UDC 519.21

VASILIY BEREZHNOY

ON THE EQUIVALENCE OF INTEGRAL NORMS ON THE SPACE OF MEASURABLE POLYNOMIALS WITH RESPECT TO A CONVEX MEASURE

We prove that, for a convex product-measure μ on a locally convex space, for any set A of positive measure, on the space of measurable polynomials of degree d, all $L^p(\mu)$ -norms coincide with the norms obtained by restricting μ to A.

It is well known that if γ is a Gaussian measure on a locally convex space X, then all L^p -norms on $P_d(\gamma)$, the space of measurable polynomials of degree at most d, are mutually equivalent. In the case where X is a Hilbert space, A.A. Dorogovtsev [1] has shown that the $L^2(\gamma)$ -norm on $P_d(\gamma)$ is equivalent to the $L^2(\gamma|B)$ -norm, where $\gamma|B$ is the restriction of γ to a unit ball B of X.

In the recent paper [2], the author has reinforced that result and has shown that, in the case of any locally convex space and an arbitrary measurable set A with $\gamma(A) > 0$, all $L^p(\gamma|A)$ -norms are equivalent to the $L^p(\gamma)$ -norms. In particular, they are mutually equivalent.

The main result of this paper shows that it is valid also for convex measures satisfying certain additional conditions.

Let us recall some definitions (see, e.g., [3],[4]).

Definition 1. A Borel probability measure μ on R^n is called a convex (or log-concave) measure if there exists an affine subspace E with $\mu(E) = 1$, on which μ is given by a density ϱ with respect to the Lebesgue measure on E such that, for all $x, y \in E$ and $\lambda \in [0, 1]$, the following inequality holds:

$$\varrho(\lambda x + (1 - \lambda)y) \ge \varrho(x)^{\lambda} \varrho(y)^{1-\lambda}.$$

Definition 2. Let X be a locally convex space equipped with the σ -algebra $\sigma(X)$ generated by the dual space X^* . A probability measure μ on $\sigma(X)$ is called convex (or log-concave) if, for all $l_1, \ldots, l_n \in X^*$, its image under the mapping $x \mapsto (l_1(x), \ldots, l_n(x))$ to R^n is a convex measure on R^n .

Recently S.G. Bobkov [5] has obtained the following important result for convex measures

Set $C := 22/\ln 2$. Let ν be a convex probability measure on the space R^k and f be a polynomial of degree at most d on R^k . Then, for all $p \in [1, \infty)$, the following inequality holds:

$$||f||_{L^p(\nu)} \le p^{Cd} ||f||_{L^1(\nu)}.$$
 (1)

In particular, on the space $P_d(R^k)$ of all polynomials of degree at most d on R^k , all $L^p(\nu)$ -norms are equivalent with constants which are independent of k and depend only on d and p.

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 28C20, 60B05.

Key words and phrases. Convex measure, measurable polynomial, equivalent norms.

This article was partially supported by the RFBR project 07-01-00536.

Suppose we are given a sequence (X_k, B_k, μ_k) , $k \in N$, of probability spaces. The measure $\mu = \bigotimes_{k=1}^{\infty} \mu_k$ is called a product-measure, where we deal with the product of the measures μ_k defined on the product of the spaces $X = \prod_{k=1}^{\infty} X_k$ which is equipped with the σ -algebra $B := \bigotimes_{k=1}^{\infty} B_k$.

Let X be a locally convex space, and let $P_{d,fin}(X)$ be the class of all finite-dimensional polynomials on X of the form

$$f(x) = P(l_1(x), \dots, l_k(x)),$$

where P is a polynomial of degree at most d on R^k and l_1, \ldots, l_k are continuous linear functionals on X. Let ν be a probability measure on $\sigma(X)$. Let us denote, by $P_d(\nu)$, the closure of the set $P_{d,fin}(X)$ in the space of all ν -measurable functions with respect to a metric corresponding to the convergence in measure ν ; e.g., one can take the metric

$$\varrho(f,g) := \int_X \frac{|f-g|}{1+|f-g|} \, d\mu.$$

Lemma. Let μ be a convex probability measure on a locally convex space X. Then the following assertions are true.

- (i) For every $p \in [1, \infty)$, one has $P_d(\mu) \subset L^p(\mu)$.
- (ii) On the space $P_d(\mu)$, all norms from all spaces $L^p(\mu)$, where $p \in [1, +\infty)$, are equivalent and $P_d(\mu)$ is complete with respect to each of these norms.
- (iii) If a sequence $\{f_j\} \subset P_d(\mu)$ converges in measure μ , then it converges in every $L^p(\mu)$, $p \in [1, +\infty)$.

Proof. It is known that, in the finite-dimensional case, every convex measure has all moments (see [3]). So $P_{d,fin}(X) \subset L^p(\mu)$ for all $p < \infty$. Suppose that a sequence of polynomials $\varphi_j \in P_{d,fin}(X)$ converges in measure to φ . Due to the above-mentioned result of Bobkov, we have the estimates

$$\|\psi\|_{L^p(\mu)} \le C(d,p)\|\psi\|_{L^1(\mu)}, \quad \psi \in P_{d,fin}(X),$$
 (2)

where the number C(d,p) depends only on d and p. In particular, we have these estimates for p=2 and $\psi=\varphi_j$. According to Example 2.8.10 in [4], the norms $\|\varphi_j\|_{L^1(\mu)}$ are uniformly bounded. Indeed, otherwise passing to a subsequence, we may assume that $\{\varphi_j\}$ converges almost everywhere. Then the aforementioned example applies. The boundedness in $L^p(\mu)$ along with the convergence in measure yield the convergence in $L^r(\mu)$ for r < p. Since this is true for all $p < \infty$, the sequence $\{\varphi_j\}$ converges to φ in all $L^p(\mu)$. Thus, we obtain not only the inclusion $\varphi \in L^p(\mu)$ but also estimate (2) for all $\psi \in P_d(\mu)$. If we apply the same reasoning to the whole class $P_d(\mu)$, we obtain all assertions of the lemma. In particular, the equivalence of all L^p -norms follows from (2) and the inequality $\|f\|_{L^1(\mu)} \leq \|f\|_{L^p(\mu)}$. The completeness of $P_d(\mu)$ with respect to L^p -norms follows from what has been said.

Theorem. Suppose we are given a sequence of finite-dimensional spaces $X_k = R^{n_k}$ equipped with their Borel σ -algebras B_k . For every k, let μ_k be a convex probability measure on X_k . Let us consider the space $X = \prod_{k=1}^{\infty} X_k$ equipped with the product-measure $\mu = \bigotimes_{k=1}^{\infty} \mu_k$. Let us fix a set $M \subseteq X$ with $\mu(M) > 0$ and a positive integer d. Then, the following assertions are true.

- (i) If a sequence of functions in $P_d(\mu)$ converges in the measure μ on M, then it converges in measure μ on all of X and in all $L^p(\mu)$, $p < \infty$, too.
- (ii) For every $p \in [1, +\infty)$, the norm of $L^p(\mu)$ on the space $P_d(\mu)$ is equivalent to the norm of $L^p(\mu|_M)$. Therefore, whenever $1 \leq p, q < \infty$, the norm of $L^p(\mu)$ on $P_d(\mu)$ is equivalent to the norm of $L^q(\mu|_M)$.

Proof. Let us introduce the following two norms on the space $P_d(\mu)$:

$$||f||_1 := \left(\int_M |f|^p \, \mu(dt)\right)^{1/p}, \quad ||f||_2 := \left(\int_X |f|^p \, \mu(dt)\right)^{1/p}.$$

We have seen that the space $P_d(\mu)$ is a Banach one with respect to the norm $\|\cdot\|_2$. Let us show that the space $P_d(\mu)$ is a Banach one with respect to the norm $\|\cdot\|_1$ as well. Then assertion (ii) will follow by Banach's theorem on equivalent norms. In addition, we will show that the convergence of a sequence from $P_d(\mu)$ in measure μ on the whole space X follows from its convergence in measure μ on M, which will yield assertion (i) by the lemma.

So far it is not even obvious that $\|\cdot\|_1$ is not only a semi-norm but a norm (i.e., it is not obvious that if a function from $P_d(\mu)$ vanishes almost everywhere on M, then it vanishes almost everywhere on X).

Let a sequence $\{f_j\}$ converge in measure μ on M. For proving its convergence in measure μ on all of X, it is sufficient to check that every subsequence in it contains a further subsequence convergent almost everywhere on X. Hence, passing to a subsequence, we may assume that the sequence $\{f_j\}$ converges almost everywhere on M. For simplification of notation, we assume that the measures μ_k are absolutely continuous (otherwise we could take their affine supports). Furthermore, it is sufficient to consider polynomials f_j from the class $P_{d,fin}(X)$, because we can replace the initial sequence $\{f_j\}$ by a sequence of finite-dimensional polynomials with the same limit in measure on M, as every element in $P_d(\mu)$ is the limit of a sequence of finite-dimensional polynomials which converges in measure (and in all $L^p(\mu)$, too).

We aim at proving the convergence of the sequence $\{f_j\}$ almost everywhere on the whole space X. Then the application of the above lemma will complete our proof. We apply a modification of the reasoning from [2] and [6] (see §5.10 in [6]).

Set

$$E := \left\{ x \in X \colon \exists \lim_{j \to \infty} f_j(x) \right\}.$$

Then $E \in B$ and $\mu(E) > 0$ since $M \subset E$. In order to prove the equality $\mu(E) = 1$, we apply Kolmogorov's zero-one law. To this end, as is known (see Theorem 10.10.17 in [4]), it is sufficient to satisfy the following condition: if $x \in E$, then $y \in E$ for every $y \in X$ with $y_k = x_k$ for all sufficiently large k. We shall achieve this condition on some subset E_1 of the set E such that E_1 is also of positive measure. Since we assume that all measures μ_k are absolutely continuous, for every fixed n, due to Fubini's theorem, for almost every $x \in M$, the section

$$M_n^z := \left\{ z \in X_n : (x_1, \dots, x_{n-1}, z, x_{n+1}, \dots) \in M \right\}$$

has a positive Lebesgue measure in X_n . This implies that almost every point in M has this property for all $n \in N$. Hence, the measurable set

$$E_1 := \left\{ x \in E \colon \lambda_n(E_n^x) > 0 \ \forall n \in N \right\}$$

has a positive μ measure, where λ_n is the Lebesgue measure on X_n and

$$E_n^z := \{ z \in X_n : (x_1, \dots, x_{n-1}, z, x_{n+1}, \dots) \in E \}.$$

If a sequence of polynomials of degree d on X_n converges on a set of positive Lebesgue measures, then it converges at every point in X_n . Therefore, for every $x \in E_1$, the section E_n^x coincides with the whole space X_n for every n. Thus, if $x \in E_1$, then $x + u \in E_1$ for every u of the form $u = (u_1, \ldots, u_n, 0, 0, \ldots)$. Due to the zero-one law, one has

 $\mu(E_1) = 1$, whence it follows that $\mu(E) = 1$. Hence, $\{f_j\}$ converges almost everywhere on all of X. Along with the lemma, this proves assertion (i).

Now we can easily complete the proof of assertion (ii). Suppose we are given a sequence $\{f_j\} \subset P_d(\mu)$ that is fundamental with respect to the $L^p(\mu|_M)$ -norm. It converges on M in measure μ . Hence, as shown above, it converges in $L^p(\mu)$ to some function $g \in P_d(\mu)$. Clearly, the sequence $\{f_j\}$ converges to g in $L^p(\mu|_M)$ too. The proof is completed.

Remark. It would be interesting to extend this theorem to more general cases of convex measures.

The author thanks V.I. Bogachev for his help and support.

BIBLIOGRAPHY

- A.A. Dorogovtsev, Measurable functionals and finitely absolutely continuous measures on Banach spaces, Ukranian Math. J. 52 (2000), no. 9, 1194–1204.
- V.E. Berezhnoy, On the equivalence of norms on the space of γ-measurable polynomials, Moscow Univ. Bulletin. Ser. Math. (2000), no. 4, 54–56.
- 3. C. Borell, Convex measures on locally convex spaces, Ark. Math. 12 (1974), 239-252.
- 4. V.I. Bogachev, Measure theory. V. 1,2, Springer, Berlin, 2007.
- S.G. Bobkov, Remarks on the growth of L^p-norms of polynomials, Lecture Notes in Math. 1745 (2000), 27–35.
- 4. V.I. Bogachev, Gaussian measures, Amer. Math. Soc., Providence, Rhode Island, 1998.

RUSSIA, MOSCOW STATE UNIVERSITY, DEPT. MECHANICS AND MATHEMATICS, CHAIR OF THEORY OF FUNCTIONS AND FUNCTIONAL ANALYSIS.

E-mail: waber_msu@mail.ru