UDC 519.21

L. GAWARECKI, V. MANDREKAR, AND B. RAJEEV

LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS IN THE DUAL OF A MULTI-HILBERTIAN SPACE

Abstract

We prove the existence and uniqueness of strong solutions for linear stochastic differential equations in the space dual to a multi-Hilbertian space driven by a finite dimensional Brownian motion under relaxed assumptions on the coefficients. As an application, we consider equtions in \mathcal{S}^{\prime} with coefficients which are differential operators violating the typical growth and monotonicity conditions.

1. Assumptions

We consider a countably Hilbertian space (Φ, τ), whose topology τ is determined by a family of separable Hilbertian seminorms $\|\cdot\|_{p}, p \in R$ (for a detailed exposition, see [4]).

For any $p \in R_{+}$, we identify $\phi \in \Phi$ with $[\phi]_{p} \in \Phi / \operatorname{ker}\|\cdot\|_{p}$ and denote the completion of Φ in $\|\cdot\|_{p}$ by H_{p}. Then H_{p} is a real separable Hilbert space containing Φ as its dense subspace, and the embedding $(\Phi, \tau) \hookrightarrow\left(H_{p},\|\cdot\|_{p}\right)$ is continuous. Assume that, for $q \leq p$, the canonical embedding $\left(H_{p},\|\cdot\|_{p}\right) \hookrightarrow\left(H_{q},\|\cdot\|_{q}\right)$ is continuous, i.e., $\|\cdot\|_{p}$ dominates $\|\cdot\|_{q}$, denoted by $\|\cdot\|_{q} \prec\|\cdot\|_{p}$.

In applications, the strong dual Φ^{\prime} of Φ is realized through Hilbert spaces H_{-p} isomorphic to H_{p}^{\prime}, as $\Phi^{\prime}=\bigcup_{p \in R_{+}} H_{-p}$, where

$$
\Phi \subset H_{p} \subset H_{0} \subset H_{-p} \subset \Phi^{\prime}
$$

and all the inclusions are continuous. The Hilbert spaces H_{p} and H_{-p} are dual, in the pairing

$$
H_{p}\left\langle h^{p}, h^{-p}\right\rangle_{H_{-p}}, \quad h^{p} \in H_{p}, h^{-p} \in H_{-p}
$$

being an extension of the duality between Φ and Φ^{\prime}.
Assume there exists a total set $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ in Φ, which is a common orthogonal system for all Hilbert spaces $H_{p}, p \in R$, and denote, by $\left\{h_{j}^{p}\right\}=\left\|\phi_{j}\right\|_{p}^{-1} \phi_{j}$, the ONB in H_{p} derived from ϕ_{j}. We set ${ }_{\Phi}\left\langle\phi_{n}, \phi_{n}\right\rangle_{\Phi^{\prime}}=\left\|\phi_{n}\right\|_{0}^{2}=1$. For $f \in \Phi$, the scalar product in H_{p}, $p \in R$, can be calculated as $\left\langle f, h_{n}^{p}\right\rangle_{p}=\left\langle f, \phi_{n}\right\rangle_{0}\left\|\phi_{n}\right\|_{p}$.

For linear topological vector spaces A and B, we denote, by $L(A, B)$, the space of continuous linear operators from A to B. For a bounded linear operator $T \in L\left(R^{d}, H_{p}\right)$, its Hilbert-Schmidt norm is calculated as $\|T\|_{H S(p)}=\left(\sum_{i=1}^{d}\left\|T e_{i}\right\|_{p}^{2}\right)^{1 / 2}$, where $\left\{e_{i}\right\}_{i=1}^{d}$ is the canonical basis in R^{d}.

We will study a stochastic process with values in Φ and Φ^{\prime}. Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, P\right)$ be a filtered probability space satisfying the usual conditions: \mathcal{F}_{0} contains all $A \in \mathcal{F}$, such that $P(A)=0$, and $\mathcal{F}_{t}=\bigcap_{s>t} \mathcal{F}_{s}$. Measurability will be understood with respect to the Borel σ-fields $\mathcal{B}_{\Phi}, \mathcal{B}_{\Phi^{\prime}}$ (respectively) and this filtered probability space. Since Φ is

[^0]a countable multi-Hilbertian space, the Borel σ-fields on Φ^{\prime} generated by strongly open sets and by weakly open sets coincide.

For $0 \leq t \leq T$, consider the functions

$$
L:[0, T] \times \Omega \rightarrow L\left(\Phi^{\prime}, \Phi^{\prime}\right), \quad A:[0, T] \times \Omega \rightarrow L\left(\Phi^{\prime}, L\left(R^{d}, \Phi^{\prime}\right)\right)
$$

We introduce the following conditions on L and A. Below, let $q \leq p$.

1. (Invariance $[\operatorname{INV}(\Phi)]) \Phi$ is invariant for L and A, i.e. $L(t, \omega): \Phi \rightarrow \Phi$ and $A(t, \omega): \Phi \rightarrow L\left(R^{d}, \Phi\right)$.
2. (Measurability $\left[\operatorname{MR}\left(\Phi^{\prime}\right)\right]$) For any progressively measurable Φ-valued process $\left\{X_{t}\right\}_{t \leq T}$ and any $x \in R^{d},\left\{L(t, \omega) X_{t}(\omega)\right\}_{t \leq T}$ and $\left\{A(t, \omega) X_{t}(\omega) x\right\}_{t \leq T}$ are $\Phi^{\prime_{-}}$ valued progressively measurable processes.
3. (Measurability $[\mathrm{MR}(\mathrm{p}, \mathrm{q})])$ For any progressively measurable H_{p}-valued process $\left\{X_{t}\right\}_{t \leq T}$ and any $x \in R^{d},\left\{L(t, \omega) X_{t}(\omega)\right\}_{t \leq T}$ and $\left\{A(t, \omega) X_{t}(\omega) x\right\}_{t \leq T}$ are $H_{q^{-}}$ valued progressively measurable processes.
4. (Boundedness $[\mathrm{B}(\mathrm{p}, \mathrm{q})]) L:[0, T] \times \Omega \rightarrow L\left(H_{p}, H_{q}\right)$ and $A:[0, T] \times \Omega \rightarrow$ $L\left(H_{p}, L\left(R^{d}, H_{q}\right)\right)$ and L and A are uniformly bounded, i.e.

$$
\|L(t, \omega) u\|_{q}+\|A(t, \omega) u\|_{H S(q)} \leq \theta\|u\|_{p}
$$

$\forall u \in H_{p}, 0 \leq t \leq T$ and $\omega \in \Omega$, with θ depending only on p and q.
5. (Monotonicity $[\mathrm{M}(\mathrm{p})])$

$$
2\langle u, L(t, \omega) u\rangle_{p}+\|A(t, \omega) u\|_{H S(p)}^{2} \leq \theta\|u\|_{p}^{2}
$$

$\forall u \in \Phi, 0 \leq t \leq T$ and $\omega \in \Omega$, with θ depending only on p.
6. (Monotonicity $[\mathrm{M}(\mathrm{p}, \mathrm{q})]) L:[0, T] \times \Omega \rightarrow L\left(H_{p}, H_{q}\right)$ and $A:[0, T] \times \Omega \rightarrow$ $L\left(H_{p}, L\left(R^{d}, H_{q}\right)\right)$, and

$$
2\langle u, L(t, \omega) u\rangle_{q}+\|A(t, \omega) u\|_{H S(q)}^{2} \leq \theta\|u\|_{q}^{2}
$$

$\forall u \in H_{p}, 0 \leq t \leq T$ and $\omega \in \Omega$, with θ depending only on p and q.
Condition $[\mathrm{B}(\mathrm{p}, \mathrm{q})]$ is very weak, since the growth of $A(t, \omega)$ in H_{q} is bounded by the norm of the argument in H_{p}, and $\|\cdot\|_{p} \succ\|\cdot\|_{q}$. This weakness in the growth condition is the major difficulty in proving the existence result. Note, for example, that one part of the linear growth condition in Kallianpur et al. [5] is stated within the same space. However, operators as basic as differentiation in \mathcal{S}^{\prime} fail to satisfy such growth condition.

2. Existence and Uniqueness of the Solution

Let $\left\{B_{t}, t \geq 0\right\}$ be a given d-dimensional standard Brownian motion with respect to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$. Let H be a Hilbert space. We denote, by $\int_{0}^{t} \Psi(s) d B_{s}$, the stochastic integral of an $L\left(R^{d}, H\right)$-valued process $\Psi(t)$, w.r.t. $\quad B_{t}$. Note that $\int_{0}^{t} \Psi(s) d B_{s}=$ $\sum_{i=1}^{d} \int_{0}^{t} \Psi(s) e_{i} d B_{s}^{i}$, where e_{i} is the standard ONB in R^{d}. The integrals on the RHS are the integrals of the H-valued processes $\Psi(t) e_{i}$ with respect to the real-valued processes B_{t}^{i}.

We consider the following stochastic differential equation in Φ^{\prime} :

$$
\left\{\begin{align*}
d X_{t} & =L(t) X_{t} d t+A(t) X_{t} d B_{t} \tag{2.1}\\
X_{0} & =\phi
\end{align*}\right.
$$

The initial condition ϕ is a Φ^{\prime}-valued \mathcal{F}_{0}-measurable random variable.
Definition 1. Let $q \leq p \in R$ and $\phi(\omega) \in H_{p}$ for all $\omega \in \Omega$. Assume that the coefficients of Eq. (2.1) satisfy conditions $[M R(p, q)]$ and $[B(p, q)]$. An H_{p}-valued $\mathcal{F}_{t^{-}}$ progressively measurable stochastic process $\left\{X_{t}\right\}_{0 \leq t \leq T}$ defined on a filtered probability
space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \leq T}, P\right)$ is a strong solution of Eq. (2.1) in H_{q} if $E \int_{0}^{T}\left\|X_{t}\right\|_{p}^{2} d t<\infty$ and the following equation holds in H_{q} :

$$
\begin{equation*}
X_{t}=\phi+\int_{0}^{t} L(s) X_{s} d s+\int_{0}^{t} A(s) X_{s} d B_{s} \quad \text { for almost all }(t, \omega) . \tag{2.2}
\end{equation*}
$$

Conditions $[\mathrm{MR}(\mathrm{p}, \mathrm{q})],[\mathrm{B}(\mathrm{p}, \mathrm{q})]$, and progressive measurability assumed in Definition 1 guarantee that the integrals in Eq. (2.2) are well-defined \mathcal{F}_{t}-adapted continuous $H_{q^{-}}$ valued processes. Thus, the strong solution has a continuous version in H_{q} (and, hence, a progressively measurable version in H_{q}).

We use techniques similar to those found in [6], [7], and [9]. The next lemma discusses properties of a solution to an SDE, whose coefficients satisfy the monotonicity condition.

Lemma 1. (Part 1) Assume that the coefficients L and A of Eq. (2.1) satisfy conditions $[I N V(\Phi)],\left[M R\left(\Phi^{\prime}\right)\right],[M(r)]$. Let $\phi(\omega) \in \Phi$ for all ω and $E\|\phi\|_{r}^{2}<\infty$. If $\left\{X_{t}\right\}$ is a $\Phi-$ valued process satisfying Eq. (2.2) in H_{r}, for each $t \geq 0$, a.s., in the usual sense of an SDE in a Hilbert space (in particular X_{t} is continuous in $H_{r}, P\left(\int_{0}^{T}\left\|L(s) X_{s}\right\|_{r} d s<\infty\right)=1$, and $\left.P\left(\int_{0}^{T}\left\|A(s) X_{s}\right\|_{H S(r)}^{2} d s<\infty\right)=1\right)$, then

$$
\begin{equation*}
\sup _{t \leq T} E\left\|X_{t}\right\|_{r}^{2} \leq C E\|\phi\|_{r}^{2} \tag{2.3}
\end{equation*}
$$

(Part 2) Let $r \geq p \geq q$. Assume that the coefficients L and A of Eq. (2.1) satisfy conditions $[M R(r, p)],[M(r, p)],[M(p, q)],[B(p, q)]$, and that $E\|\phi\|_{p}^{2}<\infty$. Let $\left\{X_{t}\right\}_{0 \leq t \leq T}$ be an H_{r}-valued process satisfying Eq. (2.1) in H_{p}. Let $\left\{Y_{t}\right\}_{0 \leq t \leq T}$ be the continuous version of $\left\{X_{t}\right\}_{0 \leq t \leq T}$ in H_{p} defined by the RHS of (2.2). Then

$$
\begin{equation*}
E \sup _{t \leq T}\left\|Y_{t}\right\|_{q}^{2} \leq C E\|\phi\|_{p}^{2} \tag{2.4}
\end{equation*}
$$

Proof. (Part 1) Using Itô's formula for $\|\cdot\|_{r}^{2}$ and condition $[\mathrm{M}(\mathrm{r})$], we obtain

$$
\begin{equation*}
\left\|X_{t}\right\|_{r}^{2} \leq\|\phi\|_{r}^{2}+\int_{0}^{t} \theta\left\|X_{s}\right\|_{r}^{2} d s+2 \int_{0}^{t} \sum_{j=1}^{d}\left\langle X_{s}, A(s) X_{s}\left(e_{j}\right)\right\rangle_{r} d B_{s}^{j} \tag{2.5}
\end{equation*}
$$

Let $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ be stopping times localizing the local martingale represented by the stochastic integral above, then

$$
E\left\|X_{t \wedge \tau_{n}}\right\|_{r}^{2} \leq E\|\phi\|_{r}^{2}+\int_{0}^{t} E \theta\left\|X_{s \wedge \tau_{n}}\right\|_{r}^{2} d s
$$

Using Gronwall's lemma and the fact that $\tau_{n} \rightarrow \infty$, we obtain (2.3).
(Part 2) By repeating the proof of (2.3) with the condition [M(r,p)] replacing [M(r)], we arrive at

$$
\sup _{t \leq T} E\left\|Y_{t}\right\|_{p}^{2} \leq C E\|\phi\|_{p}^{2}
$$

for the H_{p}-continuous version Y_{t} of the H_{r}-valued solution X_{t}. Since $H_{p} \hookrightarrow H_{q}$, and $\|\cdot\|_{q} \prec\|\cdot\|_{p}, Y_{t}$ is an H_{p}-valued process satisfying Eq. (2.2) in H_{q}. Thus, in (2.5), we can replace the r-norm with the q-norm, by using condition $[\mathrm{M}(\mathrm{p}, \mathrm{q})]$. Consider the stochastic integral in (2.5). It follows from Burkholder's inequality, assumption $[\mathrm{B}(\mathrm{p}, \mathrm{q})]$, and the bound for $E\left\|Y_{t}\right\|_{p}^{2}$ that

$$
\begin{aligned}
E \sup _{t \leq T} \mid \int_{0}^{t \wedge \tau_{n}} & \sum_{j=1}^{d}\left\langle Y_{s}, A(s) Y_{s}\left(e_{j}\right)\right\rangle_{q} d B_{s}^{j} \mid \\
& \leq C E\left(\int_{0}^{T}\left(\sum_{j=1}^{d}\left\|Y_{s \wedge \tau_{n}}\right\|_{q}\left\|A\left(s \wedge \tau_{n}\right) Y_{s \wedge \tau_{n}}\left(e_{j}\right)\right\|_{q}\right)^{2} d s\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C E\left(\left(\sup _{t \leq T}\left\|Y_{t \wedge \tau_{n}}\right\|_{q}^{2}\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|Y_{s}\right\|_{p}^{2} d s\right)^{\frac{1}{2}}\right) \\
& \leq \frac{C}{2}\left(\varepsilon E \sup _{t \leq T}\left\|Y_{t \wedge \tau_{n}}\right\|_{q}^{2}+\frac{1}{\varepsilon} E \int_{0}^{T}\left\|Y_{s}\right\|_{p}^{2} d s\right) \\
& \leq \frac{C}{2}\left(\varepsilon E \sup _{t \leq T}\left\|Y_{t \wedge \tau_{n}}\right\|_{q}^{2}+\frac{1}{\varepsilon} E\|\phi\|_{p}^{2}\right)
\end{aligned}
$$

for any $\varepsilon>0$. Because $\|\cdot\|_{q} \prec\|\cdot\|_{p}$, we have

$$
\begin{aligned}
E \sup _{t \leq T}\left\|Y_{t \wedge \tau_{n}}\right\|_{q}^{2} & \leq E\|\phi\|_{q}^{2}+E \int_{0}^{T} \theta\left\|Y_{t \wedge \tau_{n}}\right\|_{q}^{2} d s+\frac{C}{2}\left(\varepsilon E \sup _{t \leq T}\left\|Y_{t \wedge \tau_{n}}\right\|_{q}^{2}+\frac{1}{\varepsilon} E\|\phi\|_{p}^{2}\right) \\
& \leq C E\|\phi\|_{p}^{2}+\frac{1}{2} E \sup _{t \leq T}\left\|Y_{t \wedge \tau_{n}}\right\|_{q}^{2}
\end{aligned}
$$

since $\varepsilon>0$ is arbitrary. The constant C depends only on q, p, and T and can change its value from line to line. Thus

$$
E \sup _{t \leq T}\left\|Y_{t \wedge \tau_{n}}\right\|_{q}^{2} \leq C E\|\phi\|_{p}^{2}
$$

and (2.4) follows by Fatou's lemma.
We will use the same symbol X_{t} to denote the H_{r}-valued solution satisfying (2.1) in H_{p} and its H_{p}-continuous version. We now state our main result.

Theorem 1. Let the coefficients A and L of Eq. (2.1) satisfy conditions [INV($\Phi)$], $\left[M R\left(\Phi^{\prime}\right)\right],[M R(r, p)],[B(r, p)]$, and $[M(r)]$, for some $r \geq p$. Assume that $E\|\phi\|_{r}^{2}<$ ∞. Then equation (2.1) has an H_{r}-valued strong solution X_{t} in H_{p}. If in the above assumptions $[M(p)]$ holds instead of $[M(r)]$, then the solution is unique.

If, in addition, there exists $q \leq p$, such that A and L satisfy conditions $[M(p, q)]$ and $[B(p, q)]$, then X_{t} viewed as a continuous H_{p}-valued strong solution of Eq. (2.1) satisfying Eq. (2.2) in H_{q}, is continuous with respect to the initial condition, i.e. for the initial conditions $\phi_{n} \rightarrow \phi$ in $L^{2}\left(\Omega, H_{p}\right)$, the corresponding solutions $X_{n}(t)$ and X_{t} satisfy

$$
X_{n} \rightarrow X \text { in } L^{2}\left(\Omega, C\left([0, T], H_{q}\right)\right)
$$

Proof. Uniqueness follows from the argument provided in Krylov and Rozovskii [6].
Let $p \leq r$ and $X_{t}^{1}, X_{t}^{2} \in C\left([0, T], H_{p}\right)$ be (continuous versions of) two H_{r}-valued strong solutions of Eq. (2.2) in H_{p}. We denote $Y_{t}=X_{t}^{1}-X_{t}^{2}$ and apply Itô's formula to $\left\|Y_{t}\right\|_{p}^{2}$, to obtain

$$
\left\|Y_{t}\right\|_{p}^{2}=\int_{0}^{t}\left\{2\left\langle L(s) Y_{s}, Y_{s}\right\rangle_{p}+\left\|A(s) Y_{s}\right\|_{H S(p)}^{2}\right\} d s+M_{t}
$$

where M_{t} is a local L^{2}-martingale. We apply Itô's formula again and obtain

$$
\begin{aligned}
e^{-\mu t}\left\|Y_{t}\right\|_{p}^{2}= & -\mu \int_{0}^{t}\left\|Y_{s}\right\|_{p}^{2} e^{-\mu s} d s+\int_{0}^{t}\left\{2\left\langle L(s) Y_{s}, Y_{s}\right\rangle_{p}+\left\|A(s) Y_{s}\right\|_{H S(p)}^{2}\right\} e^{-\mu s} d s \\
& +\int_{0}^{t} e^{-\mu s} d M_{s}
\end{aligned}
$$

Since conditions $[M(p)]$ and $[B(r, p)]$ imply $[M(r, p)]$, taking $\mu>\theta$ in the latter condition gives

$$
e^{-\mu t}\left\|Y_{t}\right\|_{p}^{2} \leq \int_{0}^{t} e^{-\mu s} d M_{s}
$$

Using Doob's inequality for the non-negative continuous local martingale

$$
N_{t}=\int_{0}^{t} e^{-\mu s} d M_{s}
$$

we have $\sup _{0 \leq t \leq T}\left\{N_{t}\right\}=0, P-$ a.s., and the pathwise uniqueness follows.
To prove the existence, we let P_{n} to be an orthogonal projection of H_{p} on an $n-$ dimensional subspace of Φ, spanned by $\left\{h_{1}^{p}, \ldots, h_{n}^{p}\right\}, P_{n} u=\sum_{k=1}^{n}\left\langle u, h_{k}^{p}\right\rangle_{p} h_{k}^{p}$. For $r \geq p$, P_{n} is a bounded operator from H_{p} to H_{r}. In addition, P_{n} is an n-dimensional orthogonal projection on H_{r}, since, for $u \in H_{r}$, we have

$$
P_{n}(u)=\sum_{k=1}^{n}\left\langle u, h_{k}^{p}\right\rangle_{p} h_{k}^{p}=\sum_{k=1}^{n}\left\langle u, h_{k}^{r}\right\rangle_{r}\left\langle h_{k}^{r}, h_{k}^{p}\right\rangle_{p} h_{k}^{p}=\sum_{k=1}^{n}\left\langle u, h_{k}^{r}\right\rangle_{r} h_{k}^{r} .
$$

Using condition $[\operatorname{INV}(\Phi)]$, consider the coefficients $P_{n} L:[0, T] \times \Omega \rightarrow L\left(P_{n} H_{r}, P_{n} H_{r}\right)$ and $P_{n} A:[0, T] \times \Omega \rightarrow L\left(P_{n} H_{r}, L\left(R^{d}, P_{n} H_{r}\right)\right)$, and a finite dimensional SDE

$$
\begin{equation*}
X_{n}(t)=P_{n} \phi+\int_{0}^{t} P_{n} L(s) X_{n}(s) d s+\int_{0}^{t} P_{n} A(s) X_{n}(s) d B_{s} \tag{2.6}
\end{equation*}
$$

By $[\mathrm{B}(\mathrm{r}, \mathrm{p})]$ and linearity, it is easy to see that the coefficients of this equation are Lipschitz-continuous, so that, by the finite dimensional result (e.g., Theorem 3, Chapter II, vol. 3, in Gikhman and Skorokhod [3]), there exists a strong solution $X_{n}(t)$ in $P_{n} H_{r}$. We verify that the coefficients $P_{n} L$ and $P_{n} A$ satisfy condition [M(r)] for $u \in P_{n} H_{r} \subset \Phi$,

$$
2\left\langle P_{n} L(s) u, u\right\rangle_{r}+\left\|P_{n} A(s) u\right\|_{H S(r)}^{2} \leq 2\langle L(s) u, u\rangle_{r}+\left\|P_{n}\right\|^{2}\|A(s) u\|_{H S(r)}^{2} \leq \theta\|u\|_{r}^{2},
$$

due to the assumptions $[\operatorname{INV}(\Phi)]$ and $[\mathrm{M}(\mathrm{r})]$, on L and A. Thus, by (2.3),

$$
\sup _{n} \sup _{t \leq T} E\left\|X_{n}(t)\right\|_{r}^{2} \leq C E\|\phi\|_{r}^{2}
$$

Hence, the sequence X_{n} is bounded in $L^{2}\left(\Omega \times[0, T], H_{r}\right)$, and we can select a subsequence, denoted again by X_{n}, which converges weakly to an element X in $L^{2}\left(\Omega \times[0, T], H_{r}\right)$. We can choose the limit X such that it has a progressively measurable modification $\left\{X_{t}\right\}_{0 \leq t \leq T}$, since the limit in $L^{2}(\Omega \times[0, T])$ of the sequence $\left\{\left\langle h_{i}^{r}, X_{n}(t)\right\rangle_{r}\right\}_{n=1}^{\infty}$ viz. $\left\langle h_{i}^{r}, X_{t}\right\rangle_{r}$ is progressively measurable for each i.

We now prove that the process $\left\{X_{t}\right\}_{0 \leq t \leq T}$ satisfies $\operatorname{SDE}(2.2)$ in H_{p} by showing that, in (2.6), we can replace X_{n} with X on the RHS and with $P_{n} X$ on the LHS.

Let $\eta(s, \omega)=\eta_{1}(s) \eta_{2}(\omega) h_{i}^{p}$, where η_{1} and η_{2} are real-valued bounded and measurable. Note that, for $u \in H_{p},\left\langle h_{i}^{p}, u\right\rangle_{p}=\left\langle h_{i}^{p}, h_{i}^{r}\right\rangle_{p}\left\langle h_{i}^{r}, u\right\rangle_{r}$. So, using the weak convergence of X_{n} to X in $L^{2}\left(\Omega \times[0, T], H_{r}\right)$, we obtain

$$
E \int_{0}^{T}\left\langle\eta(s), X_{n}(s)\right\rangle_{p} d s \rightarrow E \int_{0}^{T}\left\langle\eta(s), X_{s}\right\rangle_{p} d s
$$

Note that, by condition $[\mathrm{B}(\mathrm{r}, \mathrm{p})]$ and the boundedness of X_{n} in $L^{2}\left(\Omega \times[0, T], H_{r}\right)$, we have

$$
E\left|\eta_{2} \int_{0}^{s}\left\langle h_{i}^{p}, L(u) X_{n}(u)\right\rangle_{p} d u\right| \leq C \text { and } E\left|\eta_{2} \int_{0}^{s}\left\langle h_{i}^{p},\left(A(u) X_{n}(u)\right) e_{j}\right\rangle_{p} d u\right| \leq C
$$

where the constant C is independent of n and s.
By the weak convergence of X_{n} to X in $L^{2}\left(\Omega \times[0, T], H_{r}\right)$, it follows that

$$
\begin{aligned}
& E \eta_{2} \int_{0}^{s}\left\langle h_{i}^{p}, L(u) X_{n}(u)\right\rangle_{p} d u=E \eta_{2} \int_{0}^{s}\left\langle L^{*}(u) h_{i}^{p}, X_{n}(u)\right\rangle_{r} d u \\
& \quad \rightarrow E \eta_{2} \int_{0}^{s}\left\langle L^{*}(u) h_{i}^{p}, X_{u}\right\rangle_{r} d u=E \eta_{2} \int_{0}^{s}\left\langle h_{i}^{p}, L(u) X_{u}\right\rangle_{p} d u
\end{aligned}
$$

Now, by the Lebesgue DCT,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} E \int_{0}^{T} \eta_{1}(s) \eta_{2}(\omega) \int_{0}^{s}\left\langle h_{i}^{p}, P_{n} L(u) X_{n}(u)\right\rangle_{p} d u d s \\
=E \int_{0}^{T} \eta_{1}(s) \eta_{2}(\omega) \int_{0}^{s}\left\langle h_{i}^{p}, L(u) X_{u}\right\rangle_{p} d u d s
\end{gathered}
$$

Let $A^{j}(u): H_{r} \rightarrow H_{p}$ be defined by

$$
A^{j}(u) h_{k}^{r}=\left(A(u) h_{k}^{r}\right)\left(e_{j}\right)
$$

Repeating the above arguments with the operator A^{j} replacing L proves that, for all i, j,

$$
\lim _{n \rightarrow \infty} E \eta_{2} \int_{0}^{T} \eta_{1}(u)\left\langle h_{i}^{p},\left(A(u) X_{n}(u)\right) e_{j}\right\rangle_{p} d u=E \eta_{2} \int_{0}^{T} \eta_{1}(u)\left\langle h_{i}^{p},\left(A(u) X_{u}\right) e_{j}\right\rangle_{p} d u
$$

Thus, $\left\langle h_{i}^{p},\left(A(u) X_{n}(u)\right) e_{j}\right\rangle_{p} \rightarrow\left\langle h_{i}^{p},\left(A(u) X_{u}\right) e_{j}\right\rangle_{p}$ weakly in $L^{2}(\Omega \times[0, T])$. By Doob's inequality, with a one-dimensional Brownian motion β_{t} and a stochastically integrable predictable process $\xi(t)$, we have

$$
E \int_{0}^{T}\left|\int_{0}^{s} \xi(u) d \beta_{u}\right|^{2} d s \leq T E\left(\sup _{0 \leq s \leq T}\left|\int_{0}^{s} \xi(u) d \beta_{u}\right|^{2}\right) \leq T E \int_{0}^{T}|\xi(s)|^{2} d s
$$

which implies that the stochastic integral is a continuous linear operator from $L^{2}(\Omega \times$ $[0, T], \mathcal{P})$ to $L^{2}\left(\Omega \times[0, T], \mathcal{F}_{T} \otimes \mathcal{B}[0, T]\right)$ (here, \mathcal{P} is the predictable σ-field, and \mathcal{B} is the Borel σ-field). By Theorem 15, [DS], Ch. V, $\S 4$, it is also continuous in the weak topologies, so that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} E \int_{0}^{T} \eta_{1}(s) \eta_{2}(\omega) \sum_{j=1}^{d} \int_{0}^{s}\left\langle h_{i}^{p},\left(P_{n} A(u) X_{n}(u)\right) e_{j}\right\rangle_{p} d B_{u}^{j} d s \\
& \quad=E \int_{0}^{T} \eta_{1}(s) \eta_{2}(\omega) \sum_{j=1}^{d} \int_{0}^{s}\left\langle h_{i}^{p},\left(A(u) X_{u}\right) e_{j}\right\rangle_{p} d B_{u}^{j} d s
\end{aligned}
$$

To complete the proof, we multiply Eq. (2.6) by $\eta(s)$ and integrate w.r.t. $d P \times d t$. Then, by letting $n \rightarrow \infty$, we get, for a.e. $(\omega, t), d P \times d t$,

$$
\left\langle h_{i}^{p}, X_{t}\right\rangle_{p}=\left\langle h_{i}^{p}, \phi\right\rangle_{p}+\int_{0}^{t}\left\langle h_{i}^{p}, L(u) X_{s}\right\rangle_{p} d s+\sum_{j=1}^{d} \int_{0}^{t}\left\langle h_{i}^{p},\left(A(u) X_{s}\right) e_{j}\right\rangle_{p} d B_{s}^{j}
$$

The process X_{t} has values in H_{r}, with $X \in L^{2}\left(\Omega \times[0, T], H_{r}\right) \subset L^{2}\left(\Omega \times[0, T], H_{p}\right)$, and satisfies Eq. (2.2) in H_{p} a.e. $d P \times d t$. Thus, X_{t} is a strong H_{r}-valued solution of Eq. (2.1) in H_{p}.

The continuity of $\left\{X_{t}\right\}_{t \leq T}$ with respect to the initial condition follows from (2.4).
Example. The space \mathcal{S} of smooth rapidly decreasing functions on R^{d} with the topology given by L. Schwartz is nuclear. Let S_{p} be the completion of \mathcal{S} with respect to the Hilbertian norms $\|f\|_{p}^{2}=\sum_{|k|=0}^{\infty}(2|k|+d)^{2 p}\left\langle f, h_{k}\right\rangle_{L^{2}\left(R^{d}\right)}, \quad f, g \in \mathcal{S}$, where $\left\{h_{k}\right\}_{k=1}^{\infty}$ is an ONB in $L^{2}\left(R^{d}, d x\right)$ given by Hermite functions. Then $\mathcal{S}^{\prime}=\bigcup_{p>0} S_{-p}$. Let $\left\{\sigma_{i j}(t)\right\}_{t \geq 0}$ and $\left\{b_{i}(t)\right\}_{t \geq 0}$ be bounded progressively measurable processes. Define, for $\varphi \in \mathcal{S}^{\prime}$,

$$
\begin{aligned}
L(t, \omega) \varphi & :=\frac{1}{2} \sum_{i, j=1}^{d}\left(\sigma \sigma^{T}\right)_{i j}(t, \omega) \partial_{i j}^{2} \varphi-\sum_{i=1}^{d} b_{i}(t, \omega) \partial_{i} \varphi \\
A_{i}(t, \omega) \varphi & :=\sum_{j=1}^{d} \sigma_{j i}(t, \omega) \partial_{j} \varphi
\end{aligned}
$$

and let $A(t, \omega) \varphi \equiv\left(A_{1} \varphi(t, \omega), \ldots A_{d} \varphi(t, \omega)\right)$. Then A and L satisfy the conditions for existence and uniqueness of the solution in Theorem 1 (for details, see Gawarecki et al. [2]). Specifically, condition $[\mathrm{M}(\mathrm{r})]$ holds true for any $r \in R$, and condition $[\mathrm{M}(\mathrm{p}, \mathrm{q})]$ is satisfied for $q \leq p-1$. It is easy to verify using the recurrence properties of Hermite polynomials that condition $[\mathrm{B}(\mathrm{r}, \mathrm{p})]$ is valid for any $p \leq r-1$. Hence, setting $r \geq p+1$, and $q \leq p-1$, for any $p \in R$, and $\phi \in L^{2}\left(\Omega, S_{r}\right)$, Eq. (2.1) has a unique continuous S_{r}-valued strong solution in S_{p} which is continuous in $L^{2}\left(\Omega, C\left([0, T], S_{q}\right)\right)$ with respect to $\phi_{n} \rightarrow \phi$ in $L^{2}\left(\Omega, S_{p}\right)$.

Consider a special case where $A \varphi=\left(-\partial_{1} \varphi, \ldots,-\partial_{d} \varphi\right)$ and $L \varphi=\frac{1}{2} \sum_{i=1}^{d} \partial_{i}^{2} \varphi$. The unique solution of Eq. (2.1) with the initial condition δ_{x} is $\delta_{B_{t}}$, where $P\left(B_{0}=x\right)=1$. This follows from the Itô formula in [8],

$$
\rho_{B_{t}} \phi=\rho_{B_{0}} \phi-\sum_{i=1}^{d} \int_{0}^{t} \partial_{i}\left(\rho_{B_{s}} \phi\right) d B_{s}^{i}+\frac{1}{2} \sum_{i=1}^{d} \int_{0}^{t} \partial_{i}^{2}\left(\rho_{B_{s}} \phi\right) d s .
$$

Here, for $x \in R^{d}, \rho_{x}$ denotes the translation operator on R^{d}. If $\phi \in \mathcal{S}^{\prime}$, then $\left\langle f, \rho_{x} \phi\right\rangle:=$ $\left\langle\rho_{-x} f, \phi\right\rangle=\langle f(\cdot+x), \phi\rangle$ for $f \in \mathcal{S}$. For each $t, \rho_{B_{t}} \phi$ denotes the \mathcal{S}^{\prime}-valued random variable $\omega \rightarrow \rho_{B_{t}(\omega)} \phi$. Then $\left\{\rho_{B_{t}} \phi\right\}_{t \geq 0}$ is an $\mathcal{S}_{-p^{-}}$valued stochastic process for some $p>0$, as shown in [8]. Taking $\phi=\delta_{0}$ gives $\rho_{B_{t}} \phi=\delta_{B_{t}}$.

However, it is easy to verify that the coefficients A and L do not satisfy the coercivity inequality in [6], and they violate the linear growth condition in [5].

Bibliography

1. N. Dunford, J.T. Schwarz, Linear Operators. Part I: General Theory, Interscience Publishers, New York, 1958.
2. L. Gawarecki, V. Mandrekar, B. Rajeev, The monotonicity inequality for a pair of differential operators, Infin. Dimens. Anal. Quantum Probab. Relat. Top. (submitted).
3. I.I. Gikhman, A.V. Skorokhod, The Theory of Stochastic Processes, Springer, New York, 1974.
4. K. Itô, Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, CBMS-NSF 47 (1984).
5. G. Kallianpur, I. Mitoma, R.L. Wolpert, Diffusion equations in dual of nuclear spaces,, Stoch. Stoch. Reports 29 (1990), 295-329.
6. N.V. Krylov, B.L. Rozovskii, Stochastic evolution equations, Itogi Nauki i Tekhniki, vol. 14, Trans. by Plenum Publ. Corpor., 1981, pp. 1233-1277.
7. E. Pardoux, Stochastic Partial Differential Equations and Filtering of Diffusion Processes, Stochastics 3 (1979), 127-167.
8. B. Rajeev, From Tanaka formula to Itô formula: distributions, tensor products and local times,, Seminaire de Probabilites XXXV, LNM, vol. 1755, Springer, Berlin, 2001, pp. 371-389.
9. B. Rozovskii, Stochastic Evolution Systems: Linear Theory and Applications to Non-Linear Filtering, Kluver Academic Publishers, Boston, 1983.

Department of Mathematics, Kettering University, 1700 W. Third Ave., Flint, MI 48504, U.S.A.

E-mail: lgawarec@kettering.edu
Department of Statistics and Probability, Michigan State University, East Lansing, MI, U.S.A.

E-mail: mandrekar@stt.msu.edu
Stat. Math. Unit, Indian Statistical Institute, Bangalore, India
E-mail: brajeev@isibang.ac.in

[^0]: 2000 AMS Mathematics Subject Classification. Primary 60H15.
 Key words and phrases. Infinite dimensional stochastic differential equations, multi-Hilbertian spaces, existence, uniqueness, monotonicity.

