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LOCAL LIMIT THEOREM FOR TRIANGULAR

ARRAY OF RANDOM VARIABLES

For a triangular array of random variables {Xk,n, k = 1, . . . , cn; n ∈ } such that,
for every n, the variables X1,n, . . . , Xcn,n are independent and identically distributed,
the local limit theorem for the variables Sn = X1,n + · · · + Xcn,n is established.

1. Introduction

Consider the triangular array of random variables {Xk,n, k = 1, . . . , cn; n ∈ N}
such that, for every n, the variables X1,n, . . . , Xcn,n are independent and identically
distributed, and consider the variables

Sn = X1,n + · · · + Xcn,n, n ∈ N. (1)

We suppose the following condition to hold true:

∀ε > 0 lim
n→∞ sup

1≤k≤cn

P{|Xk,n| ≥ ε} = 0 (2)

Condition (2) is a standard condition of the asymptotic negligibility for a single summand
in (1). Recall that a measure M on R is called canonical if M(I) < ∞ for every finite
interval I and

M+(x) =
∫ +∞

x

1
y2

M(dy) < +∞, M−(x) =
∫ −x

−∞

1
y2

M(dy) < +∞, x > 0.

Recall also that, by definition, a sequence of canonical measures {Mn} converges to a
canonical measure properly (notation Mn → M) if Mn(I) → M(I) for every finite inter-
val I and M+

n (x) → M+(x), M−
n (x) → M−(x) for every x > 0. Under (2), the following

necessary and sufficient condition for the sequence {Sn} to converge in distribution is
well known ([1], Chapter XVII, §2).

Theorem 1. Let Mn(dx) = cnx2dFn(x), bn =
∫

R
sin xFn(dx), where Fn is the distri-

bution function for Xn,1. If the array {Xk,n} satisfies condition (2), then the sums Sn

converge weakly to some r.v. S iff

Mn → M and bn → b, n → +∞ (3)

for some b ∈ R and a canonical measure M . Under (3), the characteristic function Φ of
the variable S is given by the formula

Φ(z) = exp

{
ibz − 1

2
z2M({0}) +

∫
R\{0}

eizx − 1 − izx

x2
M(dx)

}
, z ∈ R. (4)
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In this paper, we study the following question. Let conditions (2) and (3) hold and,
thus, let the limit theorem for the distributions of Sn hold true, that is, Sn ⇒ S. What
can be said about the local limit theorem in such a situation? In other words, what
conditions should be imposed on the distributions of {Xk,n} in order to provide the
convergence (in some sense) of the distribution densities for Sn?

In an important particular case, the complete answer to this question is given by the
well-known Gnedenko’s theorem ([2], Chapter IV, §3). Suppose that, in our notation,
cn = n and the array {Xk,n} has the form

Xk,n =
ξk,n − an

dn
, (5)

where all the random variables {ξk,n} are identically distributed (in fact, in such a case,

Sn
d=

n
k=1(ξk−an)

dn
with i.i.d. {ξk}). The variable S has a stable distribution, and the

Gnedenko’s theorem states that the distribution densities for Sn converge uniformly to
that for S iff Sn0 possesses a bounded distribution density for some n0 ∈ N.

Our purpose is to establish the uniform convergence of the distribution densities for
Sn in the general case. The following feature should be taken into consideration. Every
infinitely divisible distribution can be obtained as a limiting one in Theorem 1, and there
exist infinitely divisible distributions that are singular w.r.t. Lebesgue measure. Thus,
conditions imposed on the array {Xk,n} should at least provide the absolute continuity
of the probability law defined by its characteristic function (4). The following sufficient
condition is well known (the Kallenberg condition, see [3]).

Proposition 1. Let

lim
ε→0+

1
ε2 ln ε−1

∫ ε

−ε

M{dx} = +∞.

Then the distribution with the characteristic function (4) possesses a density from the
class C∞.

Note that the condition given above is a sufficient one while a necessary and sufficient
condition has not been found yet. Therefore, at this moment, one can hardly expect to
provide a local limit theorem for {Sn} in a necessary and sufficient form, like in that
the Gnedenko’s theorem. In this paper, we give one sufficient condition for a local limit
theorem to hold true.

2. The main result

We consider a triangular array of the type

Xk,n =
ξk,n

dn
, k = 1, . . . , n, (5′)

where cn is not necessarily equal to n and {ξk,n} are not supposed to be identically
distributed through the whole array. We assume that, for every n, ξ1,n, . . . , ξcn,n are
i.i.d. variables and that cn → ∞, n → ∞. For such an array we suppose conditions (2)
and (3) to hold true and thus Sn ⇒ S.

By Gn and Fn, we denote the distribution functions for ξ1,n and X1,n, respectively
(obviously, Gn(x) = F (dnx), x ∈ R). Denote, by ϕn, the characteristic function for ξ1,n.

Next, consider an independent copy {ξ′k,n} of the array {ξk,n} and put ξ̂k,n = ξk,n −
ξ′k,n, X̂k,n = Xk,n −X ′

k,n. Denote, by Ĝn and F̂n, the distribution functions for ξ̂1,n and
X̂1,n, respectively, and put M̂n(dx) = cnx2dF̂n(x). We claim the following conditions to
hold.
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A. There exists m ∈ N such that cn ≥ m, n ∈ N, and the sums ξ1,n + . . . ξm,n possess
densities gn.

B. There exist B > 2
1−cos 1 , n0 ∈ N, a > 0 and ε0 > 0 such that(

ε2 ln
1
ε

)−1 ∫ ε

−ε

M̂n{dx} ≥ B,
a

dn
< ε < ε0, n ≥ n0.

C. ∀δ > 0 N(δ) ≡ sup
n∈N,|z|>δ

|ϕn(z)| < 1.

D. sup
n∈N

∫
R

g2
n(x) dx < +∞.

E. dn → +∞,
ln dn

cn
→ 0, n → ∞.

Theorem 2. Let conditions (2),(3) and A – E hold true. Then the distributions of
Sn, S possess densities fn, f and

sup
x

|fn(x) − f(x)| → 0, n → ∞.

Remarks. 1. Condition B is an analogue of the Kallenberg condition. Note that
since M̂n([−1, 1]) is finite for every n, this condition can not hold with a equal 0.

2. Due to a simple estimate
∫

R
g2

n(x) dx ≤ supx∈R gn(x), condition D is provided by
the condition

D′. supn∈N,x∈R
gn(x) < +∞.

If the distribution of ξ1,n does not depend on n, then conditions A and D′ coincide with
the condition of the Gnedenko’s theorem that Sm possesses a bounded density for some
m. Thus, conditions A and D are, in fact, an appropriate n-dependent version of the
condition of the Gnedenko’s theorem.

3. Condition C is an n-dependent version of the so-called Cramer’s (C)-condition
([2], Chapter III, §3). Since its straightforward verification is not a trivial problem, we
provide a sufficient condition for it.

Proposition 2. Suppose that there exist a non-empty interval I = (u, v) and a constant
C > 0 such that

gn(x) ≥ C, x ∈ (u, v), n ∈ N. (6)
Then C holds true.

3. Proofs

We start the proof of Theorem 2 with the following estimate for the characteristic
function of S. Denote Ψ(z) = ibz − 1

2z2M({0}) +
∫

R\{0}
eizx−1−izx

x2 M(dx), z ∈ R.

Lemma 1. Under conditions (2),(3) and B,E,

lim inf
|z|→∞

ReΨ(z)
ln |z| ≤ −B

(1 − cos 1)
2

. (7)

Proof. Denote by Φ̂ the characteristic function of the variable Ŝ = S − S′, where S′ is
an independent copy of S. It is easy to see that the array {X̂k,n} satisfies condition (2)
and, under condition (3), Ŝn = X̂1,n + · · · + X̂cn,n ⇒ S − S′ = Ŝ. Thus, condition (3)
also holds true for b̂n = 0 and M̂n, i.e. M̂n → M̂ for some canonical measure M̂ and Φ̂
possesses the representation

Φ̂(z) = eΨ̂(z), Ψ̂(z) = −1
2
z2M̂({0}) +

∫
R\{0}

eizx − 1 − izx

x2
M̂(dx), z ∈ R.
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Since
EeizŜ = EeizSEe−izS′

= |EeizS |2, (8)

we have that ReΨ(z) = 1
2 Ψ̂(z) and, in order to prove (7), it is sufficient to prove that

lim inf
ln |z|→∞

Ψ̂(z)
|z| ≤ −B(1 − cos 1). (9)

We have

Ψ̂(z) = ReΨ̂(z) = −1
2
z2M̂({0}) +

∫
R\{0}

cos zx − 1
x2

M̂(dx), z ∈ R,

and therefore (9) holds true immediately as soon as M̂({0}) > 0. Thus, we exclude this
case from consideration and suppose further that M̂({0}) = 0.

Conditions B and E together with the proper convergence M̂n → M̂ provide that(
ε2 ln

1
ε

)−1 ∫ ε

−ε

M̂{dx} ≥ B, 0 < ε < ε0. (10)

Now (9) follows from the given below estimate, that, in fact, is the main point in the
proof of the sufficiency of the Kallenberg condition. Elementary calculations show that
cos y−1

y2 ≤ cos 1 − 1, |y| ≤ 1. Then, for |z| > ε−1
0 ,

Ψ̂(z)
ln |z| =

1
ln |z|

∫ +∞

−∞

cos zx − 1
x2

M̂{dx} ≤ 1
ln |z|

∫ |z|−1

−|z|−1

cos zx − 1
x2

M̂{dx} ≤

≤ −(1−cos 1) · z2

ln |z|
∫ |z|−1

−|z|−1
M̂{dx} ≤ −(1−cos 1) · z2

ln |z| ·B ·(z−2 ln |z|) = −B(1−cos 1).

(11)
Here, in the last inequality, we have used (10) with ε = |z|−1. Lemma 1 is proved.

Corollary. The characteristic function Φ = eΨ belongs to L1(R, dx), and therefore
the law of S possesses a continuous density f(x) = (2π)−1

∫
R

e−izxΦ(z) dz, x ∈ R.
Proof of Theorem 2. Let us introduce some notations. Without loss of generality,

we assume that m = 1. Denote, by ϕn, Φn, ϑ̂n, Φ̂n, the characteristic functions for the
variables ξ1,n, Sn, X̂1,n, Ŝn, respectively. Condition D implies that, for cn > 1, the law
of Sn possesses a continuous density fn(x) = (2π)−1

∫
R

e−izxΦn(z) dz, x ∈ R and thus

Δn ≡ 2π sup
x∈R

|fn(x) − f(x)| ≤
∫

R

|Φn(z) − Φ(z)| dz

≤
∫ A

−A

|Φn(z) − Φ(z) | dz +
∫
|z|≥A

|Φ(z) | dz +
∫
|z|≥δdn

|Φn(z) | dz

+
∫

A≤|z|≤δdn

|Φn(z) | dz

= I1(n, A) + I2(A) + I3(n, δ) + I4(n, δ, A),

where A, δ > 0 are an arbitrary constants. Let us investigate integrals I1 – I4 separately.
I. Since Sn ⇒ S, n → ∞, Φn(·) → Φ(·) uniformly on every bounded interval. Thus,

for every fixed A > 0, I1(n, A) → 0, n → +∞.
II. Since Φ ∈ L1(R, dx) due to Lemma 1, I2(A) → 0, A → +∞.
III. We have |Φn(z)| = |ϕn(d−1

n z)|cn , and therefore

I3(n, δ) =
∫
|z|≥δdn

|Φn(z) | dz =
∫
|z|≥δdn

|ϕn(d−1
n z)|cn

dz = dn

∫
|v|≥δ

|ϕn(v)|cn dv ≤
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≤ dnN(δ)cn−2
∫

R

|ϕn(v)|2 dv = (2π)−1dnN(δ)cn−2
∫

R

|gn(x)|2 dx.

Thus, conditions C, D and E provide that, for every fixed δ > 0, I3(n, δ) → 0, n → +∞.
IV. We have |Φn(z)|2 = |Φ̂n(z)| = |ϑ̂n(z)|cn

. Denote ψ̂n(z) = cn(ϑ̂n(z) − 1); recall
that the distribution of X̂1,n is symmetric, and therefore the function ϑ̂n is real-valued.
Then, using the elementary inequality ln(1 + x) ≤ x, x > −1, we obtain that

|Φn(z)|2 ≤ eψ̂n(z) = exp
[
cn

∫
R

(cos zx − 1)dF̂n(x)
]

.

Now we use condition B with ε = |z|−1 and repeat estimate (11):

|Φn(z) |2 ≤ exp

[
−(1 − cos 1) z2

∫ |z|−1

−|z|−1
cny2 dF̂n(x)

]

≤ exp [−(1 − cos 1) B ln |z|] = z−(1−cos 1) B

for n ≥ n0,
1
ε0

≤ |z| ≤ dn

a . Thus, if δ < 1
a and A > 1

ε0
, then

I4(n, δ, A) ≤
∫
|z|≥A

z−
(1−cos 1) B

2 dz → 0, A → +∞, n ≥ n0.

Now, let ε > 0 be fixed. Take δ = 1
2a and choose A such that I4(n, δ, A) < ε

4 for every
n ≥ n0 and I2(A) < ε

4 . Then choose N ≥ n0 such that, for every n ≥ N , I1(n, A) < ε
4

and I3(n, δ) < ε
4 . Under such a choice,

Δn <
ε

4
+

ε

4
+

ε

4
+

ε

4
= ε, n ≥ N.

Theorem 2 is proved.
Proof of Proposition 2. We have

ϕn(z) =
∫

R

eizxgn(x) dx

=
∫ v

u

Ceizx dx +
(∫ v

u

(
eizxgn(x) − C

)
dx +

∫
R\[u,v]

eizxgn(x) dx

)
= C(v − u)	(z) + Υn(z),

where 	 is the characteristic function of the uniform distribution on [u, v]. Since gn(x) ≥
C on [u, v], we have that

|Υn(z)| ≤
∫ v

u

(gn(x) − C) dx +
∫

R\[u,v]

gn(x) dx = 1 − C(v − u).

On the other hand, the uniform distribution satisfies Cramer’s (C)-condition:

sup
|z|>δ

|	(z)| < 1 for any δ > 0.

This implies that

N(δ) = sup
n∈N,|z|>δ

|ϕn(z)| ≤ 1 − C(v − u) + C(v − u) sup
|z|>δ

|	(z)| < 1, δ > 0.

Proposition a is proved.
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4. An example

In this section, we give one example for the statement of Theorem 2. Let M be the
canonical measure of the form M{dx} =

x

ex − e−x
dx. If the characteristic function Φ of

a random variable S is given by formula (4) with this measure M and b = 0, then S has

a distribution density f of the form f(x) =
1

πchx
(the law of S is called the hyperbolic

cosine distribution).

Denote Πt{dx} =
1
x2

1I|x|>tM{dx}. Define the sequence {tn} in such a way that

Πtn{R} = n. Since lim
x→0

ex − e−x

2x
= 1, one can show that tn ∼ 1/n, n → ∞.

Consider the triangular array {Xk,n, 1 ≤ k ≤ n} with the distribution functions of
X1,n being equal to Fn(x) = 1

nΠtn((−∞, x]), x ∈ R, n ≥ 1. It is clear that X1,n, n ≥ 1
possess the distribution densities

pn(x) =
1
n

1
x(ex − e−x)

1I|x|>tn
, x ∈ R, n ≥ 1.

One can easily verify that conditions (2),(3) are satisfied and therefore Sn ⇒ S. Now
we are going to show that, for the distributions of Sn, the local limit theorem also holds
true. In order to do this, we represent the array {Xk,n} in the form (5′) in such a way
that conditions A – E hold true.

We put dn = n and ξk,n = nXk,n, 1 ≤ k ≤ n. Since in the case under consideration
cn = n, E holds true. The variables ξk,n possess the distribution densities

gn(x) =
1
n

pn

(x

n

)
=

1
n2

(
x

n

(
ex/n − e−x/n

))−1

1I|x|>ntn

=
1
x

(
n

(
ex/n − e−x/n

))−1

1I|x|>ntn

and thus A holds true. We have gn(x) ≤ 1
2x2 1I|x|>ntn

, that provides D′ (and therefore D).
Next, since ntn → 1, n → ∞, there exists d > 0 such that ntn < d, n ∈ N. Then, on

the interval [d + 1, d + 2], the following estimate holds

gn(x) =
1
x2

x/n

ex/n − e−x/n
≥ 1

x2

x

ex − e−x
≥ 1

xex
≥ 1

(d + 2)ed+2
.

This provides C.
At last, let us verify condition B. Take a > 0 such that tn < a

2n , n ∈ N. Then, for
ε > a

n , we have ε > 2tn and therefore

1
ε2 ln 1/ε

∫ ε

−ε

Mn{dx} =
2

ε2 ln 1/ε

∫ ε

tn

x

ex − e−x
dx

≥ 2(ε − tn)
ε(eε − e−ε) ln 1/ε

≥ 1
(eε − e−ε) ln 1/ε

.

Since (eε − e−ε) ln 1/ε → 0, ε → 0, for a given B > 2
1−cos 1 , there exists ε0 such that

(eε − e−ε) ln 1/ε ≤ B, ε < ε0. At last, there exists n0 such that 2a/n < ε0, n ≥ n0.
Condition B holds true with B, ε0, n0 given before.

All the conditions of Theorem 2 are verified, and thus we conclude that, for the
sequence Sn = X1,n + · · · + Xn,n given before, the correspondent distribution densities
converge uniformly to the density of the hyperbolic cosine distribution.
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