THE ROSENBLATT COEFFICIENT OF DEPENDENCE FOR m-DEPENDENT RANDOM SEQUENCES WITH APPLICATIONS TO THE ASCLT

Abstract

We prove a new bound for the Rosenblatt coefficient of the normalized partial sums of a sequence of m-dependent random variables; this bound is used to prove a general result, from which the Almost Sure Central Limit Theorem can be deduced.

Introduction

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of normalized centered i. i. d random variables. Put

$$
S_{n}=X_{1}+\cdots+X_{n}, \quad U_{n}=\frac{S_{n}}{\sqrt{n}}
$$

In paper [4], it was proved that

$$
\begin{equation*}
\sup _{A, x}\left|P\left(U_{p} \in A, U_{q} \leq x\right)-P\left(U_{p} \in A\right) P\left(U_{q} \leq x\right)\right| \leq H \sqrt[4]{\frac{p}{q}} \tag{1.1}
\end{equation*}
$$

where H is a suitable constant depending on the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ only and where the sup is taken over $A \in B(\mathbb{R})$ and $x \in \mathbb{R}$.

It is well known that covariance inequalities of the Rosenblatt type such as (1.1) are a crucial tool in the proof of Almost Sure Limit Theorems, see papers [2], [5], and [9] for some literature on this topic.

Here, we deal with a more general case than the one, considered in [4], of a sequence of i.i.d random variables. More precisely, the aim of the present paper is twofold: first, in Theorem (2.3), we prove an inequality similar to (1.1) for the case of a sequence of m-dependent random variables $\left(X_{n}\right)_{n \in \mathbb{N}}$. Note that we do not assume the identical distribution of $\left(X_{n}\right)_{n \in \mathbb{N}}$; note, moreover, that the constant H in the second member of our inequality (see the statement of Theorem (2.3)) is absolute.

Using the inequality of Theorem (2.3), we prove a general result [Theorem (2.5) of this paper] which is, in some sense, a generalization of the ASCLT to some kind of Borel sets A such that ∂A is not necessarily of Lebesgue measure 0 . We deduce the ASCLT as a corollary of Theorem (2.5) (Corollary (2.6)).

The paper is organized as follows: Section 2 contains the statements of the main results [i.e. Theorem (2.3), Theorem (2.5), and Corollary (2.6)]. In Section 3, we prove Theorem (2.3). In Section 4, we prove Theorem (2.5) and Corollary (2.6).

Throughout the whole paper, the symbol H denotes a constant which may not have the same value in all cases.

[^0]
1. The main Results

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of m-dependent real centered random variables with

$$
\begin{equation*}
\sup _{n} E\left[X_{n}^{2+\delta}\right]<+\infty \tag{2.1}
\end{equation*}
$$

for a suitable $\delta \in(0,1]$.
In the sequel, we put $\alpha=\delta(6 \delta+8)^{-1}$. Moreover, we set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, $v_{n}=\operatorname{Var} S_{n}$,

$$
U_{n}=\frac{S_{n}}{\sqrt{v}_{n}}
$$

and assume that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{v_{n}}{n}>0 \tag{2.2}
\end{equation*}
$$

The first result proved in this paper is
(2.3) Theorem. There exists an absolute constant H such that, for every pair of integers p, q with $p \leq q$, the following bound holds:

$$
\sup _{A, x}\left|P\left(U_{p} \in A, U_{q} \leq x\right)-P\left(U_{p} \in A\right) P\left(U_{q} \leq x\right)\right| \leq H\left(\sqrt[4]{\frac{v_{p}}{v_{q}}}+\frac{1}{q^{\alpha}}\right)
$$

where the sup is taken over $A \in B(\mathbb{R})$ and $x \in \mathbb{R}$.
Theorem (2.3) will be used to prove the second main result of this paper [Theorem (2.5) below].

For a fixed Borel set $A \subseteq \mathbb{R}$, consider the two sequences $\left(T_{n}\right)$ and $\left(W_{n}\right)$ defined, respectively, as

$$
T_{n}=\frac{\sum_{i=1}^{n} 1_{A}\left(U_{2^{i}}\right)}{n} ; \quad W_{n}=\frac{\sum_{i=1}^{n} \frac{1}{i} 1_{A}\left(U_{i}\right)}{\log n}, \quad n \geq 1
$$

Put

$$
\begin{equation*}
\phi(n)=\frac{v_{n}}{n} \tag{2.4}
\end{equation*}
$$

(2.5) Theorem. In addition to the hypotheses of Theorem (2.3), assume that the sequence $(\phi(n))$ defined in (2.4) is not decreasing, and let $A \subseteq \mathbb{R}$ be a finite union of intervals. Then, P-a.s. the two sequences $\left(T_{n}\right)_{n \geq 1}$ and $\left(W_{n}\right)_{n \geq 1}$ have the same limit points as $n \rightarrow \infty$.

Denote, by λ, the Lebesgue measure on \mathbb{R} and, by μ, the Gaussian measure on \mathbb{R}, i.e.

$$
\mu(A)=\int_{A} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \lambda(d x), \quad A \in B(\mathbb{R})
$$

Theorem (2.5) has the following consequence:
(2.6) Corollary (ASCLT). There exists a P-null set Γ such that, for every $\omega \in \Gamma^{c}$, we have

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \frac{1}{i} 1_{A}\left(U_{i}\right)}{\log n}=\mu(A)
$$

for every Borel set $A \subseteq \mathbb{R}$ such that $\lambda(\partial A)=0$.

2. The proof of Theorem (2.3)

We start with some preparatory results.
For every integer $n \geq 1$, we put

$$
\Pi_{n}=\sup _{x \in \mathbb{R}}\left|P\left(U_{n} \leq x\right)-\Phi(x)\right|
$$

where Φ is the distribution function of the standard normal law. In [6], the following Berry-Esseen-type result is proved:
(3.1) Theorem. Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of m-dependent random variables verifying (2.1) and (2.2). Then, for every integer n,

$$
\Pi_{n} \leq \frac{H}{n^{\alpha}}
$$

where H is an absolute constant.
(3.2) Definition. The concentration function of a r.v. S is defined as

$$
Q(\epsilon)=\sup _{x \in \mathbb{R}} P(x<S \leq x+\epsilon), \quad \epsilon \in \mathbb{R}^{+} .
$$

In the sequel, we denote, by Q_{n}, the concentration function of U_{n}.
The following result gives an estimate of Q_{n}. It is similar to the one given in [8] for a sequence of i.i.d. random variables, but here the constant H is absolute (i.e. it doesn't depend on the sequence $\left.\left(X_{n}\right)_{n \in \mathbb{N}}\right)$.
(3.3) Lemma. There is an absolute constant H such that, for every $\epsilon \in \mathbb{R}^{+}$,

$$
Q_{n}(\epsilon) \leq H\left(\epsilon+\frac{1}{n^{\alpha}}\right)
$$

Proof. Denoting the distribution function of U_{n} by F_{n}, Theorem (3.1) yields

$$
\max \left\{\left|F_{n}(x+\epsilon)-\Phi(x+\epsilon)\right|,\left|F_{n}(x)-\Phi(x)\right|\right\} \leq \Pi_{n} \leq \frac{H}{n^{\alpha}}
$$

Hence,

$$
\begin{aligned}
& P\left(x<U_{n} \leq x+\epsilon\right)=F_{n}(x+\epsilon)-F_{n}(x) \\
& \leq\left|F_{n}(x+\epsilon)-\Phi(x+\epsilon)\right|+\left|F_{n}(x)-\Phi(x)\right|+\Phi(x+\epsilon)-\Phi(x) \\
& \leq \frac{H}{n^{\alpha}}+\frac{1}{\sqrt{2 \pi}} \epsilon \leq H\left(\epsilon+\frac{1}{n^{\alpha}}\right)
\end{aligned}
$$

The following lemma is stated in [1] without proof:
(3.4) Lemma. If S and T are random variables, then, for every pair of real numbers a, b with $b \geq 0$, we have

$$
\begin{aligned}
& P(S+T \leq a-b)-P(|T|>b) \leq P(S \leq a) \\
& \leq P(S+T \leq a+b)+P(|T|>b)
\end{aligned}
$$

Proof. The first inequality follows from the inclusion

$$
\{S+T \leq a-b\} \subseteq\{S \leq a\} \cup\{|T|>b\}
$$

The second inequality follows from the first one applied to the pair of random variables $S+T,-T$ and to the pair of numbers $a+b, b$.

We now begin the proof of Theorem (2.3).

Let p, q be two integers with $p \leq q$; let $\left(Y_{n}\right)_{n \in \mathbb{N}}$ be an independent copy of $\left(X_{n}\right)_{n \in \mathbb{N}}$, and put

$$
V_{q}=\frac{Y_{1}+\cdots Y_{p}+X_{p+1}+\cdots X_{q}}{\sqrt{v_{q}}}
$$

Put, moreover,

$$
Z=V_{q}-U_{q}=\frac{\left(Y_{1}-X_{1}\right)+\cdots+\left(Y_{p}-X_{p}\right)}{\sqrt{v_{q}}}=\frac{R_{p}}{\sqrt{v_{q}}}
$$

If we set

$$
H=\left\{U_{p} \in A\right\}, \quad K=\left\{U_{q} \leq x\right\}
$$

our aim is to give a bound for $|P(H \cap K)-P(H) P(K)|$.
Let $\epsilon>0$ be any positive real number, and put

$$
K_{1}=\left\{V_{q} \leq x-\epsilon\right\}, \quad K_{2}=\left\{V_{q} \leq x+\epsilon\right\}, \quad F=\{|Z|>\epsilon\}
$$

By Lemma (3.4) (applied to $S=U_{q}, T=Z, a=x, b=\epsilon$), we can write

$$
P\left(K_{1}\right)-P(F) \leq P(K) \leq P\left(K_{2}\right)+P(F)
$$

Hence,

$$
\begin{align*}
& |P(H \cap K)-P(H) P(K)| \leq \max \left\{\left|P(H \cap K)-P\left(K_{1}\right) P(H)+P(F) P(H)\right|,\right. \\
& \left.\left|P(H \cap K)-P\left(K_{2}\right) P(H)-P(F) P(H)\right|\right\} \tag{3.5}\\
& \leq \max \left\{\left|P(H \cap K)-P\left(K_{1}\right) P(H)\right|,\left|P(H \cap K)-P\left(K_{2}\right) P(H)\right|\right\}+P(F) .
\end{align*}
$$

In what follows, we estimate the three quantities in the last member, i.e. $\mid P(H \cap K)-$ $P\left(K_{1}\right) P(H)\left|,\left|P(H \cap K)-P\left(K_{2}\right) P(H)\right|\right.$ and $P(F)$.

We start with $P(F)$. We have

$$
\begin{equation*}
P(F)=P\left(\left|R_{p}\right|>\epsilon \sqrt{v_{q}}\right) \leq \frac{E\left[\left|R_{p}\right|\right]}{\epsilon \sqrt{v_{q}}} \leq \frac{\operatorname{Var}^{1 / 2}\left(R_{p}\right)}{\epsilon \sqrt{v_{q}}} . \tag{3.6}
\end{equation*}
$$

Now, since $\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(Y_{n}\right)_{n \in \mathbb{N}}$ are independent and have the same law,

$$
\begin{equation*}
\operatorname{Var}\left(R_{p}\right)=2 \operatorname{Var}\left(S_{p}\right)=2 v_{p} \tag{3.7}
\end{equation*}
$$

From (3.6) and the (3.7), we conclude that

$$
\begin{equation*}
P(F) \leq \frac{H}{\epsilon} \sqrt{\frac{v_{p}}{v_{q}}} \tag{3.8}
\end{equation*}
$$

We now pass to the terms $\left|P(H \cap K)-P\left(K_{1}\right) P(H)\right|$ and $\left|P(H \cap K)-P\left(K_{2}\right) P(H)\right|$. We give the details only for $\left|P(H \cap K)-P\left(K_{2}\right) P(H)\right|$, since the proof is identical for the other quantity.

We need some more lemmas.
(3.9) Lemma. Let g be a Lipschitzian function defined on \mathbb{R}, with Lipschitz constant β. Then

$$
\left|E\left[g\left(U_{q}\right)\right]-E\left[g\left(V_{q}\right)\right]\right| \leq H \beta \sqrt{\frac{v_{p}}{v_{q}}} .
$$

Proof. Arguing as for relation (3.6) and using (3.7), we get

$$
\begin{aligned}
\left|E\left[g\left(U_{q}\right)\right]-E\left[g\left(V_{q}\right)\right]\right| & \leq E\left[\left|g\left(U_{q}\right)-g\left(V_{q}\right)\right|\right] \leq \beta E\left[\left|U_{q}-V_{q}\right|\right] \\
& =\beta \frac{E\left[\left|R_{p}\right|\right]}{\sqrt{v_{q}}} \leq \frac{\beta \operatorname{Var}^{1 / 2}\left(R_{p}\right)}{\sqrt{v_{q}}} \leq H \beta \sqrt{\frac{v_{p}}{v_{q}}} .
\end{aligned}
$$

In the sequel, we denote, by \tilde{Q}_{q}, the concentration function of V_{q}.
(3.10) Lemma. Let $z \in \mathbb{R}$ and $g=1_{(-\infty, z]}$. Then, for every $\eta>0$, we have

$$
\left|E\left[g\left(U_{q}\right)\right]-E\left[g\left(V_{q}\right)\right]\right| \leq \frac{H}{\eta} \sqrt{\frac{v_{p}}{v_{q}}}+Q_{q}(\eta)+\tilde{Q}_{q}(\eta)
$$

Proof. Put

$$
h(t)=\left(1+\frac{z-t}{\eta}\right) 1_{(z, z+\eta]}(t), \quad \tilde{g}(t)=g(t)+h(t) .
$$

Then \tilde{g} is Lipschitzian with the Lipschitz constant $1 / \eta$. So, by Lemma (3.9),

$$
\begin{equation*}
\left|E\left[\tilde{g}\left(U_{q}\right)\right]-E\left[\tilde{g}\left(V_{q}\right)\right]\right| \leq \frac{H}{\eta} \sqrt{\frac{v_{p}}{v_{q}}} \tag{3.11}
\end{equation*}
$$

On the other hand, h has support contained in $(z, z+\eta]$ and is bounded by 1. Hence, we have trivially

$$
\begin{equation*}
\left|E\left[h\left(U_{q}\right)-h\left(V_{q}\right)\right]\right| \leq Q_{q}(\eta)+\tilde{Q}_{q}(\eta) \tag{3.12}
\end{equation*}
$$

Now, recalling that $g=\tilde{g}-h$, we can write

$$
\begin{aligned}
& \left|E\left[g\left(U_{q}\right)\right]-E\left[g\left(V_{q}\right)\right]\right|=\left|E\left[(\tilde{g}-h)\left(U_{q}\right)\right]-E\left[(\tilde{g}-h)\left(V_{q}\right)\right]\right| \\
& \leq\left|E\left[\tilde{g}\left(U_{q}\right)\right]-E\left[\tilde{g}\left(V_{q}\right)\right]\right|+\left|E\left[h\left(U_{q}\right)-h\left(V_{q}\right)\right]\right|
\end{aligned}
$$

and the conclusion follows from relations (3.11) and (3.12).
The next lemma concerns the concentration function \tilde{Q}_{n} of V_{n}. Its proof is identical to the proof of Lemma (3.3), since it is immediate to see that also the sequence $\left(Y_{1}, Y_{2}, \ldots, Y_{p}, X_{p+1}, \ldots\right)$ is m-dependent.
(3.13) Lemma. There is an absolute constant H such that, for every $\epsilon \in \mathbb{R}^{+}$,

$$
\tilde{Q}_{n}(\epsilon) \leq H\left(\epsilon+\frac{1}{n^{\alpha}}\right)
$$

We go back to the proof of the main result (2.3). Since H and K_{2} are independent, we can write

$$
\begin{aligned}
\left|P(H \cap K)-P\left(K_{2}\right) P(H)\right| & =P(H)\left|P(K \mid H)-P\left(K_{2} \mid H\right)\right| \\
& =P(H)\left|E_{H}\left[f\left(U_{q}\right)\right]-E_{H}\left[g\left(V_{q}\right)\right]\right|
\end{aligned}
$$

where $f=1_{(-\infty, x]}$ and $g=1_{(-\infty, x+\epsilon]}$. We denote, by E_{H}, the expectation with respect to the probability law $P(\cdot \mid H)$. By summing and subtracting $E_{H}\left[g\left(U_{q}\right)\right]$, we see that the above quantity is not greater than

$$
\begin{align*}
& P(H)\left|E_{H}\left[g\left(U_{q}\right)\right]-E_{H}\left[g\left(V_{q}\right)\right]\right|+P(H) E_{H}\left[|f-g|\left(U_{q}\right)\right] \\
& =\left|E\left[g\left(U_{q}\right)\right]-E\left[g\left(V_{q}\right)\right]\right|+E\left[|f-g|\left(U_{q}\right)\right] \tag{3.14}\\
& \leq \frac{H}{\epsilon} \sqrt{\frac{v_{p}}{v_{q}}}+2 Q_{q}(\epsilon)+\tilde{Q}_{q}(\epsilon)
\end{align*}
$$

using Lemma (3.10) and observing that the function $f-g$ is bounded by 1 and has the interval $(x, x+\epsilon]$ as its support.

Estimate (3.14) holds not only for $\left|P(H \cap K)-P\left(K_{2}\right) P(H)\right|$, but also for $\mid P(H \cap$ $K)-P\left(K_{1}\right) P(H) \mid$.

We now insert relations (3.8) and (3.14) into (3.5) and obtain

$$
\begin{aligned}
& |P(H \cap K)-P(H) P(K)| \leq \frac{H}{\epsilon} \sqrt{\frac{v_{p}}{v_{q}}}+2 Q_{q}(\epsilon)+\tilde{Q}_{q}(\epsilon) \\
& \leq H\left(\frac{1}{\epsilon} \sqrt{\frac{v_{p}}{v_{q}}}+\epsilon+\frac{1}{q^{\alpha}}\right)
\end{aligned}
$$

by Lemmas (3.3) and (3.13). The above inequality holds for every $\epsilon>0$; by passing to the infimum in ϵ, we get

$$
|P(H \cap K)-P(H) P(K)| \leq H\left(\sqrt[4]{\frac{v_{p}}{v_{q}}}+\frac{1}{q^{\alpha}}\right)
$$

4. The proof of Theorem (2.5) and the ASCLT

Let's start with the proof of Theorem (2.5). It is sufficient to consider the case where A is of the form $A=(-\infty, x]$. The proof is split in two steps: (i) and (ii).

Put

$$
\begin{equation*}
a_{n}=\log _{2}\left(1+\frac{1}{n}\right) . \tag{4.1}
\end{equation*}
$$

(i) Here, we prove that $\left(S_{n}\right)$ and $\left(H_{n}\right)$ have the same limit points, where

$$
H_{n}=\frac{\sum_{i=1}^{2^{n}} a_{i} 1_{A}\left(U_{i}\right)}{n}
$$

This is equivalent to proving that the sequence

$$
T_{n}-H_{n}+\frac{a_{2^{n}} 1_{A}\left(U_{2^{n}}\right)}{n}=\frac{\sum_{i=1}^{n} 1_{A}\left(U_{2^{i}}\right)-\sum_{i=1}^{2^{n}-1} a_{i} 1_{A}\left(U_{i}\right)}{n}
$$

tends to 0 as $n \rightarrow \infty, P$-a.s. Now, the numerator of the fraction in the second member above can be written as

$$
\begin{aligned}
\sum_{i=1}^{n} 1_{A}\left(U_{2^{i}}\right)-\sum_{i=1}^{n} \sum_{j=2^{i-1}}^{2^{i}-1} a_{j} 1_{A}\left(U_{j}\right) & =\sum_{i=1}^{n}\left(1_{A}\left(U_{2^{i}}\right)-\sum_{j=2^{i-1}}^{2^{i}-1} a_{j} 1_{A}\left(U_{j}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{j=2^{i-1}}^{2^{i}-1} a_{j}\left(1_{A}\left(U_{2^{i}}\right)-1_{A}\left(U_{j}\right)\right)
\end{aligned}
$$

(note that $\sum_{j=2^{i-1}}^{2^{i}-1} a_{j}=\log _{2}\left(2^{i}\right)-\log _{2}\left(2^{i-1}\right)=1$). Put now

$$
\begin{equation*}
R_{i}=\sum_{j=2^{i-1}}^{2^{i}-1} a_{j}\left(1_{A}\left(U_{2^{i}}\right)-1_{A}\left(U_{j}\right)\right) \tag{4.2}
\end{equation*}
$$

Then we must prove that, P-a.s.

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} R_{i}}{n}=0
$$

We write

$$
\frac{\sum_{i=1}^{n} R_{i}}{n}=\frac{\sum_{i=1}^{n}\left(R_{i}-E\left[R_{i}\right]\right)}{n}+\frac{\sum_{i=1}^{n} E\left[R_{i}\right]}{n}=\frac{\sum_{i=1}^{n} \tilde{R}_{i}}{n}+\frac{\sum_{i=1}^{n} E\left[R_{i}\right]}{n}
$$

and consider separately the two summands above.
For the first one, we apply the Gaal-Koksma law (see [8], p. 134) to the sequence $\left(\tilde{R}_{n}\right)_{n}$:
(4.3) Theorem (Gaal-Koksma Strong Law of Large Numbers). Let $\left(X_{n}\right)_{n}$ be a sequence of centered random variables with finite variance. Suppose that there exists a constant $\beta>0$ such that, for all integers $m \geq 0, n \geq 0$,

$$
\begin{equation*}
E\left[\left(\sum_{i=m+1}^{m+n} X_{i}\right)^{2}\right] \leq H\left((m+n)^{\beta}-m^{\beta}\right) \tag{4.4}
\end{equation*}
$$

for a suitable constant H independent of m and n. Then, for each $\rho>0$,

$$
\sum_{i=1}^{n} X_{i}=O\left(n^{\beta / 2}(\log n)^{2+\rho}\right), \quad P-a . s
$$

We need a bound for $\operatorname{Cov}\left(\tilde{R}_{i}, \tilde{R}_{j}\right)$. It is easily seen that, for $i \leq j$,

$$
\operatorname{Cov}\left(\tilde{R}_{i}, \tilde{R}_{j}\right)=\sum_{h=2^{i-1}}^{2^{i}-1} \sum_{k=2^{j-1}}^{2^{j}-1} a_{h} a_{k}\left(C\left(2^{i}, 2^{j}\right)-C\left(h, 2^{j}\right)-C\left(2^{i}, k\right)+C(h, k)\right)
$$

where

$$
C(p, q)=\operatorname{Cov}\left(1_{A}\left(U_{p}\right), 1_{A}\left(U_{q}\right)\right)=P\left(U_{p} \in A, U_{q} \in A\right)-P\left(U_{p} \in A\right) P\left(U_{q} \in A\right)
$$

By Theorem (2.3), there exists a constant H such that, for every p, q with $2^{i-1} \leq p \leq 2^{i}$ and $2^{j-1} \leq q \leq 2^{j}$,

$$
C(p, q) \leq H\left(\sqrt[4]{\frac{v_{p}}{v_{q}}}+\frac{1}{q^{\alpha}}\right)=H\left(\sqrt[4]{\frac{p \phi(p)}{q \phi(q)}}+\frac{1}{q^{\alpha}}\right) \leq H\left(\frac{p}{q}\right)^{\alpha} \leq H 2^{-\alpha|i-j|}
$$

so that we obtain

$$
\operatorname{Cov}\left(\tilde{R}_{i}, \tilde{R}_{j}\right) \leq H 2^{-\alpha|i-j|} \sum_{h=2^{i-1}}^{2^{i}-1} a_{h} \sum_{k=2^{j-1}}^{2^{j}-1} a_{k}=H 2^{-\alpha|i-j|}
$$

In particular, $E\left[\tilde{R}_{i}^{2}\right] \leq H$. In order to use the Gaal-Koksma law, we evaluate

$$
\begin{aligned}
& E\left[\left(\sum_{i=m+1}^{m+n} \tilde{R}_{i}\right)^{2}\right]=E\left[\sum_{i=m+1}^{m+n} \tilde{R}_{i}^{2}+2 \sum_{m+1 \leq i<j \leq m+n} \tilde{R}_{i} \tilde{R}_{j}\right] \\
& \leq H n+2 H \sum_{m+1 \leq i<j \leq m+n} 2^{-\alpha|i-j|}=H n+2 H \sum_{r=1}^{n-1}(n-r)\left(2^{\alpha}\right)^{-r} \\
& \leq H n+2 H n \sum_{r=0}^{n-1}\left(2^{\alpha}\right)^{-r} \leq H n=H[(m+n)-m]
\end{aligned}
$$

Hence, the condition in the Gaal-Koksma law holds with $\beta=1$, and we obtain

$$
\sum_{i=1}^{n} \tilde{R}_{i}=O\left(\sqrt{n}(\log n)^{2+\rho}\right), \quad P-\text { a.s. }
$$

which implies

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \tilde{R}_{i}}{n}=0, \quad P-a . s .
$$

We now prove that

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} E\left[R_{i}\right]}{n}=0
$$

By Cesaro's theorem, it will be sufficient to prove that

$$
\lim _{n \rightarrow \infty} E\left[R_{n}\right]=\lim _{n \rightarrow \infty} \sum_{j=2^{n-1}}^{2^{n}-1} a_{j}\left(P\left(U_{2^{n}} \in A\right)-P\left(U_{j} \in A\right)\right)=0
$$

[recall formula (4.2)]. This is immediate by the relation

$$
\sum_{j=2^{i-1}}^{2^{i}-1} a_{j}=\log _{2}\left(2^{i}\right)-\log _{2}\left(2^{i-1}\right)=1
$$

and by Theorem (3.1), which implies

$$
\lim _{n \rightarrow \infty} P\left(U_{n} \in A\right)=\mu(A)
$$

(ii) We now prove that $\left(H_{n}\right)$ and $\left(W_{n}\right)$ have the same limit points. First, observe that

$$
W_{n}=\frac{\sum_{i=1}^{n} \frac{1}{i \log 2} 1_{A}\left(U_{i}\right)}{\log _{2} n}
$$

Since the sequences $\left(a_{n}\right)$ [see definition (4.1)] and $\left(b_{n}\right)$, where $b_{n}=\frac{1}{n \log 2}$, are equivalent as $n \rightarrow \infty$, this amounts to show that $\left(H_{n}\right)$ has the same limit points as

$$
V_{n}=\frac{\sum_{i=1}^{n} a_{i} 1_{A}\left(U_{i}\right)}{\log _{2} n}
$$

This is easy since, for $2^{r} \leq n<2^{r+1}$, we can write

$$
\frac{\sum_{i=1}^{2^{r}} a_{i} 1_{A}\left(U_{i}\right)}{r+1} \leq V_{n} \leq \frac{\sum_{i=1}^{2^{r+1}} a_{i} 1_{A}\left(U_{i}\right)}{r}
$$

We pass to the proof of the ASCLT [Corollary (2.6)]. Consider first a Borel set A of the form $A=(-\infty, x]$. The Gaal-Koksma law applied to the sequence

$$
1_{A}\left(U_{2^{i}}\right)-P\left(U_{2^{i}} \in A\right)
$$

gives, P-a.s,

$$
\lim _{n \rightarrow \infty}\left(T_{n}-\frac{\sum_{i=1}^{n} P\left(U_{2^{i}} \in A\right)}{n}\right)=\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n}\left(1_{A}\left(U_{2^{i}}\right)-P\left(U_{2^{i}} \in A\right)\right)}{n}=0 .
$$

by an argument similar to that used above for the sequence $\left(\tilde{R}_{n}\right)$ [see below for the definition of $\left.\left(\tilde{R}_{n}\right)\right]$. On the other hand, again by Cesaro's theorem and Theorem (3.1), we have

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} P\left(U_{2^{i}} \in A\right)}{n}=\lim _{n \rightarrow \infty} P\left(U_{2^{n}} \in A\right)=\mu(A)
$$

Hence, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{n}=\mu(A), \quad P-a . s \tag{4.5}
\end{equation*}
$$

Now, the classical techniques (similar to those used in the Glivenko-Cantelli theorem; see, e.g., [3], p. 59) yield that the P-null set Γ such that (4.5) holds for $\omega \in \Gamma^{c}$ is independent of A, and it is henceforth immediate that, on Γ^{c}, (4.5) holds also for Borel sets A that are finite unions of disjoint intervals.

For a general set A with $\lambda(\partial A)=\mu(\partial A)=0$, fix $\epsilon>0$ and let A_{ϵ} and B_{ϵ} be finite unions of disjoint intervals such that

$$
A_{\epsilon} \subseteq A \subseteq B_{\epsilon} \quad \text { and } \quad \mu\left(B_{\epsilon} \backslash A_{\epsilon}\right)<\epsilon
$$

Then

$$
\frac{\sum_{i=1}^{n} 1_{A_{\epsilon}}\left(U_{2^{i}}\right)}{n} \leq T_{n} \leq \frac{\sum_{i=1}^{n} 1_{B_{\epsilon}}\left(U_{2^{i}}\right)}{n} ;
$$

hence, by passing to the limit as $n \rightarrow \infty$, we get, for $\omega \in \Gamma^{c}$,

$$
\begin{equation*}
\mu\left(A_{\epsilon}\right) \leq \liminf _{n \rightarrow \infty} T_{n} \leq \limsup _{n \rightarrow \infty} T_{n} \leq \mu\left(B_{\epsilon}\right) \tag{4.6}
\end{equation*}
$$

since

$$
\begin{equation*}
\mu\left(A_{\epsilon}\right) \leq \mu(A) \leq \mu\left(B_{\epsilon}\right) \leq \mu\left(A_{\epsilon}\right)+\epsilon \tag{4.7}
\end{equation*}
$$

by passing to the limit as $\epsilon \rightarrow 0$ in (4.7) and then in (4.6), we deduce that $\lim _{n \rightarrow \infty} T_{n}$ exists for $\omega \in \Gamma^{c}$ and, moreover,

$$
\lim _{n \rightarrow \infty} T_{n}=\mu(A), \quad \omega \in \Gamma^{c}
$$

Bibliography

1. J.R. Blum, D.L. Hanson, J.I. Rosenblatt, On the Central Limit Theorem for the Sum of a Random Number of Independent Random Variables, Z. Wahrscheinlichkeitstheorie verw. Geb. 1 (1963), no. 4, 389-393.
2. G.A. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 3, 561-574.
3. R. Durrett, Probability: Theory and Examples, Thomson, 2005.
4. R. Giuliano Antonini, On the Rosenblatt coefficient for normalized sums of real random variables, Rend. Acc. Naz. XL Mem. Mat. Appl. 5 (2000), no. 24, 111-120.
5. M. Lacey, W. Philipp, A note on the almost sure central limit theorem, Statist. \& Probab. Letters 9 (1990), 201-205.
6. V.V. Petrov, On the central limit theorem for m-dependent quantities, Proc. All-Union Conf. Theory Prob. and Math. Statist. (Erevan, 1958) (1960), 38-44.
7. V.V. Petrov, Limit Theorems of Probability Theory, Oxford Science Publications, 1995.
8. W. Philipp, W. Stout, Almost sure Invariance principles for partial sums of weakly dependent random variables, Math. Proc. Cambridge Philos. Soc. 161 (1975), no. 2, iv+140 pp.
9. P. Schatte, On strong versions of the almost sure central limit theorem, Math. Nachr. 137 (1988), 249-256.

Rita Giuliano, Dipartimento di Matematica "L. Tonelli", Largo B. Pontecorvo, 5, 56100 PisA (ITALY)

E-mail: giuliano@dm.unipi.it

[^0]: 2000 AMS Mathematics Subject Classification. Primary 60F05, Secondary 60G10.
 Key words and phrases. Rosenblatt coefficient; m-dependent sequences; Almost Sure Central Limit Theorem.

 This article was partially supported by the M.I.U.R. Italy.

