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OLEXANDRA KAMENSCHYKOVA

APPROXIMATION OF RANDOM PROCESSES IN
THE SPACE L2(T )

The estimation for distribution of the norms of strictly sub-Gaussian
random processes in the space L2(T ) is obtained. The approximation
of some classes of strictly sub-Gaussian random processes with given
accuracy and reliability is considered.

1. Introduction

In the paper [3] we constructed the approximations of strictly ϕ-sub-
Gaussian random processes by broken lines such that this broken line ap-
proximates the process with given accuracy and reliability in the norm of
C[0, 1].

In this paper we consider the approximation of strictly sub-Gaussian
random processes by broken lines in the space L2(T ). We obtain the in-
equality for the norm of strictly sub-Gaussian random process and use it to
construct the approximation of the initial process.

We recall some basic facts about strictly sub-Gaussian random processes.
Let (Ω,B, P ) be a standard probability space.

Definition 1. [1] A random variable ξ is called sub-Gaussian (ξ ∈ Sub(Ω)),

if Eξ = 0 and ∃a > 0 such that E exp{λξ} ≤ exp
{

λ2a2

2

}
for all λ ∈ R1.

Proposition 1. [1] The space Sub(Ω) is a Banach space with respect to
the norm τϕ(ξ) = inf{a ≥ 0 : E exp (λξ) ≤ exp(ϕ(aλ)), λ ∈ R}.

Definition 2. [2] A random variable ξ is called strictly sub-Gaussian if
Eξ = 0 and Eξ2 = τ 2(ξ).

Definition 3. [2] A family Δ of sub-Gaussian random variables is called
strictly sub-Gaussian if for any finite or countable set Δ of random variables
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{ξi, i ∈ I} and for all λi ∈ R : τ 2

(∑
i∈I

λiξi

)
= E

(∑
i∈I

λiξi

)2

.

Definition 4. [2] A vector
−→
ξ

T
= (ξ1, ..., ξn), where ξk are random vari-

ables from the family of strictly sub-Gaussian random variables, is called a
strictly sub-Gaussian random vector.

Definition 5. [2] A random process X = {X(t), t ∈ T} is called a
strictly sub-Gaussian (X(t) ∈ SSub(Ω)) if a family of random variables
{X(t), t ∈ T} is strictly sub-Gaussian.

Let X = {X(t), t ∈ T}, T = [0, 1], be a strictly sub-Gaussian process.

Denote by S := {tk}k=N
k=0 = { k

N
, k = 0, N} the uniform partition of the

segment [0, 1] into N parts. We approximate the random process {X(t), t ∈
T} by an interpolation broken line XN(t) for given values {X(tk)}, k = 0, N,
i.e.

XN (t) = α1X(tk) + α2X(tk+1), t ∈ [tk, tk+1], k = 0, N − 1,

where α1 = 1 − (t − tk)N, α2 = (t − tk)N.

The problem is to restore the process {X(t), t ∈ T} by the broken
line {XN(t), t ∈ T} with given accuracy ε and reliability 1 − δ in the
norm of L2(T ) knowing the values of given process in corresponding points
{k/N, k = 0, N}.

Denote by YN(t) := X(t)−XN(t), t ∈ T, the deviation random process.

We assume that for given process {X(t), t ∈ T} the next inequality is
satisfied:

sup
t∈T

E|X(t + h) − X(t)|2 ≤ b2(h), (1)

where b(h), h > 0 is a known monotonically increasing continuous function
and b(h) ↓ 0 as h ↓ 0.

As an example we consider power an logarithmic deviation functions
b(h).

2. Accuracy of approximation of strictly sub-Gaussian
processes in L2(T )

Definition 6. The broken line XN(t) approximates the process X(t) with
given accuracy ε > 0 and reliability 1 − δ, 0 < δ < 1 in L2(T ) if the next
inequality is satisfied:

P

⎧⎪⎨
⎪⎩
⎛
⎝∫

T

|X(t) − XN(t)|2 dt

⎞
⎠

1/2

> ε

⎫⎪⎬
⎪⎭ ≤ δ.
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Theorem. Let X = {X(t), t ∈ T} be a strictly sub-Gaussian random pro-
cess, (T,L, μ) be a measurable space. Assume

∫
T

(EX2(t))dμ(t) < ∞, then

with probability one there exists
∫
T

X2(t)dμ(t) and for any ε >
∫
T

(EX2(t))dμ(t)

the inequality holds

P

⎧⎨
⎩
∫
T

X2(t)dμ(t) > ε

⎫⎬
⎭ ≤

≤ e
1
2

⎛
⎝ ε∫

T

(EX2(t))dμ(t)

⎞
⎠

1
2

· exp

⎧⎨
⎩ −ε

2
∫
T

(EX2(t))dμ(t)

⎫⎬
⎭ . (2)

Proof. The existence of
∫
T

X2(t)dμ(t) follows from the Fubini‘s theorem.

Assume
−→
ξ

T
= (ξ1, ..., ξn) is a strictly sub-Gaussian random vector, A –

a symmetrical non-negatively defined matrix, η =
−→
ξ

T
A
−→
ξ , then for ε > Z1

the next inequality is satisfied (ex. 1.2.2, [2]):

P{η > ε} ≤ e
1
2

(
ε

Z1

) 1
2

exp

{
− ε

2Z1

}
, (3)

where Z1 = E
−→
ξ

T
A
−→
ξ . Let Λ = {ti}i=n

i=0 = {0 = t0 < ... < tn = 1} be a
partition of the segment T. Let ξi = X(ti), i = 1, n and let

A =

⎛
⎜⎜⎜⎝

√
Δt1 0 . . . 0
0

√
Δt2 . . . 0

...
...

. . .
...

0 0 . . .
√

Δtn

⎞
⎟⎟⎟⎠ .

Then the inequality (3) becomes

P

{
n∑

i=1

X2(ti)Δti > ε

}
≤

≤ e
1
2

⎛
⎜⎜⎝ ε

E
n∑

i=1

X2(ti)Δti

⎞
⎟⎟⎠

1
2

exp

⎧⎪⎪⎨
⎪⎪⎩− ε

2E
n∑

i=1

X2(ti)Δti

⎫⎪⎪⎬
⎪⎪⎭ ,

where ε > E
n∑

i=1

X2(ti)Δti.
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In the last inequality we proceed to the limit in the mean square when

max1≤i≤n Δti → 0. As
∫
T

X2(t)dt = l.i.m.
n∑

i=1

X2(ti)Δti, we obtain (2). �

3. Some examples of approximation in L2(T )

As the process X = {X(t), t ∈ T} is a strictly sub-Gaussian, the pro-
cesses {XN(t), t ∈ T} and {YN(t), t ∈ T} are also strictly sub-Gaussian
([3]).

Let‘s apply the theorem above to the deviation process YN(t).
Assume the process {X(t), t ∈ T} is a stationary. The right side of

the expression in (2) increases on
∫
T

(EX2(t))dμ(t) (if
∫
T

(EX2(t))dμ(t) > ε)

so using the inequality supt∈T EY 2
N(t) ≤ b2( 1

N
) ([3]), we obtain the next

estimation:

P {‖YN(t)‖L2 > ε} ≤ e
1
2 ε

b( 1
N

)
· exp

{ −ε2

2b2( 1
N

)

}
,

where ε > b( 1
N

).
So the desired rate of interpolation N for approximation of stationary

strictly sub-Gaussian random process by the broken line with given accuracy
ε > 0 and reliability 1 − δ, 0 < δ < 1 in L2([0, 1]) can be found from the
inequalities {

e
1
2 ε

b( 1
N

)
· exp

{
−ε2

2b2( 1
N

)

}
≤ δ,

ε > b( 1
N

),
(4)

where b(h) is a deviation function of the process X(t).

Example 1. Power function b(h).
Assume in (1) b(h) = chα, 0 ≤ α ≤ 1, c is a positive constant.
Let ε = 0.01, δ = 0.01, c = 1, α = 1. Then the condition (4) is satisfied

for N ≥ 358.

Example 2. Logarithmic function b(h).
Assume in (1) b(h) = c

(ln(1+ 1
h
))μ , μ > 1

2
, c is a positive constant.

Let ε = 0.01, δ = 0.01, c = 1, μ = 4. Then we obtain that the condition
(4) is satisfied for N ≥ 1204.
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