A_{2}\right)=-\varepsilon^{k_{j}-k / 2} \frac{\sin \alpha \sin \left(\frac{b s}{\varepsilon^{k}}+\alpha\right)}{b^{2}} \hat{f}_{j}\left(\frac{\mu_{j} s}{\varepsilon^{k}}, A_{1}, A_{2}, \frac{s}{\varepsilon^{k}}\right), \\
\sigma_{\varepsilon}^{(2, j)}\left(s, A_{1}, A_{2}\right)=\varepsilon^{k_{j}-k / 2} \frac{\sin \alpha \cos \left(\frac{b s}{\varepsilon^{k}}+\alpha\right)}{b^{2}} \hat{f}_{j}\left(\frac{\mu_{j} s}{\varepsilon^{k}}, A_{1}, A_{2}, \frac{s}{\varepsilon^{k}}\right), \\
\gamma_{\varepsilon}^{(1)}\left(s, A_{1}, A_{2}, z\right)=-\varepsilon^{k_{m+1}} \frac{\sin \alpha \sin \left(\frac{b s}{\varepsilon^{k}}+\alpha\right)}{b^{2}} \hat{f}_{m+1}\left(\frac{\mu_{m+1} s}{\varepsilon^{k}}, A_{1}, A_{2}, \frac{s}{\varepsilon^{k}}, z\right), \\
\gamma_{\varepsilon}^{(2)}\left(s, A_{1}, A_{2}, z\right)=\varepsilon^{k_{m+1}} \frac{\sin \alpha \cos \left(\frac{b s}{\varepsilon^{k}}+\alpha\right)}{b^{2}} \hat{f}_{m+1}\left(\frac{\mu_{m+1} s}{\varepsilon^{k}}, A_{1}, A_{2}, \frac{s}{\varepsilon^{k}}, z\right) .
\end{gathered}
$$

For processes $A_{\varepsilon}(t)$ and $\zeta_{\varepsilon}(t)$ following estimates hold

$$
\begin{equation*}
\mathrm{E}\left\|A_{\varepsilon}(t)-A_{\varepsilon}(s)\right\|^{4} \leq K\left[\varepsilon^{4\left(k_{0}-k\right)}|t-s|^{4}+\mathrm{E}\left\|\zeta_{\varepsilon}(t)-\zeta_{\varepsilon}(s)\right\|^{4}\right], \tag{8}
\end{equation*}
$$

$$
\begin{gather*}
\mathrm{E} \| \zeta_{\varepsilon}(t)-\left.\zeta_{\varepsilon}(s)\right|^{4} \leq K\left[\sum_{j=1}^{m+1} \varepsilon^{4 k_{j}-2 k}|t-s|^{2}+\right. \\
\left.+\varepsilon^{4 k_{m+1}-3 k / 2}|t-s|^{3 / 2}+\varepsilon^{4 k_{m+1}-k}|t-s|\right] \tag{9}\\
\mathrm{E}\left|\left|A_{\varepsilon}(t)-A_{\varepsilon}(s)\right|^{8} \leq K, \quad \mathrm{E}\right|\left|\zeta_{\varepsilon}(t)-\zeta_{\varepsilon}(s)\right|^{8} \leq K . \tag{10}
\end{gather*}
$$

Since $A_{\varepsilon_{m}}(t) \rightarrow \bar{A}(t), \zeta_{\varepsilon_{m}}(t) \rightarrow \bar{\zeta}(t)$ in probability, as $\varepsilon_{m} \rightarrow 0$, then, using (10), from (8) and (9) we obtain estimates

$$
\mathrm{E}\|\bar{A}(t)-\bar{A}(s)\|^{4} \leq K\left(|t-s|^{4}+|t-s|^{2}\right), \quad \mathrm{E}\|\bar{\zeta}(t)-\bar{\zeta}(s)\|^{4} \leq C|t-s|^{2} .
$$

Therefore processes $\bar{A}(t)$ and $\bar{\zeta}(t)$ satisfy the Kolmogorov's continuity condition [7].

Let us consider the case $k_{0}=2 k_{j}, j=\overline{1, m+1}$. Under these conditions we have for $l, n=1,2$

$$
\begin{gather*}
\lim _{\varepsilon \rightarrow 0} \frac{1}{t} \int_{0}^{t} \alpha_{\varepsilon}^{(l)}\left(s, A_{1}, A_{2}\right) d s=\bar{\alpha}^{(l)}\left(A_{1}, A_{2}\right), \\
\lim _{\varepsilon \rightarrow 0} \frac{1}{t} \int_{0}^{t}\left[\sum_{j=1}^{m} \sigma_{\varepsilon}^{(l, j)}\left(s, A_{1}, A_{2}\right) \sigma_{\varepsilon}^{(n, j)}\left(s, A_{1}, A_{2}\right)+\right. \tag{11}\\
\left.+\frac{1}{\varepsilon^{k}} \int_{R} \gamma_{\varepsilon}^{(l)}\left(s, A_{1}, A_{2}, z\right) \gamma_{\varepsilon}^{(n)}\left(s, A_{1}, A_{2}, z\right) \Pi(d z)\right] d s=\bar{B}_{l n}\left(A_{1}, A_{2}\right),
\end{gather*}
$$

where functions $\bar{\alpha}^{(l)}\left(A_{1}, A_{2}\right)$ and $\bar{B}\left(A_{1}, A_{2}\right)=\left\{\bar{B}_{l n}\left(A_{1}, A_{2}\right), l, n=1,2\right\}$ are defined in the condition of theorem. Since processes $\bar{A}(t), \bar{\zeta}(t)$ are continuous, then from Lemma and relationships (7), (11) it follows

$$
\begin{equation*}
\bar{A}(t)=A(0)+\int_{0}^{t} \bar{\alpha}\left(\bar{A}_{1}(s), \bar{A}_{2}(s)\right) d s+\bar{\zeta}(t), \quad A(0)=\left(A_{1}(0), A_{2}(0)\right) \tag{12}
\end{equation*}
$$

where $\bar{\zeta}(t)$ is continuous vector-valued martingale with matrix characteristic

$$
\left\langle\bar{\zeta}^{(l)}, \bar{\zeta}^{(n)}\right\rangle(t)=\int_{0}^{t} \bar{B}_{l n}\left(\bar{A}_{1}(s), \bar{A}_{2}(s)\right) d s, \quad l, n=1,2
$$

Hence [8] there exists Wiener process $\bar{w}(t)=\left(\bar{w}_{j}(t), j=1,2\right)$, such that

$$
\begin{equation*}
\bar{\zeta}(t)=\int_{0}^{t} \bar{\sigma}\left(\bar{A}_{1}(s), \bar{A}_{2}(s)\right) d \bar{w}(s), \bar{\sigma}\left(A_{1}, A_{2}\right)=\left\{\bar{B}\left(A_{1}, A_{2}\right)\right\}^{1 / 2} \tag{13}
\end{equation*}
$$

Relationships (12), (13) mean, that process $\bar{A}(t)$ satisfies equation (4). Under conditions of theorem the equation (4) has unique solution. Therefore process $\bar{A}(t)$ does not depend on choosing of sub-sequence $\varepsilon_{m} \rightarrow 0$, and finite-dimensional distributions of process $A_{\varepsilon_{m}}(t)$ converge to finitedimensional distributions of process $\bar{A}(t)$. Since processes $A_{\varepsilon_{m}}(t)$ and $\bar{A}(t)$ are Markov processes, then using the conditions for weak convergence of Markov processes [7], we complete the proof of statement 1 of theorem.

Let us consider the case $k<k_{0}$. Then coefficients $\alpha_{\varepsilon}^{(i)}\left(t, A_{1}, A_{2}\right), i=1,2$ of equation (7) tend to zero, as $\varepsilon \rightarrow 0$. Repeating with obvious modifications the proof of statement 1) of theorem we obtain proof of the first statement of 2).

In the case $k<2 k_{j}, j=\overline{1, m}$ in (11) we have

$$
\sigma_{\varepsilon}^{(l, j)}\left(t, A_{1}, A_{2}\right) \sigma_{\varepsilon}^{(n, j)}\left(t, A_{1}, A_{2}\right)=O\left(\varepsilon^{2 k_{j}-k}\right), l, n=1,2 .
$$

Then we can complete the proof in this case as above. In the same way we consider the case $k<2 k_{m+1}$. The statement 3) follows from result of [1].■

References

1. Borysenko O.D., Borysenko O.V. Limit behavior of non-autonomous random oscillating system of third order under random periodic external disturbances, Journ. Numer. and Applied Math., 1(96) (2008), $87-95$.
2. Krylov N.M., Bogolyubov N.N., Introduction to non-linear mechanics, Kyiv: Publ.Acad.Scien. UkrSSR, 1937.
3. Borysenko O.D., Borysenko O.V. Limit behavior of autonomous random oscillating system of third order, Theory of Stoch. Proc., 13(29) (2007), no.4, 19 - 28.
4. Borysenko O.D., Malyshev I.G., The limit behaviour of integral functional of the solution of stochastic differential equation depending on small parameter, Theory of Stoch. Proc., 7(23) (2001), no.1-2, $30-36$.
5. Gikhman, I.I., Skorokhod, A.V., Stochastic Differential Equations, Sprin-ger-Verlag, Berlin, 1972.
6. Skorokhod, A.V., Studies in the Theory of Random Processes, AddisonWesley, 1965.
7. Gikhman, I.I., Skorokhod, A.V., The Theory of Stochastic Processes, v.I, Springer-Verlag, Berlin, 1974.
8. Ikeda, N. and Watanabe, S., Stochastic Differential Equations and Diffusion Processes, North Holland, Amsterdam and Kadansha, Tokyo, 1981.

Department of Probability Theory and Mathematical Statistics, Kyiv National Taras Shevchenko University, Kyiv, Ukraine
E-mail: odb@univ.kiev.ua
Department of Mathematical Physics, National Technical UniverSity "KPI", Kyiv, Ukraine

[^0]: 2000 Mathematics Subject Classifications. 60H10
 Key words and phrases. Asymptotic behavior, third order autonomous oscillating system, small non-linear random perturbations, resonance case

