OLEXANDRA KAMENSCHYKOVA

APPROXIMATION OF RANDOM PROCESSES IN THE SPACE $L_{2}(T)$

The estimation for distribution of the norms of strictly sub-Gaussian random processes in the space $L_{2}(T)$ is obtained. The approximation of some classes of strictly sub-Gaussian random processes with given accuracy and reliability is considered.

1. Introduction

In the paper [3] we constructed the approximations of strictly φ-subGaussian random processes by broken lines such that this broken line approximates the process with given accuracy and reliability in the norm of $C[0,1]$.

In this paper we consider the approximation of strictly sub-Gaussian random processes by broken lines in the space $L_{2}(T)$. We obtain the inequality for the norm of strictly sub-Gaussian random process and use it to construct the approximation of the initial process.

We recall some basic facts about strictly sub-Gaussian random processes.
Let (Ω, B, P) be a standard probability space.
Definition 1. [1] A random variable ξ is called sub-Gaussian $(\xi \in \operatorname{Sub}(\Omega))$, if $E \xi=0$ and $\exists a>0$ such that $E \exp \{\lambda \xi\} \leq \exp \left\{\frac{\lambda^{2} a^{2}}{2}\right\}$ for all $\lambda \in R^{1}$.

Proposition 1. [1] The space $\operatorname{Sub}(\Omega)$ is a Banach space with respect to the norm $\tau_{\varphi}(\xi)=\inf \{a \geq 0: E \exp (\lambda \xi) \leq \exp (\varphi(a \lambda)), \lambda \in R\}$.

Definition 2. [2] A random variable ξ is called strictly sub-Gaussian if $E \xi=0$ and $E \xi^{2}=\tau^{2}(\xi)$.

Definition 3. [2] A family Δ of sub-Gaussian random variables is called strictly sub-Gaussian if for any finite or countable set Δ of random variables
$\left\{\xi_{i}, i \in I\right\}$ and for all $\lambda_{i} \in R: \tau^{2}\left(\sum_{i \in I} \lambda_{i} \xi_{i}\right)=E\left(\sum_{i \in I} \lambda_{i} \xi_{i}\right)^{2}$.
Definition 4. [2] A vector $\vec{\xi}^{T}=\left(\xi_{1}, \ldots, \xi_{n}\right)$, where ξ_{k} are random variables from the family of strictly sub-Gaussian random variables, is called a strictly sub-Gaussian random vector.

Definition 5. [2] A random process $X=\{X(t), t \in T\}$ is called a strictly sub-Gaussian $(X(t) \in \operatorname{SSub}(\Omega))$ if a family of random variables $\{X(t), t \in T\}$ is strictly sub-Gaussian.

Let $X=\{X(t), t \in T\}, T=[0,1]$, be a strictly sub-Gaussian process.
Denote by $S:=\left\{t_{k}\right\}_{k=0}^{k=N}=\left\{\frac{k}{N}, k=\overline{0, N}\right\}$ the uniform partition of the segment $[0,1]$ into N parts. We approximate the random process $\{X(t), t \in$ $T\}$ by an interpolation broken line $X_{N}(t)$ for given values $\left\{X\left(t_{k}\right)\right\}, k=\overline{0, N}$, i.e.

$$
X_{N}(t)=\alpha_{1} X\left(t_{k}\right)+\alpha_{2} X\left(t_{k+1}\right), t \in\left[t_{k}, t_{k+1}\right], k=\overline{0, N-1},
$$

where $\alpha_{1}=1-\left(t-t_{k}\right) N, \alpha_{2}=\left(t-t_{k}\right) N$.
The problem is to restore the process $\{X(t), t \in T\}$ by the broken line $\left\{X_{N}(t), t \in T\right\}$ with given accuracy ε and reliability $1-\delta$ in the norm of $L_{2}(T)$ knowing the values of given process in corresponding points $\{k / N, k=\overline{0, N}\}$.

Denote by $Y_{N}(t):=X(t)-X_{N}(t), t \in T$, the deviation random process.
We assume that for given process $\{X(t), t \in T\}$ the next inequality is satisfied:

$$
\begin{equation*}
\sup _{t \in T} E|X(t+h)-X(t)|^{2} \leq b^{2}(h) \tag{1}
\end{equation*}
$$

where $b(h), h>0$ is a known monotonically increasing continuous function and $b(h) \downarrow 0$ as $h \downarrow 0$.

As an example we consider power an logarithmic deviation functions $b(h)$.

2. Accuracy of approximation of strictly sub-Gaussian PROCESSES IN $L_{2}(T)$

Definition 6. The broken line $X_{N}(t)$ approximates the process $X(t)$ with given accuracy $\varepsilon>0$ and reliability $1-\delta, 0<\delta<1$ in $L_{2}(T)$ if the next inequality is satisfied:

$$
P\left\{\left(\int_{T}\left|X(t)-X_{N}(t)\right|^{2} d t\right)^{1 / 2}>\varepsilon\right\} \leq \delta
$$

Theorem. Let $X=\{X(t), t \in T\}$ be a strictly sub-Gaussian random process, (T, L, μ) be a measurable space. Assume $\int_{T}\left(E X^{2}(t)\right) d \mu(t)<\infty$, then with probability one there exists $\int_{T} X^{2}(t) d \mu(t)$ and for any $\varepsilon>\int_{T}\left(E X^{2}(t)\right) d \mu(t)$ the inequality holds

$$
\begin{gather*}
P\left\{\int_{T} X^{2}(t) d \mu(t)>\varepsilon\right\} \leq \\
\leq e^{\frac{1}{2}}\left(\frac{\varepsilon}{\int_{T}\left(E X^{2}(t)\right) d \mu(t)}\right)^{\frac{1}{2}} \cdot \exp \left\{\frac{-\varepsilon}{2 \int_{T}\left(E X^{2}(t)\right) d \mu(t)}\right\} . \tag{2}
\end{gather*}
$$

Proof. The existence of $\int_{T} X^{2}(t) d \mu(t)$ follows from the Fubini's theorem.
Assume $\vec{\xi}^{T}=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a strictly sub-Gaussian random vector, $A-$ a symmetrical non-negatively defined matrix, $\eta=\vec{\xi}^{T} A \vec{\xi}$, then for $\varepsilon>Z_{1}$ the next inequality is satisfied (ex. 1.2.2, [2]):

$$
\begin{equation*}
P\{\eta>\varepsilon\} \leq e^{\frac{1}{2}}\left(\frac{\varepsilon}{Z_{1}}\right)^{\frac{1}{2}} \exp \left\{-\frac{\varepsilon}{2 Z_{1}}\right\} \tag{3}
\end{equation*}
$$

where $Z_{1}=E \vec{\xi}^{T} A \vec{\xi}$. Let $\Lambda=\left\{t_{i}\right\}_{i=0}^{i=n}=\left\{0=t_{0}<\ldots<t_{n}=1\right\}$ be a partition of the segment T. Let $\xi_{i}=X\left(t_{i}\right), i=\overline{1, n}$ and let

$$
A=\left(\begin{array}{cccc}
\sqrt{\Delta t_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\Delta t_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\Delta t_{n}}
\end{array}\right)
$$

Then the inequality (3) becomes

$$
\begin{gathered}
P\left\{\sum_{i=1}^{n} X^{2}\left(t_{i}\right) \Delta t_{i}>\varepsilon\right\} \leq \\
\leq e^{\frac{1}{2}}\left(\frac{\varepsilon}{E \sum_{i=1}^{n} X^{2}\left(t_{i}\right) \Delta t_{i}}\right)^{\frac{1}{2}} \exp \left\{-\frac{\varepsilon}{2 E \sum_{i=1}^{n} X^{2}\left(t_{i}\right) \Delta t_{i}}\right\}
\end{gathered}
$$

where $\varepsilon>E \sum_{i=1}^{n} X^{2}\left(t_{i}\right) \Delta t_{i}$.

In the last inequality we proceed to the limit in the mean square when $\max _{1 \leq i \leq n} \Delta t_{i} \rightarrow 0$. As $\int_{T} X^{2}(t) d t=$ l.i.m. $\sum_{i=1}^{n} X^{2}\left(t_{i}\right) \Delta t_{i}$, we obtain (2).

3. Some examples of approximation in $L_{2}(T)$

As the process $X=\{X(t), t \in T\}$ is a strictly sub-Gaussian, the processes $\left\{X_{N}(t), t \in T\right\}$ and $\left\{Y_{N}(t), t \in T\right\}$ are also strictly sub-Gaussian ([3]).

Let's apply the theorem above to the deviation process $Y_{N}(t)$.
Assume the process $\{X(t), t \in T\}$ is a stationary. The right side of the expression in (2) increases on $\int_{T}\left(E X^{2}(t)\right) d \mu(t)$ (if $\int_{T}\left(E X^{2}(t)\right) d \mu(t)>\varepsilon$) so using the inequality $\sup _{t \in T} E Y_{N}^{2}(t) \leq b^{2}\left(\frac{1}{N}\right)([3])$, we obtain the next estimation:

$$
P\left\{\left\|Y_{N}(t)\right\|_{L_{2}}>\varepsilon\right\} \leq \frac{e^{\frac{1}{2}} \varepsilon}{b\left(\frac{1}{N}\right)} \cdot \exp \left\{\frac{-\varepsilon^{2}}{2 b^{2}\left(\frac{1}{N}\right)}\right\}
$$

where $\varepsilon>b\left(\frac{1}{N}\right)$.
So the desired rate of interpolation N for approximation of stationary strictly sub-Gaussian random process by the broken line with given accuracy $\varepsilon>0$ and reliability $1-\delta, 0<\delta<1$ in $L_{2}([0,1])$ can be found from the inequalities

$$
\left\{\begin{array}{l}
\frac{e^{\frac{1}{2}} \varepsilon}{b\left(\frac{1}{N}\right)} \cdot \exp \left\{\frac{-\varepsilon^{2}}{2 b^{2}\left(\frac{1}{N}\right)}\right\} \leq \delta, \tag{4}\\
\varepsilon>b\left(\frac{1}{N}\right)
\end{array}\right.
$$

where $b(h)$ is a deviation function of the process $X(t)$.
Example 1. Power function $b(h)$.
Assume in (1) $b(h)=c h^{\alpha}, 0 \leq \alpha \leq 1, c$ is a positive constant.
Let $\varepsilon=0.01, \delta=0.01, c=1, \alpha=1$. Then the condition (4) is satisfied for $N \geq 358$.

Example 2. Logarithmic function $b(h)$.
Assume in (1) $b(h)=\frac{c}{\left(\ln \left(1+\frac{1}{h}\right)\right)^{\mu}}, \mu>\frac{1}{2}, c$ is a positive constant.
Let $\varepsilon=0.01, \delta=0.01, c=1, \mu=4$. Then we obtain that the condition (4) is satisfied for $N \geq 1204$.

References

1. Buldygin, V. V., Kozachenko, Y. V., Metric characterization of random variables and random processes, American Mathematical Society, Providence, R I, (2000).
2. Kozachenko, Y. V., Pashko, A. O., Simulation of random processes, Kyiv University, Kyiv, (1999).
3. Kamenshykova, O., Linear interpolation of $\operatorname{SSub}_{\varphi}(\Omega)$ processes, Bulletin of the University of Uzhgorod: Mathematics and Informatics, 14, (2007), 39-49.

Department of Probability Theory and Mathematical Statistics, Kyiv National Taras Shevchenko University, Kyiv, Ukraine
E-mail address: -@mechmat.univ.kiev.ua

