PAVLO KONONCHUK

PASTING OF TWO DIFFUSION PROCESSES ON A LINE WITH NONLOCAL BOUNDARY CONDITIONS

Abstract

In this paper, we obtain an integral representation of an operator semigroup that describes the Feller process on a line that is a result of pasting together two diffusion processes with a nonlocal condition of conjugation.

1. Introduction and formulation of the problem. Let $\mathcal{D}_{1}=\left\{x \in \mathbb{R}^{1}: x<0\right\}$ and $\mathcal{D}_{2}=\left\{x \in \mathbb{R}^{1}: x>0\right\}$ be domains on $\mathbb{R}^{1}, S=\{0\}$ is boundary of the domain \mathcal{D}_{i}, $\overline{\mathcal{D}}_{i}=\mathcal{D}_{i} \cup\{0\}$ is the closure of $\mathcal{D}_{i}, i=1,2$. Assume that \mathcal{L}_{i} is a second-order differential operator that operates on the set $\mathcal{C}_{K}^{2}\left(\overline{\mathcal{D}}_{i}\right)$ of all twice continuously differentiable functions with compact supports:

$$
\begin{equation*}
\mathcal{L}_{i} \varphi(x)=\frac{1}{2} b_{i}(x) \frac{d^{2} \varphi(x)}{d x^{2}}+a_{i}(x) \frac{d \varphi(x)}{d x} \tag{1}
\end{equation*}
$$

where $b_{i}(x)$ and $a_{i}(x), i=1,2$, are continuous and bounded on $\overline{\mathcal{D}}_{i}$, and also $b_{i}(x) \geq 0$. Let us also assume that, at the point $x=0$, the following integral operator is defined:

$$
\begin{equation*}
\mathcal{L}_{0} \varphi(0)=\int_{\mathbb{R}^{1}}(\varphi(0)-\varphi(y)) \mu(d y) \tag{2}
\end{equation*}
$$

where $\mu(\cdot)$ is a nonnegative Borel measure on $\mathbb{R}^{1}, \mu\left(\mathbb{R}^{1}\right)>0$.
We assume that operator (2) is a part of the general Feller-Wentzell boundary operator ([1], [2]) that corresponds to jumps of the process after its reach to the boundary S.

Let us consider the following problem: to construct an operator semigroup \mathcal{T}_{t} that generates the Feller process on \mathbb{R}^{1} such that it coincides with a diffusion process controlled by the operator $\mathcal{L}_{i}, i=1,2$, and its behavior at the point $x=0$ is determined by the boundary condition

$$
\begin{equation*}
\mathcal{L}_{0} \varphi(0)=0 \tag{3}
\end{equation*}
$$

The formulated problem is often called the problem of pasting of diffusion processes on a line (e.g., see [3], [4]).

Note that the problem of pasting of two diffusion processes on a line was previously considered in the most general formulation in [5]. Also, the problem of existence of a Feller semigroup that describes a diffusion process on a domain with boundary conditions of kind (2) has been considered in [6]. In the papers mentioned above, solutions of respective problems were found, by using methods of functional analysis.

In this article, the desired semigroup will be constructed by analytical methods using a solution of the corresponding conjugation problem for a second-order parabolic linear

[^0]equation with discontinuous coefficients. The problem is to find a function $u(t, x)(t>$ $0, x \in \mathbb{R}^{1}$ that satisfies the following conditions:
\[

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\mathcal{L}_{i} u, \quad t>0, x \in \mathcal{D}_{1} \cup \mathcal{D}_{2} \tag{4}\\
u(0, x)=\varphi(x), \quad x \in \mathcal{D}_{1} \cup \mathcal{D}_{2} \tag{5}\\
u(t,-0)=u(t,+0), \quad t>0 \tag{6}\\
\int_{\mathbb{R}^{1}}(u(t, 0)-u(t, y)) \mu(d y)=0, \quad t>0 . \tag{7}
\end{gather*}
$$
\]

Note that, in problem (4)-(7), relationship (6) represents the Feller property for the process, and equality (7) represents boundary condition (3).

For solving problem (4)-(7), we will use the classical potential method. This approach allows us to obtain an integral representation for the concerned semigroup.
2. Basic notations. Let \mathcal{D}_{t}^{r} and \mathcal{D}_{x}^{p} be symbols of partial derivative with respect to t of order r and with respect to x of order p, respectively, where r and p are nonnegative integers; $\mathcal{B}\left(\mathbb{R}^{1}\right)$ is the Banach space of all measurable bounded real-valued functions on \mathbb{R}^{1} with the norm $\|\varphi\|=\sup _{x}|\varphi(x)| ; T$ is a fixed number; $\mathbb{R}_{\infty}^{2}=(0, \infty) \times \mathbb{R}^{1}$; $\mathbb{R}_{T}^{2}=(0, T) \times \mathbb{R}^{1} ; \Omega$ is a domain in \mathbb{R}_{∞}^{2} or in $\mathbb{R}_{T}^{2} ; \mathcal{C}(\Omega)(\mathcal{C}(\bar{\Omega}))$ is a set of functions continuous in $\Omega(\bar{\Omega})$ with continuous derivatives $D_{t}, D_{x}^{p}, p=1,2$ on $\Omega(\bar{\Omega}) ; H^{\alpha}\left(\mathbb{R}^{1}\right)$, $\alpha \in(0,1)$, denotes the Hölder space as in [7, p.16]; and $\mathcal{D}_{\delta}=\left\{x \in \mathbb{R}^{1}:|x|>\delta>0\right\} ; C$, c are positive constants not depending on (t, x), whose exact values are irrelevant.
3. Solution of the parabolic conjugation problem using analytical methods. Additionally, we assume that $\mathcal{L}_{1}, \mathcal{L}_{2}$ from (1) and the measure $\mu(\cdot)$ from (2) satisfy the following conditions:
a) functions $b_{i}(x), a_{i}(x), i=1,2$, are defined on \mathbb{R}^{1}, and $b_{i}, a_{i} \in H^{\alpha}\left(\mathbb{R}^{1}\right)$;
b) there exist constants $b_{0 i}, b_{1 i}, i=1,2$, such that $0<b_{0 i} \leq b_{1 i}, i=1,2$, and $b_{0 i} \leq b_{i}(x) \leq b_{1 i}, i=1,2$;
c) there exists $\Delta>0$ such that, for $0<\delta<\Delta$ and for all functions φ from $\mathcal{B}\left(\mathbb{R}^{1}\right)$,

$$
\begin{align*}
\left|\int_{\mathcal{D}_{\delta}} \varphi(y) \mu(d y)\right| & \leq C_{1}\|\varphi\| \tag{8}\\
\left|\int_{\mathbb{R}^{1} \backslash \mathcal{D}_{\delta}} \varphi(y) \mu(d y)\right| & \leq C_{2}(\delta)\|\varphi\| \tag{9}
\end{align*}
$$

where $C_{1}>0$ does not depend on δ, and $C_{2}(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.
Remark 1. From a) and b), it follows (see [7]) that there exists a fundamential solution (f.s.) of Eq. (4) that will be denoted by $g_{i}(t, x, y)\left(t>0, x, y \in \mathbb{R}^{1}\right), i=1,2$.

Remark 2. c) implies that $\mu\{0\}=0$ and $\mu\left(\mathbb{R}^{1}\right)<\infty$. Without loss of generality, we consider $\mu\left(\mathbb{R}^{1}\right)=1$.

Let us recall some known properties of f.s. $g_{i}, i=1,2$ that we will use further in our paper:

1) the function $g_{i}(t, x, y)$ is nonnegative continuous in all variables and is expressed by the formula

$$
\begin{equation*}
g_{i}(t, x, y)=g_{i 0}(t, x, y)+g_{i 1}(t, x, y), \quad t>0, x, y \in \mathbb{R}^{1}, i=1,2 \tag{10}
\end{equation*}
$$

where

$$
g_{i 0}=\left(2 \pi b_{i}(y) t\right)^{-\frac{1}{2}} \exp \left(-\frac{(x-y)^{2}}{2 b_{i}(y) t}\right)
$$

$g_{i 1}(t, x, y)$ is in the form of an integral operator with a kernel $g_{i 0}$ and a density $\Phi_{i 0}$ that is defined from some integral equation ($g_{i 1} \equiv 0$ when $t \leq 0$);
2) the function $g_{i}(t, x, y), i=1,2$, as a function of arguments t and x, is continuously differentiable with respect to t and twice continuously differentiable with respect to x, and

$$
\begin{gather*}
\left|D_{t}^{r} D_{x}^{p} g_{i}(t, x, y)\right| \leq C t^{-\frac{1+2 r+p}{2}} \exp \left(-c \frac{|x-y|^{2}}{t}\right) \tag{11}\\
\left|D_{t}^{r} D_{x}^{p} g_{i 1}(t, x, y)\right| \leq C t^{-\frac{1+2 r+p-\alpha}{2}} \exp \left(-c \frac{|x-y|^{2}}{t}\right) \tag{12}
\end{gather*}
$$

where $2 r+p \leq 2,0<t \leq T$.
We now establish a classical solvability of problem (4)-(7) on the space of all functions continuous and bounded in the variable x.

Theorem 1. Assume that conditions a)-c) hold for the coefficients of the operators \mathcal{L}_{1} and \mathcal{L}_{2} from (1) and for the measure $\mu(\cdot)$ from (2). Then, for every continuous function $\varphi \in \mathcal{B}\left(\mathbb{R}^{1}\right)$ from (5), problem (4)-(7) has a unique solution

$$
\begin{equation*}
u \in \mathcal{C}^{1,2}\left((0, \infty) \times \mathcal{D}_{i}\right) \cap \mathcal{C}\left((0, \infty) \times \mathbb{R}^{1}\right), \quad i=1,2 \tag{13}
\end{equation*}
$$

for which $\left(t \in(0, T], x \in \mathbb{R}^{1}\right)$

$$
\begin{equation*}
|u(t, x)| \leq C\|\varphi\| \tag{14}
\end{equation*}
$$

and this solution can be obtained in the form

$$
\begin{equation*}
u(t, x)=\int_{\mathbb{R}^{1}} g_{i}(t, x, y) \varphi(y) d y+\int_{0}^{t} g_{i}(t-\tau, x, 0) V_{i}(\tau) d \tau, \quad t>0, x \in \mathcal{D}_{i}, i=1,2 \tag{15}
\end{equation*}
$$

where $V_{i}(t)(t>0)$ is a solution of some system of second-kind Volterra integral equations.
Proof. According to the statement of Theorem 1, we will find a solution of problem (4)(7) as (15), where $V_{i}, i=1,2$, are the unknown functions that will be defined from the conjugation conditions (6) and (7). To this end, we denote the first and second terms on the right-hand side of Eq. (15) by $u_{i 0}(t, x)$ and $u_{i 1}(t, x) i=1,2$, respectively. Substituting the expression for $u(t, x)$ in conditions (6),(7), we obtain a system of equations for $V_{i}, i=1,2$,

$$
\begin{gather*}
\int_{0}^{t} g_{i}(t-\tau, 0,0) V_{i}(\tau) d \tau-\sum_{j=1}^{2} \int_{0}^{t}\left(\int_{\mathcal{D}_{j}} g_{j}(t-\tau, y, 0) \mu(d y)\right) V_{j}(\tau) d \tau=\Phi_{i}(t) \tag{16}\\
t>0, \quad i=1,2
\end{gather*}
$$

where

$$
\Phi_{i}(t)=\sum_{j=1}^{2} \int_{\mathcal{D}_{j}} u_{j 0}(t, y) \mu(d y)-u_{i 0}(t, 0), \quad i=1,2
$$

One can see that the system of equations (16) is a system of first-kind Volterra integral equations. Using the Holmgren hold (e.g., see [8]), we transform it to an equivalent system of second-kind Volterra integral equations. For this, we define the operator

$$
\mathcal{E}(t) \Phi=\sqrt{\frac{2}{\pi}} \frac{d}{d t} \int_{0}^{t}(t-s)^{-\frac{1}{2}} \Phi(s) d s, \quad t>0
$$

and apply it to both sides of the system of equations (16). Taking into account properties $1), 2$) for g_{i} and condition c), we obtain, after easy reductions, the equalities

$$
\begin{equation*}
V_{i}(t)=\sum_{j=1}^{2} \int_{0}^{t} K_{i j}(t-\tau) V_{j}(\tau) d \tau+\Psi_{i}(t), \quad t>0, i=1,2 \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
K_{i i}(t-\tau) & =\sqrt{\frac{2 b_{i}(0)}{\pi}} \frac{d}{d t} \int_{\tau}^{t}(t-s)^{-\frac{1}{2}}\left(\int_{\mathcal{D}_{i}} g_{i 1}(s-\tau, y, 0) \mu(d y)-g_{i 1}(s-\tau, 0,0)\right) d s- \\
& -b_{i}(0) \int_{\mathcal{D}_{i}} \frac{\partial g_{i 0}(t-\tau, y, 0)}{\partial y} \mu(d y), \quad i=1,2, \\
K_{i j}(t-\tau) & =\sqrt{\frac{2 b_{i}(0)}{\pi}} \frac{d}{d t} \int_{\tau}^{t}(t-s)^{-\frac{1}{2}}\left(\int_{\mathcal{D}_{j}} g_{j 1}(s-\tau, y, 0) \mu(d y)\right) d s \\
& -\sqrt{b_{i}(0) b_{j}(0)} \int_{\mathcal{D}_{j}} \frac{\partial g_{j 0}(t-\tau, y, 0)}{\partial y} \mu(d y), \quad i, j=1,2, \\
\Psi_{i}(t) & =\sqrt{b_{i}(0)} \mathcal{E}(t) \Phi_{i}, \quad i=1,2, i \neq j .
\end{aligned}
$$

Equations (17) form a system of second-kind Volterra integral equations for $V_{i}, i=1,2$. In this system of equations, the first terms that are a part of expressions for kernels $K_{i j}(t-\tau)$ (we will denote them $K_{i j}^{(1)}(t-\tau)$) and $\Psi_{i}(t)$ can be estimated as

$$
\begin{align*}
\left|K_{i j}^{(1)}(t-\tau)\right| & \leq \sqrt{b_{i}(0)} C_{T}(t-\tau)^{-1+\frac{\alpha}{2}}, \quad i, j=1,2, \tag{18}\\
|\Psi(t)| & \leq \sqrt{b_{i}(0)} K_{T}\|\varphi\| t^{-\frac{1}{2}}, \quad i=1,2 \tag{19}
\end{align*}
$$

which holds in every domain of the form $0 \leq \tau<t \leq T$ and $0<t \leq T$, respectively, with some constants C_{T} and K_{T}. Estimations (18) and (19) have similar proofs. For example, we will prove estimation (19). By differentiating the integral in the expression for $\Psi_{i}(t)$, we obtain the formula

$$
\begin{equation*}
\Psi_{i}(t)=\sqrt{\frac{2 b_{i}(0)}{\pi}}\left(\frac{1}{2} \int_{0}^{t}(t-s)^{-\frac{3}{2}}\left(\Phi_{i}(t)-\Phi_{i}(s)\right) d s+t^{-\frac{1}{2}} \Phi_{i}(t)\right), \quad i=1,2 . \tag{20}
\end{equation*}
$$

After that, estimating the right-hand side of (20), using inequality (11), and the formula of finite growth for the difference $\Phi_{i}(t)-\Phi_{i}(s)$, we obtain $(0<t \leq T)$

$$
\left|\Phi_{i}(t)\right| \leq C\|\varphi\|, \quad\left|\Phi_{i}(t)-\Phi_{i}(s)\right| \leq C\|\varphi\| s^{-1}(t-s),
$$

thus

$$
\begin{aligned}
\left|\Psi_{i}(t)\right| & \leq \sqrt{b_{i}(0)} C\|\varphi\|\left(\int_{0}^{\frac{t}{2}}(t-s)^{-\frac{3}{2}} d s+\int_{\frac{t}{2}}^{t}(t-s)^{-\frac{1}{2}} s^{-1} d s+t^{-\frac{1}{2}}\right) \\
& \leq \sqrt{b_{i}(0)} K_{T}\|\varphi\| t^{-\frac{1}{2}}
\end{aligned}
$$

Similarly we obtain estimation (18). Concerning the functions that determine the second term in the expression for $K_{i j}(t-\tau)$ (denote them by $K_{i j}^{(2)}$), the direct application of inequality (11) to the derivatives $\frac{\partial g_{j 0}}{\partial y}, j=1,2$, results in a nonintegrable singularity for these functions at $t=\tau$. Despite that, we will prove that the general method of
successive approximations is applicable to the system of equations (17). This means that we may try to find s solution of the system of equations (17) in the form of a series

$$
\begin{equation*}
V_{i}(t)=\sum_{k=0}^{\infty} V_{i}^{(k)}(t), \quad i=1,2 \tag{21}
\end{equation*}
$$

where

$$
\begin{gathered}
V_{i}^{(0)}(t)=\Psi_{i}(t) \\
V_{i}^{(k)}(t)=\sum_{j=1}^{2} \int_{0} K_{i j}(t-\tau) V_{j}^{(k-1)}(\tau) d \tau, \quad k=1,2, \ldots
\end{gathered}
$$

Estimate $V_{i}^{(1)}(t)$. For this, we use the equality

$$
\begin{equation*}
V_{i}^{(1)}=\sum_{l, j=1}^{2} \int_{0}^{t} K_{i j}^{(l)}(t-\tau) V_{j}^{(0)}(\tau) d \tau=\sum_{l, j=1}^{2} V_{i j}^{(1 l)}(t), \quad i=1,2 . \tag{22}
\end{equation*}
$$

Taking into account (18) and (19), we obtain

$$
\begin{align*}
\left|V_{i j}^{(11)}(t)\right| & \leq K_{T}\|\varphi\| \sqrt{b_{j}(0) b_{i}(0)} C_{T} \int_{0}^{t}(t-\tau)^{-1+\frac{\alpha}{2}} \tau^{-\frac{1}{2}} d \tau \\
& =K_{T}\|\varphi\| t^{-\frac{1}{2}} \sqrt{b_{i}(0) b_{j}(0)} \frac{C_{T} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1+\alpha}{2}\right)} t^{\frac{\alpha}{2}} \tag{23}
\end{align*}
$$

Before estimating $V_{i j}^{(12)}$, we recall the formula

$$
\begin{gathered}
V_{i j}^{(12)}(t)=\sqrt{\frac{b_{i}(0)}{b_{j}(0)}} \frac{1}{\sqrt{2 \pi b_{j}(0)}} \int_{\mathcal{D}_{j}} \mu(d y) \int_{0}^{t} \frac{y}{(t-\tau)^{\frac{3}{2}}} \exp \left(-\frac{y^{2}}{2 b_{j}(0)(t-\tau)}\right) V_{j}^{(0)}(\tau) d \tau \\
i, j=1,2
\end{gathered}
$$

Using (19), we obtain

$$
\begin{aligned}
& \left|V_{i j}^{(12)}(t)\right| \\
& \quad \leq K_{T}\|\varphi\| \sqrt{b_{i}(0)} \int_{\mathcal{D}_{j}} \mu(d y) \frac{1}{\sqrt{2 \pi b_{j}(0)}} \int_{0}^{t} \frac{|y|}{(t-\tau)^{\frac{3}{2}} \tau^{\frac{1}{2}}} \exp \left(-\frac{y^{2}}{2 b_{j}(0)(t-\tau)}\right) d \tau
\end{aligned}
$$

Since

$$
\frac{1}{\sqrt{2 \pi b_{j}(0)}} \int_{0}^{t} \frac{|y|}{(t-\tau)^{\frac{3}{2}} \tau^{\frac{1}{2}}} \exp \left(-\frac{y^{2}}{2 b_{j}(0)(t-\tau)}\right) d \tau=t^{-\frac{1}{2}} \exp \left(-\frac{y^{2}}{2 b_{j}(0) t}\right)
$$

we have

$$
\begin{equation*}
\left|V_{i j}^{(12)}(t)\right| \leq K_{T}\|\varphi\| \sqrt{b_{i}(0)} t^{-\frac{1}{2}} \int_{\mathcal{D}_{j}} \exp \left(-\frac{y^{2}}{2 b_{j}(0) t}\right) \mu(d y) \tag{24}
\end{equation*}
$$

From (22)-(24), we obtain the estimation

$$
\begin{align*}
& \left|V_{i}^{(1)}(t)\right| \leq K_{T}\|\varphi\| \sqrt{b_{i}(0)} t^{-\frac{1}{2}} \tag{25}\\
& \\
& \quad \times\left(\frac{\left(\sqrt{b_{1}(0)}+\sqrt{b_{2}(0)}\right) C_{T} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1+\alpha}{2}\right)} t^{\frac{\alpha}{2}}+\sum_{j=1}^{2} \int_{\mathcal{D}_{j}} \exp \left(-\frac{y^{2}}{2 b_{j}(0) t}\right) \mu(d y)\right) \\
& \quad i=1,2, t \in(0, T]
\end{align*}
$$

On the right-hand side of (25), we use the notations

$$
a_{t}=\frac{\left(\sqrt{b_{1}(0)}+\sqrt{b_{2}(0)}\right) C_{T} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1+\alpha}{2}\right)} t^{\frac{\alpha}{2}}, \quad b_{t}=\sum_{j=1}^{2} \int_{\mathcal{D}_{j}} \exp \left(-\frac{y^{2}}{2 b_{j}(0) t}\right) \mu(d y) .
$$

Notice that condition c) guarantees the following inequality for b_{t} :

$$
b_{t} \leq b_{T} \leq \int_{\mathbb{R}^{1}} \exp \left(-\frac{y^{2}}{2 b(0) T}\right) \mu(d y)<1
$$

where $b(0)=\max \left\{b_{1}(0), b_{2}(0)\right\}$.
Further, by using the method of induction on k, we establish the following estimation for $V_{i}^{(k)}(t)$:

$$
\begin{equation*}
\left|V_{i}^{(k)}(t)\right| \leq K_{T}\|\varphi\| \sqrt{b_{i}(0)} t^{-\frac{1}{2}} \sum_{m=0}^{k} C_{k}^{m} a_{t}^{(k-m)} b_{t}^{m}, \quad i=1,2, k=0,1,2, \ldots \tag{26}
\end{equation*}
$$

where

$$
a_{t}^{(m)}=\frac{\left(\left(\sqrt{b_{1}(0)}+\sqrt{b_{2}(0)}\right) C_{T} \Gamma\left(\frac{\alpha}{2}\right)\right)^{m} \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}+m \frac{\alpha}{2}\right)} t^{m \frac{\alpha}{2}}, \quad m=0,1, \ldots, k .
$$

Here, C_{T} and K_{T} are the constants from inequalities (18) and (19), respectively. Taking estimation (26) into account, we obtain

$$
\begin{align*}
\sum_{k=0}^{\infty}\left|V_{i}^{(k)}(t)\right| & \leq K_{T}\|\varphi\| \sqrt{b_{i}(0)} t^{-\frac{1}{2}} \sum_{k=0}^{\infty} \sum_{m=0}^{k} C_{k}^{m} a_{t}^{(k-m)} b_{t}^{m} \\
& =K_{T}\|\varphi\| \sqrt{b_{i}(0)} t^{-\frac{1}{2}} \sum_{k=0}^{\infty} a_{t}^{(k)} \sum_{m=0}^{\infty} C_{k+m}^{m} b_{t}^{m} \\
& =K_{T}\|\varphi\| \sqrt{b_{i}(0)} t^{-\frac{1}{2}} \sum_{k=0}^{\infty} \frac{a_{t}^{(k)}}{\left(1-b_{t}\right)^{k+1}} \tag{27}\\
& \leq K_{T}\|\varphi\| \sqrt{b_{i}(0)} t^{-\frac{1}{2}} \sum_{k=0}^{\infty} \frac{\left(\left(\sqrt{b_{1}(0)}+\sqrt{b_{2}(0)} C_{T} \Gamma\left(\frac{\alpha}{2}\right)\right)^{k} \Gamma\left(\frac{1}{2}\right)\right.}{\Gamma\left(\frac{1}{2}+k \frac{\alpha}{2}\right)\left(1-b_{t}\right)^{k+1}} .
\end{align*}
$$

Inequality (27) guarantees the convergence of the series in (21) and gives the estimation for $V_{i}, i=1,2$:

$$
\begin{equation*}
\left|V_{i}(t)\right| \leq C\|\varphi\| t^{-\frac{1}{2}} \quad i=1,2 \tag{28}
\end{equation*}
$$

where $t \in(0, T]$, and C is some constant.
So we have constructed a system of integral equations (17) and verified an estimation for (28). The given estimation and (12) for $r=p=0$ ensure the existence of the function $u_{i 1}, i=1,2$ from (15) and inequality (14) for it. It is obvious that the same inequality holds for the function $u_{i 0}, i=1,2$, from (15) that holds also for the function u. This means that we have proven the existence of a solution of problem (4)-(7).
Remark 3. If we add condition (3) to the statements of Theorem 1, then the obtained solution of problem (4)-(7) belongs to the space $\mathcal{C}\left([0, \infty) \times \mathbb{R}^{1}\right)$.

Let us prove the uniqueness of the constructed solution of problem (4)-(7). Assume that there exist two distinct solutions of the problem that belong to class (13). We denote them by $u^{(1)}(t, x)$ and $u^{(2)}(t, x)$. Then the function $u(t, x)=u^{(1)}(t, x)-u^{(2)}(t, x)$ is a solution of problem (4)-(7) when $\varphi(x) \equiv 0$ which is continuous in the domain $[0, \infty) \times \mathbb{R}^{1}$,
so its parts in the domains $(t, x) \in[0, \infty) \times \overline{\mathcal{D}_{1}}$ and $(t, x) \in[0, \infty) \times \overline{\mathcal{D}_{2}}$ are, at the same time, solutions of the first parabolic boundary-value problem

$$
\begin{gather*}
D_{t} u=\mathcal{L}_{i} u, \quad(t, x) \in(0, \infty) \times \mathcal{D}_{i}, i=1,2, \tag{29}\\
u(0, x)=0, \quad x \in \overline{\mathcal{D}_{i}}, i=1,2 \tag{30}\\
u(t, 0)=v(t), t \geq 0 \tag{31}
\end{gather*}
$$

where

$$
v(t)=\int_{\mathbb{R}^{1}}\left(u^{(1)}(t, y)-u^{(2)}(t, y)\right) \mu(d y)
$$

Since the function $v(t)$ has the Hölder property when $t>0$, the first boundary-value problem has a unique solution that can be represented as

$$
\begin{equation*}
u(t, x)=\int_{0}^{t} g_{i}(t-\tau, x, 0) V_{i}(\tau) d \tau, \quad(t, x) \in(0, \infty) \times \mathcal{D}_{i}, i=1,2 \tag{32}
\end{equation*}
$$

(e.g., see [8]). Following the proof of the existence of a solution of problem (4)-(7) given above, one can notice that the functions $V_{1}(t)$ and $V_{2}(t)$ from (32) are, at the same time, the unique solutions of the homogeneous system of integral equations (17), where $\Psi_{i}(t) \equiv 0, i=1,2$. So $V_{i}(t)=0(i=1,2)$, which yields $u(t, x) \equiv 0$ and $u^{(1)}(t, x) \equiv u^{(2)}(t, x)$. Theorem 1 is proved.
4. Construction of a diffusion process. From Theorem 1, it follows that, using the solution of problem (4)-(7), we can determine the family of linear operators $\left(\mathcal{T}_{t}\right)_{t>0}$ that acts in the space $\mathcal{B}\left(\mathbb{R}^{1}\right)$. For $\varphi \in \mathcal{B}\left(\mathbb{R}^{1}\right)$, we put

$$
\begin{equation*}
\mathcal{T}_{t} \varphi(x)=\int_{\mathbb{R}^{1}} g_{i}(t, x, y) \varphi(y) d y+\int_{0}^{t} g_{i}(t-\tau, x, 0) V_{i}(\tau, \varphi) d \tau, \quad t>0, x \in \mathcal{D}_{i}, i=1,2 \tag{32}
\end{equation*}
$$

where $V_{i}(t, \varphi) \equiv V_{i}(t), i=1,2$, is a solution of the system of integral equations (17).
We will study properties of the operators $\left\{\mathcal{T}_{t}\right\}$ considering them on the space

$$
\mathcal{M}=\left\{\varphi \in \mathcal{B}\left(\mathbb{R}^{1}\right) \cap \mathcal{C}\left(\mathbb{R}^{1}\right): \varphi(0)=\int_{\mathbb{R}^{1}} \varphi(y) \mu(d y)\right\}
$$

This restriction is related to the facts that we are firstly interested in Feller processes that are generated by the operators $\left\{\mathcal{I}_{t}\right\}$ and, secondly, one can assert that $\lim _{t \rightarrow 0} T_{t} \varphi(x)=$ $\varphi(x)$ for every $x \in \mathbb{R}^{1}$, as it follows from Remark 3 [with fitting condition (3)]. One can easily prove that \mathcal{M} is a closed subspace of the space of all bounded continuous functions on \mathbb{R}^{1}, and the operators $\left\{\mathcal{I}_{t}\right\}$ leave \mathcal{M} invariant (that is, $\mathcal{T}_{t} \mathcal{M} \subset \mathcal{M}$ for every $t \geq 0$). We will show that the operators $\left\{\mathcal{I}_{t}\right\}, t \geq 0$ satisfy the following conditions:
$\left.1^{\prime}\right)$ if $\varphi_{n} \in \mathcal{M}$ when $n=1,2, \ldots, \sup _{n}\left\|\varphi_{n}\right\|<\infty$, and, for all $x \in \mathbb{R}^{1}$, we have $\lim _{n \rightarrow \infty} \varphi_{n}(x)=\varphi(x)$, then, for all $t>0, x \in \mathbb{R}^{1}$, the next relations are satisfied: $\lim _{n \rightarrow \infty} V_{i}(t, \varphi)=V_{i}(t, \varphi), i=1,2$, and $\lim _{n \rightarrow \infty} \mathcal{T}_{t} \varphi(x)=\mathcal{T}_{t} \varphi(x)$ (the last relation is obviously satisfied even when $t=0$);

2') $\mathcal{T}_{t} \varphi(x) \geq 0$ for all $t \geq 0, x \in \mathbb{R}^{1}$, whenever the function $\varphi \in \mathcal{M}$ satisfies the property that $\varphi(x) \geq 0$ for all $x \in \mathbb{R}^{1}$;

3 ') for all $t_{1} \geq 0, t_{2} \geq 0$, the next relation holds:

$$
\mathcal{T}_{t_{1}+t_{2}}=\mathcal{T}_{t_{1}} \mathcal{T}_{t_{2}}
$$

4') $\left\|\mathcal{T}_{t}\right\| \leq 1$ for all $t \geq 0$.
Conditions $\left.1^{\prime}\right)-4^{\prime}$) can be easily verified. In particular, condition 1^{\prime}) is a corollary from properties of the solution of the system of equations (17) (in series (21) that represent the function $V_{i}\left(t, \varphi_{n}\right), i=1,2$, we can take limit term-by-term) and from the Lebesgue theorem about passing to the limit under the sign of integral. Property 2') which means
that the operator \mathcal{T}_{t} leaves the cone of nonnegative functions from the space \mathcal{M} to be invariant and property 3^{\prime}) called a semigroup property are corollaries of the maximum principle for parabolic equations ([9]) and the statement of Theorem 1 concerning the uniqueness of a solution of problem (4)-(7), respectively. Finally, to verify property 4^{\prime}) which means that, for every $t \geq 0$, the operator \mathcal{T}_{t} is a contraction operator, it is enough to notice (remembering 2^{\prime})) that $\mathcal{T}_{t} \varphi_{0}(x) \equiv 1$ for all $t \geq 0, x \in \mathbb{R}^{1}$, if only $\varphi_{0}(x) \equiv 1$.

Hence, we make conclusion (e.g., see [4]) that the operator semigroup $\mathcal{T}_{t}, t \geq 0$, constructed by formulas (32) and (17) determines some homogeneous Feller process on \mathbb{R}^{1}. Denote its transition probability by $\mathcal{P}(t, x, d y)$, so that

$$
\mathcal{I}_{t} \varphi(x)=\int_{\mathbb{R}^{1}} \mathcal{P}(t, x, d y) \varphi(y)
$$

Therefore, we have proved the next theorem.
Theorem 2. Let the coefficients of the operators \mathcal{L}_{1} and \mathcal{L}_{2} from (1) and the measure $\mu(\cdot)$ from (2) satisfy conditions a)-c). Then the solution of problem (4)-(7) constructed in Theorem 1 uniquely determines the operator semigroup $\mathcal{T}_{t}, t \geq 0$ that describes a homogeneous Feller process on \mathbb{R}^{1} such that its parts at the inner points of the domains \mathcal{D}_{1} and \mathcal{D}_{2} coincide with the diffusion processes generated by the operators \mathcal{L}_{1} and \mathcal{L}_{2}, respectively, and its behavior at $\{0\}$ is determined by the nonlocal conjugation condition (3).

Prentice-Hall, Englewood Cliffs, 1964

Bibliography

1. W. Feller, Diffusion proceses in one dimension, Trans. Amer. Math. Soc. 77 (1954), 1-31.
2. A.D. Wentzel, On boundary conditions for multidimensional diffusion processes, Probab. Theory Appl. 4 (1959), 164-177.
3. B.I. Kopytko, On the knotting of two diffusion processes on a line (in Russian), Probability Methods of Infinite Dimensional Analysis (1980), 84-101.
4. M.I. Portenko, Diffusion Processes in Media with Membranes, Institute of Mathematics of the NAS of Ukraine, Kyiv, 1995.
5. H. Langer, W. Schenk, Knotting of one-dimentional Feller process, Math. Nachr. 113 (1983), 151-161.
6. A.L. Skubachevkiy, On Feller semigroups for multidimensional diffusion processes, Doklady Mathematics 341, no. 2, 173-176.
7. O.A. Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967.
8. L.I. Kamynin, On the solution of basic boundary-value problems for one-dimensional secondorder parabolic equation using the method of potentials, Sib. Math. Jour. 15 (1974), no. 4, 806-834.
9. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewoods Cliffs, 1964.
[^1]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 60J60.
 Key words and phrases. Diffusion process, nonlocal boundary conditions, analytical methods.

[^1]: Ukraine, 79000, Lviv, 1 Universytetska Str., Mechanics and Mathematics Faculty, Higher Mathematics Dept.

 E-mail: p.kononchuk@gmail.com

