UDC 519.21

ALEXANDER V. IVANOV

ASYMPTOTIC PROPERTIES OF L_{P}-ESTIMATORS

Abstract

Some sufficient conditions for consistency and asymptotic normality of a non-linear regression parameter L_{p}-estimator are presented for a continuous time regression model with Gaussian stationary noise possessing the long-range dependence or weak dependence property.

Introduction

Consider a regression model

$$
X(t)=g(t, \theta)+\varepsilon(t), t \geq 0
$$

where $g:[0, \infty) \times \Theta^{c} \rightarrow \mathbb{R}^{1}$ is a continuous function, Θ^{c} is a closure in \mathbb{R}^{m} of an open bounded convex set $\Theta, \theta \in \Theta$. It is supposed that
$\mathbf{A}_{1} \cdot \varepsilon(t), t \in \mathbb{R}^{1}$ is a real measurable mean-square continuous stationary Gaussian process defined on the complete probability space $(\Omega, \mathcal{F}, P), E \varepsilon(0)=0$.

Definition. Any random variable (r.v.) $\hat{\theta}_{T}$ having a property

$$
Q_{p T}\left(\hat{\theta}_{T}\right)=\inf _{\tau \in \Theta^{c}} Q_{p T}(\tau), Q_{p T}(\tau)=\int_{0}^{T}|X(t)-g(t, \tau)|^{p} d t, 1 \leq p<\infty
$$

is said to be an L_{p}-estimator of the unknown $\theta \in \Theta$.
It follows from [1-3] that our assumptions provide the existence of the L_{p}-estimator.
L_{p}-estimators belong to a wide class of M-estimators [4] and use the loss function $\rho(x)=|x|^{p}$. Least squares estimators $(p=2)$ and least moduli estimators $(p=1)$ are the most studied L_{p}-estimators [5,6]. The discription of the asymptotic properties of L_{p}-estimators for $p \in(1,2)$ is a challenging theoretical problem. For linear and nonlinear regression models with discrete time and independent identically distributed observation errors, the consistency and asymptotic normality of l_{p}-estimators were considered in $[4$, 6-10].

1. Consistency of L_{p}-estimators

Suppose $g(t, \cdot) \in C^{1}\left(\Theta^{c}\right) ; g_{i}(t, \theta)=\frac{\partial}{\partial \theta_{i}} g(t, \theta)$;

$$
\begin{gathered}
d_{i T}^{2}(\theta)=\int_{0}^{T} g_{i}^{2}(t, \theta) d t, i=1, \ldots, m ; d_{T}^{2}(\theta)=\operatorname{diag}\left(d_{i T}^{2}(\theta)\right)_{i=1}^{m} \\
\underline{\lim _{T \rightarrow \infty}} T^{-1} d_{i T}^{2}(\theta)>0, i=1, \ldots, m
\end{gathered}
$$

[^0]Let $U_{T}(\theta)=T^{-\frac{1}{2}} d_{T}(\theta)(\Theta-\theta) ; \widehat{u}_{T}=T^{-\frac{1}{2}} d_{T}(\theta)\left(\widehat{\theta}_{T}-\theta\right) ; f(t, u)=g\left(t, \theta+T^{\frac{1}{2}} d_{T}^{-1}(\theta) u\right) ;$

$$
\begin{gathered}
f_{i}(t, u)=g_{i}\left(t, \theta+T^{\frac{1}{2}} d_{T}^{-1}(\theta) u\right), \Phi_{p T}\left(u_{1}, u_{2}\right)=\int_{0}^{T}\left|f\left(t, u_{1}\right)-f\left(t, u_{2}\right)\right|^{p} d t \\
\widetilde{Q}_{p T}(u)=Q_{p T}\left(\theta+T^{\frac{1}{2}} d_{T}^{-1}(\theta) u\right), u \in U_{T}^{c}(\theta) \\
v(r)=\left\{u \in \mathbb{R}^{m}:\|u\|<r\right\}, \mu_{p}=E|\varepsilon(0)|^{p}
\end{gathered}
$$

\mathbf{B}_{1}. For any $R>0$, there exist $k^{i}(R)<+\infty, i=1, \ldots, m$ such that

$$
\sup _{u \in U_{T}^{c}(\theta) \cap v^{c}(R)} \sup _{t \in[0, T]}\left|g_{i}\left(t, \theta+T^{\frac{1}{2}} d_{T}^{-1}(\theta) u\right)\right| d_{i T}^{-1}(\theta) \leq k^{i}(R) T^{-1 / 2}
$$

\mathbf{C}_{1} (contrast condition). For any $r>0$, there exists $\Delta(r)>0$ such that

$$
\begin{equation*}
\inf _{u \in U_{T}^{c}(\theta) \backslash v(r)} T^{-\frac{1}{p}} E \widetilde{Q}_{p T}^{\frac{1}{p}}(u) \geq T^{-\frac{1}{p}} E \widetilde{Q}_{p T}^{\frac{1}{p}}(0)+\Delta(r), \tag{1}
\end{equation*}
$$

and $\Delta\left(R_{0}\right)=\rho_{0} \mu_{p}^{\frac{1}{p}}+\Delta_{0}$ for some $R_{0}>0$, where $\rho_{0}>2$ and $\Delta_{0}>0$ are some numbers.
$\mathbf{A}_{2} . \varepsilon(t), t \in \mathbb{R}^{1}$, is a strongly dependent process, namely: $B(t)=E \varepsilon(t) \varepsilon(0)=$ $\frac{L(|t|)}{|t|^{\alpha}}, \quad 0<\alpha<1$, where $L(t), t \in[0, \infty)$ is a function slowly varying at infinity, $B(0)=1$.
$\mathbf{A}_{3} . B \in L_{1}\left(\mathbb{R}^{1}\right), B(0)=1$.
Theorem 1. For any $r>0$ as $T \rightarrow \infty$:

1) under assumptions $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{B}_{1}$, and \mathbf{C}_{1},

$$
\begin{equation*}
P\left\{\left\|\widehat{u}_{T}\right\| \geq r\right\}=O(B(T)) \tag{2}
\end{equation*}
$$

2) under assumptions $\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{B}_{1}$, and \mathbf{C}_{1},

$$
\begin{equation*}
P\left\{\left\|\widehat{u}_{T}\right\| \geq r\right\}=O\left(T^{-1}\right) \tag{3}
\end{equation*}
$$

We will give an outline of the proof of statement (2). The proof of (3) is similar. Let

$$
h_{T}(\theta, u)=\widetilde{Q}_{p T}^{\frac{1}{p}}(u)-E \widetilde{Q}_{p T}^{\frac{1}{p}}(u)
$$

By the definition of L_{p}-estimator,

$$
\widetilde{Q}_{p T}^{\frac{1}{p}}\left(\widehat{u}_{T}\right) \leq h_{T}(\theta, 0)+E \widetilde{Q}_{p T}^{\frac{1}{p}}(0) \quad \text { a.s. }
$$

Therefore, by condition \mathbf{C}_{1} for $\gamma \in(0,1)$, one has

$$
\begin{align*}
P\left\{\left\|\widehat{u}_{T}\right\| \geq r\right\}= & P\left\{\left\|\widehat{u}_{T}\right\| \geq r, \widetilde{Q}_{p T}^{\frac{1}{p}}\left(\widehat{u}_{T}\right) \leq h_{T}(\theta, 0)+E \widetilde{Q}_{p T}^{\frac{1}{p}}(0)\right\} \leq \\
& \leq P\left\{\inf _{u \in U_{T}^{c}(\theta) \backslash v(r)} T^{-\frac{1}{p}} \widetilde{Q}_{p T}^{\frac{1}{p}}(u) \leq h_{T}(\theta, 0)+E \widetilde{Q}_{p T}^{\frac{1}{p}}(0)\right\} \leq \\
\leq & P\left\{-\inf _{u \in U_{T}^{C}(\theta) \backslash v(r)} T^{-\frac{1}{p}} h_{T}(\theta, u)+T^{-\frac{1}{p}} h_{T}(\theta, 0) \geq \Delta(r)\right\} \leq \\
\leq & P\left\{\sup _{u \in U_{T}^{c}(\theta) \backslash v(r)} T^{-\frac{1}{p}}\left|h_{T}(\theta, u)\right| \geq \gamma \Delta(r)\right\}+ \\
& +P\left\{T^{-\frac{1}{p}} h_{T}(\theta, 0) \geq(1-\gamma) \Delta(r)\right\}= \\
= & P_{1}+P_{2} . \tag{4}
\end{align*}
$$

To estimate P_{2}, , we set

$$
\xi(t)=|\varepsilon(t)|^{p}-\mu_{p}, \eta_{T}=T^{-1} \int_{0}^{T} \xi(t) d t
$$

Using the expansion of the function $|x|^{p}$ in the Hilbert space $L_{2}\left(R^{1}, \varphi(x) d x\right), \varphi(x)=$ $(2 \pi)^{-\frac{1}{2}} e^{-\frac{x^{2}}{2}}$, in Hermite polynomials, one can obtain the inequality (see, for example, $[5,11])$

$$
\begin{equation*}
E \eta_{T}^{2} \leq D \xi(0) \frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T} B^{2}(t-s) d t d s \tag{5}
\end{equation*}
$$

Applying the standard argument $[11,12]$, it can be shown from \mathbf{A}_{2} and (5) that $\eta_{T} \underset{T \rightarrow \infty}{\rightarrow} 0$ a.s. If so, then

$$
\begin{equation*}
\zeta_{T}=T^{-\frac{1}{p}}\left(\int_{0}^{T}|\varepsilon(t)|^{p} d t\right)^{\frac{1}{p}} \underset{T \rightarrow \infty}{\rightarrow} \mu_{p}^{\frac{1}{p}} \text { a.s. } \tag{6}
\end{equation*}
$$

On the other hand, $E \zeta_{T}^{p}=\mu_{p}$ for any T. Therefore ([13], p. 105),

$$
\begin{equation*}
E \zeta_{T}=E T^{-\frac{1}{p}} \widetilde{Q}_{p T}^{\frac{1}{p}}(0) \underset{T \rightarrow \infty}{\rightarrow} \mu_{p}^{\frac{1}{p}} \tag{7}
\end{equation*}
$$

and, for $T>T_{0}$ and some $0<C_{0}<(1-\gamma) \Delta(r)$,

$$
\begin{align*}
P_{2}=\left\{\zeta_{T} \geq\right. & \left.(1-\gamma) \Delta(r)+E \zeta_{T}\right\} \leq\left\{\zeta_{T} \geq(1-\gamma) \Delta(r)+\mu_{p}^{\frac{1}{p}}-C_{0}\right\}= \\
& =\left\{\eta_{T} \geq\left(\mu_{p}^{\frac{1}{p}}+(1-\gamma) \Delta(r)-C_{0}\right)^{p}-\mu_{p}\right\}=O\left(B^{2}(T)\right) \tag{8}
\end{align*}
$$

as follows from (5).
To estimate P_{1}, one obtains, by the triangle inequality,

$$
\begin{equation*}
\Phi_{p T}^{\frac{1}{p}}(0, u)-\widetilde{Q}_{p T}^{\frac{1}{p}}(0) \leq \widetilde{Q}_{p T}^{\frac{1}{p}}(u) \leq \Phi_{p T}^{\frac{1}{p}}(0, u)+\widetilde{Q}_{p T}^{\frac{1}{p}}(0) \tag{9}
\end{equation*}
$$

and, taking the expectations,

$$
\begin{equation*}
-E \widetilde{Q}_{p T}^{\frac{1}{p}}(0)-\Phi_{p T}^{\frac{1}{p}}(0, u) \leq-E \widetilde{Q}_{p T}^{\frac{1}{p}}(u) \leq E \widetilde{Q}_{p T}^{\frac{1}{p}}(0)-\Phi_{p T}^{\frac{1}{p}}(0, u) \tag{10}
\end{equation*}
$$

The addition of inequalities (9) and (10) leads to the majorant

$$
|h(\theta, u)| \leq \widetilde{Q}_{p T}^{\frac{1}{p}}(0)+E \widetilde{Q}_{p T}^{\frac{1}{p}}(0)
$$

Therefore,

$$
\begin{equation*}
P_{1} \leq P\left\{\zeta_{t}+E \zeta_{T} \geq \gamma \Delta(r)\right\} \tag{11}
\end{equation*}
$$

Having taken in (11) $r=R_{0}$ from condition \mathbf{C}_{1} and $\gamma=\frac{2}{\rho_{0}}$, we arrive at the inequality

$$
\begin{equation*}
P_{1} \leq P\left\{\zeta_{T} \geq\left(\mu_{p}^{\frac{1}{p}}-E \zeta_{T}\right)+\mu_{p}^{\frac{1}{p}}+\frac{2 \Delta_{0}}{\rho_{0}}\right\} \tag{12}
\end{equation*}
$$

Relation (6) shows that, for $T>T_{0}$,

$$
\begin{equation*}
P_{1} \leq P\left\{\zeta_{T} \geq \mu_{p}^{\frac{1}{p}}+\frac{\Delta_{0}}{\rho_{0}}\right\}=P\left\{\eta_{T} \geq\left(\mu_{p}^{\frac{1}{p}}+\frac{\Delta_{0}}{\rho_{0}}\right)^{p}-\mu_{p}\right\}=O\left(B^{2}(T)\right) \tag{13}
\end{equation*}
$$

Taking bound (8) for $r=R_{0}$ and bound (13) into account, one has, for any $r \in\left(0, R_{0}\right)$,

$$
\begin{align*}
P\left\{\left\|\widehat{u}_{T}\right\| \geq r\right\} & \leq P\left\{R_{0} \geq\left\|\widehat{u}_{T}\right\| \geq r\right\}+P\left\{\left\|\widehat{u}_{T}\right\| \geq R_{0}\right\} \tag{14}\\
& =P\left\{R_{0} \geq\left\|\widehat{u}_{T}\right\| \geq r\right\}+O\left(B^{2}(T)\right) .
\end{align*}
$$

As far as

$$
\begin{equation*}
\inf _{u \in U_{T}^{c}(\theta) \cap\left(v^{c}\left(R_{0}\right) \backslash v(r)\right)} T^{-\frac{1}{p}} E \widetilde{Q}_{p T}^{\frac{1}{p}}(u) \geq \inf _{\left.u \in U_{T}^{c}(\theta) \backslash v(r)\right)} T^{-\frac{1}{p}} E \widetilde{Q}_{p T}^{\frac{1}{p}}(u) \tag{15}
\end{equation*}
$$

condition \mathbf{C}_{1} is fulfilled also for the left-hand side of inequality (15). So, as previously, we obtain an inequality similar to (4) for $\gamma^{\prime} \in(0,1)$:

$$
\begin{gather*}
P\left\{R_{0} \geq\left\|\widehat{u}_{T}\right\| \geq r\right\} \leq P\left\{-\inf _{u \in U_{T}^{c}(\theta) \cap\left(v^{c}\left(R_{0}\right) \backslash v(r)\right)} T^{-\frac{1}{p}} h_{T}(\theta, u) \geq \gamma^{\prime} \Delta(r)\right\}+ \\
+P\left\{T^{-\frac{1}{p}} h_{T}(\theta, 0) \geq\left(1-\gamma^{\prime}\right) \Delta(r)\right\} \leq P_{3}+O\left(B^{2}(T)\right), \tag{16}\\
P_{3}=P\left\{\sup _{\sup _{u \in U_{T}^{c}(\theta) \cap v^{c}\left(R_{0}\right)}} T^{-\frac{1}{p}}\left|h_{T}(\theta, u)\right| \geq \gamma^{\prime} \Delta(r)\right\} .
\end{gather*}
$$

For any $\varepsilon>0, R>0$, condition \mathbf{B}_{1} yields the existence of $\delta=\delta(\varepsilon, R)>0$ such that

$$
\begin{equation*}
\sup _{u_{1}, u_{2} \in U_{T}^{c}(u) \cap v^{c}(R),\left\|u_{1}-u_{2}\right\|<\delta} T^{-1} \Phi_{p T}\left(u_{1}, u_{2}\right)<\varepsilon \tag{17}
\end{equation*}
$$

Let $F^{(1)}, \ldots, F^{(l)}$ be closed sets of diameters less than δ that corresponds to the number $R=R_{0}$ and $\varepsilon=\left(\frac{c_{1} \Delta(r) \gamma^{\prime}}{2}\right)^{p}$ from inequality (17), and let $c_{1} \in(0,1)$ be some number, $\bigcup_{i=1}^{l} F^{(i)}=v^{c}\left(R_{0}\right)$. If the points $u_{i} \in F^{(i)} \cap U_{T}^{c}(\theta), i=1, \ldots, l_{0}, l_{0} \leq l$ are fixed, then

$$
\begin{equation*}
P_{3} \leq \sum_{i=1}^{l_{0}} P\left\{\sup _{u_{u^{\prime}, u^{\prime \prime} \in F^{(i)} \cap U_{T}^{c}(\theta)}} T^{-\frac{1}{p}}\left|h_{T}\left(\theta, u^{\prime}\right)-h_{T}\left(\theta, u^{\prime \prime}\right)\right|+T^{-\frac{1}{p}}\left|h_{T}\left(\theta, u_{i}\right)\right| \geq \gamma^{\prime} \Delta(r)\right\} \tag{18}
\end{equation*}
$$

For $u^{\prime}, u^{\prime \prime} \in F^{(i)}$, one has, by inequality (17),

$$
\begin{aligned}
& T^{-\frac{1}{p}}\left|h_{T}\left(\theta, u^{\prime}\right)-h_{T}\left(\theta, u^{\prime \prime}\right)\right| \leq \\
& \quad \leq T^{-\frac{1}{p}}\left|\widetilde{Q}_{p T}^{\frac{1}{p}}\left(u^{\prime}\right)-\widetilde{Q}_{p T}^{\frac{1}{p}}\left(u^{\prime \prime}\right)\right|+T^{-\frac{1}{p}} E\left|\widetilde{Q}_{p T}^{\frac{1}{p}}\left(u^{\prime}\right)-\widetilde{Q}_{p T}^{\frac{1}{p}}\left(u^{\prime \prime}\right)\right| \leq \\
& \quad \leq 2 T^{-\frac{1}{p}} \Phi_{p T}^{\frac{1}{p}}\left(u^{\prime}, u^{\prime \prime}\right)<c_{1} \gamma^{\prime} \Delta(r)
\end{aligned}
$$

and

$$
\begin{equation*}
P_{3} \leq \sum_{i=1}^{l_{0}} P\left\{T^{-\frac{1}{p}}\left|h_{T}\left(\theta, u_{i}\right)\right| \geq\left(1-c_{1}\right) \gamma^{\prime} \Delta(R)\right\} \tag{19}
\end{equation*}
$$

For any $u \in v^{c}\left(R_{0}\right)$, one obtains further

$$
\begin{equation*}
\left|h_{T}(\theta, u)\right| \leq\left|\widetilde{Q}_{p T}^{\frac{1}{p}}(u)-\left(E \widetilde{Q}_{p T}(u)\right)^{\frac{1}{p}}\right|+\left(E \widetilde{Q}_{p T}(u)\right)^{\frac{1}{p}}-E \widetilde{Q}_{p T}^{\frac{1}{p}}(u)=a_{1}(u)+a_{2}(u) \tag{20}
\end{equation*}
$$

Taking the expectation of both parts of the inequality

$$
\begin{equation*}
\left|E \widetilde{Q}_{p T}^{\frac{1}{p}}(u)-\widetilde{Q}_{p T}(u)\right|^{\frac{1}{p}} \geq\left(E \widetilde{Q}_{p T}(u)\right)^{\frac{1}{p}}-\widetilde{Q}_{p T}^{\frac{1}{p}}(u) \tag{21}
\end{equation*}
$$

we derive the bound

$$
\begin{equation*}
T^{-\frac{1}{p}} a_{2}(u) \leq T^{-\frac{1}{p}} E\left|E \widetilde{Q}_{p T}^{\frac{1}{p}}(u)-\widetilde{Q}_{p T}(u)\right|^{\frac{1}{p}} \leq\left(T^{-2} D \widetilde{Q}_{p T}(u)\right)^{\frac{1}{2 p}} \tag{22}
\end{equation*}
$$

Let us use the notation

$$
\Delta f(t, u)=f(t, 0)-f(t, u), \quad \xi(t, u)=|\varepsilon(t)+\Delta f(t, u)|^{p}
$$

Then \mathbf{B}_{1} yields

$$
\begin{equation*}
\sup _{u \in U_{T}^{c}(\theta) \cap v^{c}\left(R_{0}\right)} \sup _{t \in[0, T]}|\Delta f(t, u)| \leq R_{0}\left\|k\left(R_{0}\right)\right\|, \tag{23}
\end{equation*}
$$

$k\left(R_{0}\right)=\left(k^{1}\left(R_{0}\right), \ldots, k^{q}\left(R_{0}\right)\right)$, and consequently,

$$
E \xi^{2}(t, u) \leq 2^{2 p-1}\left(\mu_{2 p}+\left(R_{0}\left\|k\left(R_{0}\right)\right\|\right)^{2 p}\right)=c_{2}<\infty
$$

Therefore,

$$
\begin{equation*}
\operatorname{cov}(\xi(t, u), \xi(s, u))=\sum_{m=1}^{\infty} \frac{C_{m}(t, u) C_{m}(s, u)}{m!} B^{m}(t-s) \tag{24}
\end{equation*}
$$

with

$$
C_{m}(t, u)=\int_{-\infty}^{\infty}|x+\Delta f(t, u)|^{p} H_{m}(x) \varphi(x) d x
$$

where $H_{m}(x), m \geq 1$, are Hermite polynomials.
With regard for the relation

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{C_{m}^{2}(t)}{m!}=D \xi(t, u) \leq c_{2} \tag{25}
\end{equation*}
$$

we arrive at the bound [11]

$$
\begin{align*}
T^{-2} D \widetilde{Q}_{p T}(u) & =T^{-2} \int_{0}^{T} \int_{0}^{T} \operatorname{cov}(\xi(t, u), \xi(s, u)) d t d s \leq \\
& \leq \sum_{m=1}^{\infty} \frac{1}{m!}\left(T^{-2} \int_{0}^{T} \int_{0}^{T} C_{m}^{2}(t, u) B^{m}(t-s) d t d s\right) \leq \\
& \leq c_{2} T^{-2} \int_{0}^{T} \int_{0}^{T} B(t-s) d t d s=O(B(T)), \tag{26}
\end{align*}
$$

and

$$
\begin{equation*}
T^{-\frac{1}{p}} a_{2}(u)=O\left(B^{\frac{1}{2 p}}(T)\right) \tag{27}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
T^{-\frac{1}{p}} a_{1}(u) \leq T^{-\frac{1}{p}}\left|\widetilde{Q}_{p T}(u)-E \widetilde{Q}_{p T}(u)\right|^{\frac{1}{p}} \tag{28}
\end{equation*}
$$

Due to (26)-(28) for any number $0<c_{3}<\left(1-c_{1}\right) \gamma^{\prime} \Delta(r)$ and $u \in v^{c}\left(R_{0}\right)$ for $T>T_{0}$,

$$
\begin{array}{r}
P\left\{T^{-\frac{1}{p}}\left|h_{T}(\theta, u)\right| \geq\left(1-c_{1}\right) \gamma^{\prime} \Delta(r)\right\} \leq P\left\{T^{-1}\left|\widetilde{Q}_{p T}(u)-E \widetilde{Q}_{p T}(u)\right| \geq c_{3}^{p}\right\} \leq \\
c_{3}^{-2 p} T^{-2} D \widetilde{Q}_{p T}(u)=O(B(T)) \tag{29}
\end{array}
$$

hence

$$
\begin{equation*}
P_{3}=O(B(T)) \tag{30}
\end{equation*}
$$

Relations (16) and (30) yield (2).
Sometimes, it is sufficient to check a simpler modification of condition \mathbf{C}_{1}. For example, if

$$
\begin{equation*}
\sup _{t \geq 0} \sup _{\tau_{1}, \tau_{2} \in \Theta^{c}}\left|g\left(t, \tau_{1}\right)-g\left(t, \tau_{2}\right)\right| \leq g_{0}<\infty \tag{31}
\end{equation*}
$$

then, to obtain (2) and (3) instead of (1), one can use the contrast inequality

$$
\begin{equation*}
\inf _{u \in U_{T}^{c}(\theta) \backslash v(r)} T^{-\frac{1}{p}}\left(E \widetilde{Q}_{p T}(u)\right)^{\frac{1}{p}} \geq \mu_{p}^{\frac{1}{p}}+\Delta(r) \tag{32}
\end{equation*}
$$

Assuming

$$
d_{i T}(\theta) \asymp T^{\frac{1}{2}}, i=1, \ldots, m
$$

one can take the normalization

$$
T^{-\frac{1}{2}} d_{T}(\theta)=\mathbb{I}_{m}
$$

without loss of generality. Then $U_{T}(\theta)=\Theta-\theta, \widetilde{Q}_{p T}(u)=Q_{p T}(\theta+u)$ and so on.
Instead of the differentiability of g and assumption \mathbf{B}_{1}, we suppose
\mathbf{B}_{2}. Inequality (31) is valid, and for any $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)$ such that

$$
\sup _{\tau_{1}, \tau_{2} \in \Theta^{c}:\left\|\tau_{1}-\tau_{2}\right\|<\delta} \frac{1}{T} \int_{0}^{T}\left|g\left(t, \tau_{1}\right)-g\left(t, \tau_{2}\right)\right|^{p} d t<\varepsilon
$$

Instead of \mathbf{C}_{1}, we assume
\mathbf{C}_{2} (contrast condition). For any $r>0$, there exists $\Delta(r)>0$ such that

$$
\inf _{u \in(\Theta-\theta) \backslash v(r)} T^{-1} \int_{0}^{T}(g(t, \theta+u)-g(t, \theta))^{2} d t \geq \Delta(r)
$$

Theorem 2. If Θ is a bounded set, then under assumptions $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{B}_{2}$, and \mathbf{C}_{2} for any $r>0$,

$$
P\left\{\left\|\hat{\theta}_{T}-\theta\right\| \geq r\right\}=O(B(T)) \text { as } T \rightarrow \infty
$$

A similar statement can be formulated for the process $\varepsilon(t), t \in \mathbb{R}^{1}$ with integrated covariance function.

To prove the theorem, one has to check contrast conditions \mathbf{C}_{1} or (32). They can be written now in the form of the following assumption:

For any $r>0$, there exists $\Delta^{*}(r)>0$ such that

$$
\inf _{\tau \in \Theta^{c}:\|\tau-\theta\| \geq r} T^{-1} E Q_{p T}(\tau) \geq \mu_{p}+\Delta^{*}(r)
$$

Write

$$
g_{0}(t)=|g(t, \theta)-g(t, \tau)|
$$

The validity of \mathbf{C}_{1} follows from the inequalities

$$
\begin{equation*}
T^{-1} E Q_{p T}(\tau)-\mu_{p} \geq \frac{p}{2} T^{-1} \int_{0}^{T} g_{0}^{2}(t) \int_{g_{0}(t)}^{\infty} x^{p} \varphi(x) d x d t \geq \frac{p}{2} G_{0} \Delta(r)=\Delta^{*}(r)>0 \tag{33}
\end{equation*}
$$

where $\|\tau-\theta\| \geq r, \Delta(r)$ is taken from \mathbf{C}_{2},

$$
G_{0}=\int_{g_{0}}^{\infty} x^{p} \varphi(x) d x, \varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}},
$$

and g_{0} is defined in (31).
In fact, inequality (33) is true for any bounded, even continuously differentiable density function on \mathbb{R}^{1} which is non-decreasing on $(-\infty, 0]$, and $\mu_{p}<\infty$ [6].

Suppose

$$
\begin{equation*}
g(t, \theta)=\sum_{i=1}^{m} g_{i}(t) \theta_{i} . \tag{34}
\end{equation*}
$$

Then $d_{i T}^{2}=\int_{0}^{T} g_{i}^{2}(t) d t, i=1, \ldots, m, d_{T}=\operatorname{diag}\left(d_{i T}\right)$. Condition \mathbf{B}_{1} is transformed into
\mathbf{B}_{3}. For some $k^{i}<+\infty, i=1, \ldots, m$,

$$
\max _{t \in[0, T]}\left|g_{i}(t)\right| d_{i T}^{-1} \leq k^{i} T^{-1 / 2}
$$

Set

$$
J_{T}^{i l}=d_{i T}^{-1} d_{l T}^{-1} \int_{0}^{T} g_{i}(t) g_{l}(t) d t, i, l=1, \ldots, m
$$

$J_{T}=\left(J_{T}^{i l}\right)_{i, l=1}^{m}$, and $\lambda_{\min }\left(J_{T}\right)$ is the least eigenvalue of a positive definite matrix J_{T}.
$\mathbf{B}_{4} . \lambda_{\min }\left(J_{T}\right) \geq \lambda_{*}>0$.
Theorem 3. Let the regression function g be of the form (34) and satisfy assumptions \mathbf{B}_{3} and \mathbf{B}_{4}. Then, for any $r>0$ as $T \rightarrow \infty$:

1) $P\left\{\left\|\widehat{u}_{T}\right\| \geq r\right\}=O(B(T))$, if the process $\varepsilon(t), t \in \mathbb{R}^{1}$, is subjected to $\mathbf{A}_{1}, \mathbf{A}_{2}$;
2) $P\left\{\left\|\widehat{u}_{T}\right\| \geq r\right\}=O\left(T^{-1}\right)$, if the process $\varepsilon(t)$, $t \in \mathbb{R}^{1}$, is subjected to $\mathbf{A}_{1}, \mathbf{A}_{3}$.

Outline the proof of 1). By the triangle inequality,

$$
\begin{equation*}
T^{-\frac{1}{p}} E \widetilde{Q}_{p T}^{\frac{1}{p}}(u) \geq T^{-\frac{1}{p}} \Phi_{p T}^{\frac{1}{p}}(u, 0)-T^{-\frac{1}{p}} E \widetilde{Q}_{p T}^{\frac{1}{p}}(0) \tag{35}
\end{equation*}
$$

Using (7), we conclude that condition \mathbf{C}_{1} will be fulfilled if
(i) there exists $R_{0}>0$ such that, for $\|u\| \geq R_{0}$ and $T>T_{0}$,

$$
\begin{equation*}
T^{-\frac{1}{p}} \Phi_{p T}^{\frac{1}{p}}(u, 0) \geq 2 \mu_{p}^{\frac{1}{p}}+\Delta\left(R_{0}\right) \tag{36}
\end{equation*}
$$

where $\Delta\left(R_{0}\right)$ has the same property as that in \mathbf{C}_{1};
(ii) for any $0<r<R_{0}$ and $r \leq\|u\|<R_{0}$,

$$
\begin{equation*}
T^{-\frac{1}{p}} E \widetilde{Q}_{p T}^{\frac{1}{p}}(u) \geq \mu_{p}^{\frac{1}{p}}+\Delta\left(r, R_{0}\right) \tag{37}
\end{equation*}
$$

for some $\Delta\left(r, R_{0}\right)>0$.
To check (36), we will use the representation

$$
\begin{equation*}
T^{-1} \Phi_{p T}(u, 0)=T^{-1} \int_{0}^{T} \frac{\left|\sum_{i=1}^{m} g_{i}(t) T^{\frac{1}{2}} d_{i T}^{-1} u_{i}\right|^{2}}{\left|\sum_{i=1}^{m} g_{i}(t) T^{\frac{1}{2}} d_{i T}^{-1} u_{i}\right|^{2-p}} d t \tag{38}
\end{equation*}
$$

It follows from \mathbf{B}_{3} that

$$
\begin{equation*}
\left|\sum_{i=1}^{m} g_{i}(t) T^{\frac{1}{2}} d_{i T}^{-1} u_{i}\right|^{2-p} \leq\left(\max _{1 \leq i \leq m} k^{i}\right)^{2-p} m^{\frac{2-p}{2}}\|u\|^{2-p} \tag{39}
\end{equation*}
$$

On the other hand, we have, by \mathbf{B}_{4},

$$
\begin{equation*}
T^{-1} \int_{0}^{T}\left|\sum_{i=1}^{m} g_{i}(t) T^{\frac{1}{2}} d_{i T}^{-1} u_{i}\right|^{2} d t=\sum_{i, l=1}^{m} J_{T}^{i l} u_{i} u_{l} \geq \lambda_{*}\|u\|^{2}, \tag{40}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
T^{-\frac{1}{p}} \Phi_{p T}^{\frac{1}{p}}(u, 0) \geq c_{4}\|u\| \tag{41}
\end{equation*}
$$

where

$$
c_{4}=\lambda_{*}^{\frac{1}{p}}\left(\max _{1 \leq i \leq m} k^{i}\right)^{\frac{p-2}{p}} \cdot m^{\frac{p-2}{2 p}} .
$$

It is clear from (41) that inequality (36) can be satisfied by the proper choice of $\|u\|$.

As follows from (7) and (27), condition (37) will be fulfilled for $R_{0}>\|u\| \geq r_{0}$, if

$$
\begin{equation*}
T^{-\frac{1}{p}}\left(E \widetilde{Q}_{p T}(u)\right)^{\frac{1}{p}} \geq \mu_{p}^{\frac{1}{p}}+\Delta_{1}\left(r, R_{0}\right) \tag{42}
\end{equation*}
$$

or

$$
\begin{equation*}
T^{-1} E \widetilde{Q}_{p T}(u) \geq \mu_{p}+\Delta_{2}\left(r, R_{0}\right) \tag{43}
\end{equation*}
$$

where $\Delta_{1}\left(r, R_{0}\right)$ and $\Delta_{2}\left(r, R_{0}\right)$ are some positive constants.
Similarly to (8),

$$
\begin{equation*}
T^{-1} E \widetilde{Q}_{p T}(u)-\mu_{p} \geq \frac{p}{2} T^{-1} \int_{0}^{T} \Delta^{2} f(t, u) \int_{|\Delta f(t, u)|}^{\infty} x^{p} \varphi(x) d x d t \tag{44}
\end{equation*}
$$

If $\|u\|<R_{0}$, then we have, by inequality (23),

$$
\begin{equation*}
\int_{|\Delta f(t, u)|}^{\infty} x^{p} \varphi(x) d x \geq \int_{R_{0}\left\|k\left(R_{0}\right)\right\|}^{\infty} x^{p} \varphi(x) d x=G_{0}>0 \tag{45}
\end{equation*}
$$

Thus, (44), (45), and (40) yield

$$
\begin{equation*}
T^{-1} E \widetilde{Q}_{p T}(u)-\mu_{p} \geq \frac{p}{2} G_{0} \lambda_{*} r^{2}=\Delta_{2}\left(r, R_{0}\right)>0 \tag{46}
\end{equation*}
$$

2. Asymptotic uniqueness of the

SOLUTION TO A SYSTEM OF NORMAL EQUATIONS
If $\rho(x)=|x|^{p}$, then $\rho^{\prime}(x)=\psi(x)=p|x|^{p-1} \operatorname{sgn} x, \rho^{\prime \prime}=\psi^{\prime}=p(p-1)|x|^{p-2}, x \neq 0$, and $\psi^{\prime}(0)=+\infty$.

The L_{p}-estimator $\hat{\theta}_{T}$ is a solution to the system of "normal" equations

$$
\begin{equation*}
\operatorname{grad}\left(\gamma T^{-1} Q_{p T}(\tau)\right)=0, \gamma=\left(E \psi^{\prime}(\varepsilon(0))\right)^{-1}>0 \tag{47}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{grad}\left(\gamma T^{-1} \widetilde{Q}_{p T}(u)\right)=0, u=T^{-\frac{1}{2}} d_{T}(\theta)(\tau-\theta) \tag{48}
\end{equation*}
$$

Assume $\Theta \subset \mathbb{R}^{m}$ to be an open bounded set and $g(t, \cdot) \in C^{2}\left(\Theta^{c}\right)$. Write

$$
g_{i l}(t, \theta)=\frac{\partial^{2}}{\partial \tau_{i} \partial \tau_{l}} g(t, \theta), d_{i l, T}^{2}(\theta)=\int_{0}^{T} g_{i l}^{2}(t, \theta) d t, i, l=1, \ldots, m
$$

\mathbf{B}_{5} :

1) $\sup _{t \in[0, T]} \sup _{\tau \in \Theta^{c}}\left|g_{i}(t, \tau)\right| d_{i T}^{-1}(\theta) \leq k^{i} T^{-\frac{1}{2}}$;
2) $\sup _{t \in[0, T]} \sup _{\tau \in \Theta^{c}}\left|g_{i l}(t, \tau)\right| d_{i l, T}^{-1}(\theta) \leq k^{i l} T^{-\frac{1}{2}}$;
3) $\sup _{\tau \in \Theta^{c}} d_{i l, T}(\tau) d_{i T}^{-1}(\theta) d_{l T}^{-1}(\theta) \leq \tilde{k}^{i l} T^{-\frac{1}{2}}$;
4) $T d_{i T}^{-2}(\theta) d_{l T}^{-2}(\theta) \int_{0}^{T}\left(g_{i l}\left(t, \theta+T^{\frac{1}{2}} d_{T}^{-1}(\theta) u\right)-g_{i l}(t, \theta)\right)^{2} d t \leq k_{i l}\|u\|^{2}, i, l=1, \ldots, m$.

Theorem 4. Suppose $p \in\left(\frac{3}{2}, 2\right)$. Then, under assumptions $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{B}_{4}, \mathbf{B}_{5}$, and \mathbf{C}_{1}, the system of equations (47) (or (48)) has a unique solution with probability $1-O(B(T))$ as $T \rightarrow \infty$.

The idea of the proof consists in the comparison of two matrices

$$
H_{T}(u)=\operatorname{Hessian}\left(\gamma T^{-1} \widetilde{Q}_{p T}(u)\right) \text { and } J_{T}(\theta)
$$

Using the inequality for symmetric matrices [14]

$$
\left|\lambda_{\min }\left(H_{T}(u)\right)-\lambda_{\min }\left(J_{T}(\theta)\right)\right| \leq m \cdot \max _{1 \leq i, l \leq m}\left|H_{T}^{i l}(u)-J_{T}^{i l}(\theta)\right|
$$

one can prove that $H_{T}(u)$ is a positive definite matrix in some neighborhood of zero with probability $1-O(B(T))$ as $T \rightarrow \infty$.

3. ASYMptotic normality of L_{p}-ESTIMATORS

Assume further that there exist the limits $\Lambda(\theta)=\lim _{T \rightarrow \infty} J_{T}^{-1}(\theta)$ and

$$
\sigma(\theta)=\lim _{T \rightarrow \infty} D_{T}^{-1}(\theta)\left(\int_{0}^{1} \int_{0}^{1} \frac{\nabla g(t T, \theta) \nabla^{*} g(s T, \theta)}{|t-s|^{\alpha}}\right) D_{T}^{-1}(\theta)
$$

$D_{T}^{2}(\theta)=T^{-1} d_{T}^{2}(\theta)$.
It follows from Theorem 4 that one can apply the Brouwer fixed-point theorem to prove

Theorem 5. Under assumptions of Theorem 4, the normalized L_{p}-estimator

$$
B^{-\frac{1}{2}}(T) T^{-\frac{1}{2}} d_{T}(\theta)\left(\hat{\theta}_{T}-\theta\right)
$$

is asymptotically normal $N(0, \Lambda(\theta) \Sigma(\theta) \Lambda(\theta))$ r.v.
The details of the proof can be found in [11].
The results similar to Theorems 4 and 5 can be obtained for the process $\varepsilon(t), t \in \mathbb{R}^{1}$ satisfying the weak dependence condition.

Bibliography

1. Jennrich R.I., Asymptotic Properties of Non-Linear Least Squares Estimators, Ann. Math. Statist. 40 (1969), 633-643.
2. Pfanzagl J., On the measurability and consistency of minimum contrast estimates, Metrika 14 (1969), 249-272.
3. Schmetterer L., Einfuhrung in die Mathematische Statistik, Springer, Berlin, 1966.
4. Huber P., Robust Statistics, Wiley, New York, 1981.
5. Ivanov A.V., Leonenko N.N., Statistical Analysis of Random Fields, Kluwer, Dordrecht, 1989.
6. Ivanov A.V., Asymptotic Theory of Nonlinear Regression, Kluwer AP, Dordrecht, 1997.
7. Ronner A.E., Asymptotic Normality of p-Norm Estimators in Multiple Regression, Z. Wahrsch. verw. Gebiete 66 (1984), 613-620.
8. Ivanov A.V., On consistency of l_{α}-estimators of regression function parameter, Probability Theory and Mathematical Statistics 42 (1990), 42-48. (in Russian)
9. Bardadym T.O., Ivanov A.V., Asymptotic normality of l_{α}-estimators of nonlinear regression model parameter, DAN USSR A (1988), no. 8, 68-70. (in Russian)
10. Bardadym T.O., Ivanov A.V., On asymptotic normality of l_{α}-estimators of nonlinear regression model parameter, Probability Theory and Mathematical Statistics 60 (1999), 1-10. (in Ukrainian)
11. Ivanov A.V., Orlovsky I.V., L_{p}-estimates in nonlinear regression with long-range dependence, Theory of Stochastic Processes 7(23) (2002), no. 3-4, 38-49.
12. Cramer H., Leadbetter M.R., Stationary and Related Stochastic Processes, Wiley, New York, 1967.
13. Gikhman I.I., Skorokhod A.V., Introduction to the Theory of Random Processes, Nauka, Moscow, 1965. (in Russian)
14. Wilkinson J.H., The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.
[^1]
[^0]: 2000 AMS Mathematics Subject Classification. Primary 62J02; Secondary 62J99.
 Key words and phrases. L_{p}-estimator, regression model.

[^1]: National Technical University of Ukraine "KPI", 37, Peremogy Ave., Kyiv, Ukraine
 E-mail: ivanov@paligora.kiev.ua

