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RITA GIULIANO

THE ROSENBLATT COEFFICIENT OF

DEPENDENCE FOR m–DEPENDENT RANDOM

SEQUENCES WITH APPLICATIONS TO THE ASCLT

We prove a new bound for the Rosenblatt coefficient of the normalized partial sums
of a sequence of m-dependent random variables; this bound is used to prove a general
result, from which the Almost Sure Central Limit Theorem can be deduced.

Introduction

Let (Xn)n∈N be a sequence of normalized centered i. i. d random variables. Put

Sn = X1 + · · ·+Xn, Un =
Sn√
n
.

In paper [4], it was proved that

(1.1) sup
A,x

∣∣P (Up ∈ A, Uq ≤ x)− P (Up ∈ A)P (Uq ≤ x)
∣∣ ≤ H 4

√
p

q
,

where H is a suitable constant depending on the sequence (Xn)n∈N only and where the
sup is taken over A ∈ B(R) and x ∈ R.

It is well known that covariance inequalities of the Rosenblatt type such as (1.1) are
a crucial tool in the proof of Almost Sure Limit Theorems, see papers [2], [5], and [9] for
some literature on this topic.

Here, we deal with a more general case than the one, considered in [4], of a sequence
of i.i.d random variables. More precisely, the aim of the present paper is twofold: first,
in Theorem (2.3), we prove an inequality similar to (1.1) for the case of a sequence
of m–dependent random variables (Xn)n∈N. Note that we do not assume the identical
distribution of (Xn)n∈N; note, moreover, that the constant H in the second member of
our inequality (see the statement of Theorem (2.3)) is absolute.

Using the inequality of Theorem (2.3), we prove a general result [Theorem (2.5) of
this paper] which is, in some sense, a generalization of the ASCLT to some kind of Borel
sets A such that ∂A is not necessarily of Lebesgue measure 0. We deduce the ASCLT as
a corollary of Theorem (2.5) (Corollary (2.6)).

The paper is organized as follows: Section 2 contains the statements of the main
results [i.e. Theorem (2.3), Theorem (2.5), and Corollary (2.6)]. In Section 3, we prove
Theorem (2.3). In Section 4, we prove Theorem (2.5) and Corollary (2.6).

Throughout the whole paper, the symbol H denotes a constant which may not have
the same value in all cases.
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1. The main results

Let (Xn)n∈N be a sequence of m-dependent real centered random variables with

(2.1) sup
n
E[X2+δ

n ] < +∞

for a suitable δ ∈ (0, 1].
In the sequel, we put α = δ(6δ + 8)−1. Moreover, we set Sn = X1 + X2 + · · · + Xn,

vn = V arSn,

Un =
Sn√
vn

and assume that

(2.2) lim inf
n→∞

vn

n
> 0.

The first result proved in this paper is

(2.3) Theorem. There exists an absolute constant H such that, for every pair of inte-
gers p, q with p ≤ q, the following bound holds:

sup
A,x

∣∣P (Up ∈ A, Uq ≤ x)− P (Up ∈ A)P (Uq ≤ x)
∣∣ ≤ H( 4

√
vp

vq
+

1
qα

)
,

where the sup is taken over A ∈ B(R) and x ∈ R.

Theorem (2.3) will be used to prove the second main result of this paper [Theorem
(2.5) below].

For a fixed Borel set A ⊆ R, consider the two sequences (Tn) and (Wn) defined,
respectively, as

Tn =
∑n

i=1 1A(U2i)
n

; Wn =
∑n

i=1
1
i 1A(Ui)

logn
, n ≥ 1.

Put

(2.4) φ(n) =
vn

n
.

(2.5) Theorem. In addition to the hypotheses of Theorem (2.3), assume that the se-
quence (φ(n)) defined in (2.4) is not decreasing, and let A ⊆ R be a finite union of
intervals. Then, P–a.s. the two sequences (Tn)n≥1 and (Wn)n≥1 have the same limit
points as n→∞.

Denote, by λ, the Lebesgue measure on R and, by μ, the Gaussian measure on R, i.e.

μ(A) =
∫

A

1√
2π
e−x2/2 λ(dx), A ∈ B(R).

Theorem (2.5) has the following consequence:

(2.6) Corollary (ASCLT). There exists a P–null set Γ such that, for every ω ∈ Γc,
we have

lim
n→∞

∑n
i=1

1
i 1A(Ui)

logn
= μ(A)

for every Borel set A ⊆ R such that λ(∂A) = 0.
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2. The proof of Theorem (2.3)

We start with some preparatory results.
For every integer n ≥ 1, we put

Πn = sup
x∈R

∣∣∣P (Un ≤ x
)− Φ(x)

∣∣∣,
where Φ is the distribution function of the standard normal law. In [6], the following
Berry-Esseen-type result is proved:

(3.1) Theorem. Let (Xn)n∈N be a sequence of m-dependent random variables verifying
(2.1) and (2.2). Then, for every integer n,

Πn ≤ H

nα
,

where H is an absolute constant.

(3.2) Definition. The concentration function of a r.v. S is defined as

Q(ε) = sup
x∈R

P (x < S ≤ x+ ε), ε ∈ R
+.

In the sequel, we denote, by Qn, the concentration function of Un.
The following result gives an estimate of Qn. It is similar to the one given in [8] for a

sequence of i.i.d. random variables, but here the constant H is absolute (i.e. it doesn’t
depend on the sequence (Xn)n∈N).

(3.3) Lemma. There is an absolute constant H such that, for every ε ∈ R+,

Qn(ε) ≤ H
(
ε+

1
nα

)
.

Proof. Denoting the distribution function of Un by Fn, Theorem (3.1) yields

max
{∣∣Fn(x+ ε)− Φ(x+ ε)

∣∣, ∣∣Fn(x)− Φ(x)
∣∣} ≤ Πn ≤ H

nα
.

Hence,
P (x < Un ≤ x+ ε) = Fn(x + ε)− Fn(x)

≤ ∣∣Fn(x+ ε)− Φ(x+ ε)
∣∣+ ∣∣Fn(x) − Φ(x)

∣∣+ Φ(x+ ε)− Φ(x)

≤ H

nα
+

1√
2π

ε ≤ H
(
ε+

1
nα

)
.

The following lemma is stated in [1] without proof:

(3.4) Lemma. If S and T are random variables, then, for every pair of real numbers
a, b with b ≥ 0, we have

P
(
S + T ≤ a− b)− P (|T | > b

) ≤ P (S ≤ a)
≤ P (S + T ≤ a+ b

)
+ P
(|T | > b

)
.

Proof. The first inequality follows from the inclusion

{S + T ≤ a− b} ⊆ {S ≤ a} ∪ {|T | > b}.
The second inequality follows from the first one applied to the pair of random variables

S + T,−T and to the pair of numbers a+ b, b.
We now begin the proof of Theorem (2.3).
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Let p, q be two integers with p ≤ q; let (Yn)n∈N be an independent copy of (Xn)n∈N,
and put

Vq =
Y1 + · · ·Yp +Xp+1 + · · ·Xq√

vq
.

Put, moreover,

Z = Vq − Uq =
(Y1 −X1) + · · ·+ (Yp −Xp)√

vq
=

Rp√
vq
.

If we set
H = {Up ∈ A}, K = {Uq ≤ x},

our aim is to give a bound for |P (H ∩K)− P (H)P (K)|.
Let ε > 0 be any positive real number, and put

K1 = {Vq ≤ x− ε}, K2 = {Vq ≤ x+ ε}, F = {|Z| > ε}.
By Lemma (3.4) (applied to S = Uq, T = Z, a = x, b = ε), we can write

P (K1)− P (F ) ≤ P (K) ≤ P (K2) + P (F ).

Hence,

(3.5)

|P (H ∩K)−P (H)P (K)| ≤ max
{|P (H ∩K)−P (K1)P (H)+P (F )P (H)|,

|P (H ∩K)− P (K2)P (H)− P (F )P (H)|}
≤ max

{|P (H ∩K)−P (K1)P (H)|, |P (H ∩K)−P (K2)P (H)|}+ P (F ).

In what follows, we estimate the three quantities in the last member, i.e. |P (H ∩K)−
P (K1)P (H)|, |P (H ∩K)− P (K2)P (H)| and P (F ).

We start with P (F ). We have

(3.6) P (F ) = P (|Rp| > ε
√
vq) ≤

E
[|Rp|

]
ε
√
vq
≤ V ar1/2(Rp)

ε
√
vq

.

Now, since (Xn)n∈N and (Yn)n∈N are independent and have the same law,

(3.7) V ar(Rp) = 2V ar(Sp) = 2vp

.
From (3.6) and the (3.7), we conclude that

(3.8) P (F ) ≤ H

ε

√
vp

vq
.

We now pass to the terms |P (H ∩K)− P (K1)P (H)| and |P (H ∩K)− P (K2)P (H)|.
We give the details only for |P (H ∩ K) − P (K2)P (H)|, since the proof is identical for
the other quantity.

We need some more lemmas.

(3.9) Lemma. Let g be a Lipschitzian function defined on R, with Lipschitz constant
β. Then ∣∣E[g(Uq)]− E[g(Vq)]

∣∣ ≤ H β

√
vp

vq
.

Proof. Arguing as for relation (3.6) and using (3.7), we get∣∣E[g(Uq)]− E[g(Vq)]
∣∣ ≤ E[|g(Uq)− g(Vq)|

] ≤ β E[|Uq − Vq|]

= β
E[|Rp|]√

vq
≤ β V ar1/2(Rp)√

vq
≤ H β

√
vp

vq
.
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In the sequel, we denote, by Q̃q, the concentration function of Vq.

(3.10) Lemma. Let z ∈ R and g = 1(−∞,z]. Then, for every η > 0, we have∣∣E[g(Uq)]− E[g(Vq)]
∣∣ ≤ H

η

√
vp

vq
+Qq(η) + Q̃q(η).

Proof. Put

h(t) =
(

1 +
z − t
η

)
1(z,z+η](t), g̃(t) = g(t) + h(t).

Then g̃ is Lipschitzian with the Lipschitz constant 1/η. So, by Lemma (3.9),

(3.11)
∣∣E[g̃(Uq)]− E[g̃(Vq)]

∣∣ ≤ H

η

√
vp

vq
.

On the other hand, h has support contained in (z, z+ η] and is bounded by 1. Hence,
we have trivially

(3.12)
∣∣E[h(Uq)− h(Vq)]

∣∣ ≤ Qq(η) + Q̃q(η).

Now, recalling that g = g̃ − h, we can write∣∣E[g(Uq)]− E[g(Vq)]
∣∣ = ∣∣E[(g̃ − h)(Uq)]− E[(g̃ − h)(Vq)]

∣∣
≤ ∣∣E[g̃(Uq)]− E[g̃(Vq)]

∣∣+ ∣∣E[h(Uq)− h(Vq)]
∣∣ ,

and the conclusion follows from relations (3.11) and (3.12).
The next lemma concerns the concentration function Q̃n of Vn. Its proof is iden-

tical to the proof of Lemma (3.3), since it is immediate to see that also the sequence
(Y1, Y2, . . . , Yp, Xp+1, . . . ) is m-dependent.

(3.13) Lemma. There is an absolute constant H such that, for every ε ∈ R
+,

Q̃n(ε) ≤ H
(
ε+

1
nα

)
.

We go back to the proof of the main result (2.3). Since H and K2 are independent,
we can write

|P (H ∩K)− P (K2)P (H)| = P (H)
∣∣P (K|H)− P (K2|H)

∣∣
= P (H)

∣∣EH [f(Uq)]− EH [g(Vq)]
∣∣,

where f = 1(−∞,x] and g = 1(−∞,x+ε]. We denote, by EH , the expectation with respect
to the probability law P (·|H). By summing and subtracting EH [g(Uq)], we see that the
above quantity is not greater than

(3.14)

P (H)
∣∣EH [g(Uq)]− EH [g(Vq)]

∣∣+ P (H)EH [|f − g|(Uq)]

= |E[g(Uq)]− E[g(Vq)]
∣∣+ E[|f − g|(Uq)]

≤ H

ε

√
vp

vq
+ 2Qq(ε) + Q̃q(ε),

using Lemma (3.10) and observing that the function f − g is bounded by 1 and has the
interval (x, x + ε] as its support.

Estimate (3.14) holds not only for |P (H ∩ K) − P (K2)P (H)|, but also for |P (H ∩
K)− P (K1)P (H)|.
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We now insert relations (3.8) and (3.14) into (3.5) and obtain

|P (H ∩K)− P (H)P (K)| ≤ H

ε

√
vp

vq
+ 2Qq(ε) + Q̃q(ε)

≤ H
(

1
ε

√
vp

vq
+ ε+

1
qα

)
by Lemmas (3.3) and (3.13). The above inequality holds for every ε > 0; by passing to
the infimum in ε, we get

|P (H ∩K)− P (H)P (K)| ≤ H
(

4

√
vp

vq
+

1
qα

)
.

4. The proof of Theorem (2.5) and the ASCLT

Let’s start with the proof of Theorem (2.5). It is sufficient to consider the case where
A is of the form A = (−∞, x]. The proof is split in two steps: (i) and (ii).

Put

(4.1) an = log2

(
1 +

1
n

)
.

(i) Here, we prove that (Sn) and (Hn) have the same limit points, where

Hn =
∑2n

i=1 ai1A(Ui)
n

;

This is equivalent to proving that the sequence

Tn −Hn +
a2n1A(U2n)

n
=
∑n

i=1 1A(U2i)−∑2n−1
i=1 ai1A(Ui)

n

tends to 0 as n→ ∞, P–a.s. Now, the numerator of the fraction in the second member
above can be written as

n∑
i=1

1A(U2i)−
n∑

i=1

2i−1∑
j=2i−1

aj1A(Uj) =
n∑

i=1

(
1A(U2i)−

2i−1∑
j=2i−1

aj1A(Uj)
)

=
n∑

i=1

2i−1∑
j=2i−1

aj

(
1A(U2i)− 1A(Uj)

)
(note that

∑2i−1
j=2i−1 aj = log2(2i)− log2(2i−1) = 1). Put now

(4.2) Ri =
2i−1∑

j=2i−1

aj

(
1A(U2i)− 1A(Uj)

)
.

Then we must prove that, P -a.s.

lim
n→∞

∑n
i=1Ri

n
= 0.

We write∑n
i=1Ri

n
=
∑n

i=1

(
Ri − E[Ri]

)
n

+
∑n

i=1E[Ri]
n

=
∑n

i=1 R̃i

n
+
∑n

i=1E[Ri]
n

and consider separately the two summands above.
For the first one, we apply the Gaal–Koksma law (see [8], p. 134) to the sequence

(R̃n)n:
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(4.3) Theorem (Gaal–Koksma Strong Law of Large Numbers). Let (Xn)n be a
sequence of centered random variables with finite variance. Suppose that there exists a
constant β > 0 such that, for all integers m ≥ 0, n ≥ 0,

(4.4) E

[( m+n∑
i=m+1

Xi

)2
]
≤ H((m+ n)β −mβ

)
,

for a suitable constant H independent of m and n. Then, for each ρ > 0,
n∑

i=1

Xi = O
(
nβ/2(logn)2+ρ

)
, P − a.s.

We need a bound for Cov(R̃i, R̃j). It is easily seen that, for i ≤ j,

Cov(R̃i, R̃j) =
2i−1∑

h=2i−1

2j−1∑
k=2j−1

ahak

(
C(2i, 2j)− C(h, 2j)− C(2i, k) + C(h, k)

)
,

where

C(p, q)=Cov(1A(Up), 1A(Uq))=P (Up∈ A,Uq ∈ A)− P (Up∈ A)P (Uq ∈ A).

By Theorem (2.3), there exists a constantH such that, for every p, q with 2i−1 ≤ p ≤ 2i

and 2j−1 ≤ q ≤ 2j ,

C(p, q) ≤ H
(

4

√
vp

vq
+

1
qα

)
= H

(
4

√
p φ(p)
q φ(q)

+
1
qα

)
≤ H

(p
q

)α

≤ H 2−α|i−j|,

so that we obtain

Cov(R̃i, R̃j) ≤ H 2−α|i−j|
2i−1∑

h=2i−1

ah

2j−1∑
k=2j−1

ak = H 2−α|i−j|.

In particular, E[R̃2
i ] ≤ H . In order to use the Gaal–Koksma law, we evaluate

E

[( m+n∑
i=m+1

R̃i

)2
]

= E

[ m+n∑
i=m+1

R̃2
i + 2

∑
m+1≤i<j≤m+n

R̃iR̃j

]

≤ Hn+ 2H
∑

m+1≤i<j≤m+n

2−α|i−j| = H n+ 2H
n−1∑
r=1

(n− r)(2α)−r

≤ H n+ 2H n

n−1∑
r=0

(2α)−r ≤ H n = H
[
(m+ n)−m].

Hence, the condition in the Gaal–Koksma law holds with β = 1, and we obtain
n∑

i=1

R̃i = O
(√
n(log n)2+ρ

)
, P − a.s.,

which implies

lim
n→∞

∑n
i=1 R̃i

n
= 0, P − a.s.

We now prove that

lim
n→∞

∑n
i=1E[Ri]
n

= 0.
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By Cesaro’s theorem, it will be sufficient to prove that

lim
n→∞E[Rn] = lim

n→∞

2n−1∑
j=2n−1

aj

(
P (U2n ∈ A)− P (Uj ∈ A)

)
= 0

[recall formula (4.2)]. This is immediate by the relation

2i−1∑
j=2i−1

aj = log2(2
i)− log2(2

i−1) = 1

and by Theorem (3.1), which implies

lim
n→∞P (Un ∈ A) = μ(A).

(ii) We now prove that (Hn) and (Wn) have the same limit points. First, observe that

Wn =

∑n
i=1

1
i log 21A(Ui)

log2 n
.

Since the sequences (an) [see definition (4.1)] and (bn), where bn = 1
n log 2 , are equiv-

alent as n→∞, this amounts to show that (Hn) has the same limit points as

Vn =
∑n

i=1 ai1A(Ui)
log2 n

.

This is easy since, for 2r ≤ n < 2r+1, we can write∑2r

i=1 ai1A(Ui)
r + 1

≤ Vn ≤
∑2r+1

i=1 ai1A(Ui)
r

.

We pass to the proof of the ASCLT [Corollary (2.6)]. Consider first a Borel set A of
the form A = (−∞, x]. The Gaal–Koksma law applied to the sequence

1A(U2i)− P (U2i ∈ A)

gives, P–a.s,

lim
n→∞

(
Tn −

∑n
i=1 P (U2i ∈ A)

n

)
= lim

n→∞

∑n
i=1

(
1A(U2i)− P (U2i ∈ A)

)
n

= 0.

by an argument similar to that used above for the sequence (R̃n) [see below for the
definition of (R̃n)]. On the other hand, again by Cesaro’s theorem and Theorem (3.1),
we have

lim
n→∞

∑n
i=1 P (U2i ∈ A)

n
= lim

n→∞P (U2n ∈ A) = μ(A).

Hence, we get

(4.5) lim
n→∞Tn = μ(A), P − a.s.

Now, the classical techniques (similar to those used in the Glivenko–Cantelli theorem;
see, e.g., [3], p. 59) yield that the P -null set Γ such that (4.5) holds for ω ∈ Γc is
independent of A, and it is henceforth immediate that, on Γc, (4.5) holds also for Borel
sets A that are finite unions of disjoint intervals.

For a general set A with λ(∂A) = μ(∂A) = 0, fix ε > 0 and let Aε and Bε be finite
unions of disjoint intervals such that

Aε ⊆ A ⊆ Bε and μ(Bε \Aε) < ε.
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Then ∑n
i=1 1Aε(U2i)

n
≤ Tn ≤

∑n
i=1 1Bε(U2i)

n
;

hence, by passing to the limit as n→∞, we get, for ω ∈ Γc,

(4.6) μ(Aε) ≤ lim inf
n→∞ Tn ≤ lim sup

n→∞
Tn ≤ μ(Bε);

since

(4.7) μ(Aε) ≤ μ(A) ≤ μ(Bε) ≤ μ(Aε) + ε

by passing to the limit as ε → 0 in (4.7) and then in (4.6), we deduce that limn→∞ Tn

exists for ω ∈ Γc and, moreover,

lim
n→∞Tn = μ(A), ω ∈ Γc.
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