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FUNCTIONAL ITERATED LOGARITHM LAW

FOR A WIENER PROCESS

The functional iterated logarithm law for a Wiener process in the Bulinskii form for
great and small times is proved.

1. Introduction. Let w(t) be a d-dimensional Wiener process on the probability
space (Ω,F , P ), t ≥ 0. Introduce the sequence of random processes

ξn(t) =
w(nt)√
nϕ(n)

, n = 3, 4, ... (1)

where ϕ(n) is an arbitrary sequence.
In [1], A.V. Bulinskii proved a version of the Strassen iterated logarithm law in which

the normalizing function ϕ(n) is an arbitrary monotone increasing function. Let us
formulate this result.

Denote, by C([0, 1]; Ed), the space of all continuous functions x(t) on the interval [0, 1]
with values in the Euclidean space (Ed, | · |) and with norm

||x|| = sup
t∈[0,1]

|x(t)|, (2)

Let K1([0, 1]; Ed) be the space of functions x(t) ∈ C([0, 1]; Ed) such that x(0) = 0 and
x(t) =

∫ t

0 ẋ(s)ds for some function ẋ(·) ∈ L2([0, 1]; Ed). We set

||x||K1 = ||ẋ||L2([0,1];Ed). (3)

Following [1], we define Φ as a class of all increasing functions ϕ(t), t ≥ 0, such that
limt→∞ ϕ(t) = ∞. Now we introduce a functional

J(ϕ, r, c) =
∞∑

k=1

exp
{−rϕ2([ck])

2

}
, c > 1, (4)

where [·] denotes the integer part of a number. For every ϕ ∈ Φ, we denote

R2(ϕ) = inf{r > 0 : J(ϕ, r, c) < ∞}, (5)

and R(ϕ) = ∞ if there exists no r < ∞ such that J(ϕ, r, c) < ∞. Let us remark that if
J(ϕ, r, c0) < ∞ for a certain c0 > 1, then J(ϕ, r, c) < ∞ for every c > 1.

Let KR = {x(t) ∈ K1, ||x||K1 ≤ R2}.
In [1, Theorem 1], the following result was proved.
Bulinskii theorem. For ϕ ∈ Φ, the limit set of sequence (1), t ∈ [0, 1], coincides

with KR, and R = R(ϕ) is defined in (5).
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In [1, Theorem 3], it was proved that R can be defined as R = 1
Q , where

Q = lim
t→∞

ϕ(t)√
2 ln ln t

.

This theorem yields the usual functional Strassen iterated logarithm law and allows us to
study the asymptotic behavior of the process ξn(t) for normalizing functions ϕ(n) such
that limt→∞

ϕ(t)√
2 ln ln t

= ∞.

In the present article, we generalize this result in two directions. First, we consider
sequence (1) on the whole time axis and, second, we prove a local version of the Bulinskii
theorem.

2. Functional iterated logarithm law on the whole time axis.
Let C([0,∞); Ed) denote the space of all continuous functions on [0,∞) with values

in Ed. We set

Θ =
{
θ ∈ C([0,∞) : Ed) : θ(0) = 0, lim

t→∞
|θ(t)|

t
= 0

}
.

On this space, we define the metric

||θ||Θ = sup
t≥0

| θ(t)|
1 + t

. (6)

Then (Θ, ||·||Θ) is a separable Banach space. Let H1([0,∞); Ed) be the space of functions
θ ∈ Θ such that θ(t) =

∫ t

0 θ̇(s)ds for some θ̇ ∈ L2([0,∞); Ed). We define

||θ||H1 = ||θ̇||L2([0,∞);Ed). (7)

Lemma. There exists the bijective correspondence between the spaces K1([0, 1]; Ed)
and H1([0,∞); Ed). If f ∈ K1([0, 1]; Rd), then

g(t) =
∫ t

0

ḟ
( s

s + 1

) 1
1 + s

ds ∈ H1([0,∞); Ed). (8)

Conversely, if g ∈ H1([0,∞); Rd), then

f(t) =
∫ t

0

1
1 − s

ġ
( s

1 − s

)
ds ∈ K1([0, 1]; Ed). (9)

Furthermore, ||g||H1([0.∞);Ed) = ||f ||K1([0,1];Ed).

Proof. Let f ∈ K1([0, 1]; Ed). It is necessary to prove that, for the function g(x) from
(8),

lim
t→∞

|g(t)|
t

= 0. (10)

According to the Cauchy–Buniakowski inequality,

|g(t)|2 =
∣∣∣ ∫ t

t+1

0

ḟ(s)
1

1 − s
ds

∣∣∣2 ≤ ||f ||2K1

∫ t
t+1

0

1
(1 − s)2

ds = t||f ||2K1 .

This yields (10). It is easy to verify the equality of norms. Lemma is proved.
In what follows, we will use the Schilder theorem [2, Theorem 1.3.27] on large devia-

tions of a Wiener process with small variance. For convenience, we present its formula-
tion. Define

I(ψ) =

⎧⎨
⎩

0, if ψ /∈ H1([0,∞); Ed),
1
2
||ψ||H1 , if ψ ∈ H1([0,∞); Ed).
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Schilder theorem. Let Wε(·) be the measure corresponding to a process εw(t) on
the space Θ with a Borel σ-algebra B. Then

a) for any closed set A ∈ B,

lim
ε→0

ε2Wε(A) ≤ − inf{I(ψ); ψ ∈ A}; (11)

b)for any open set B ∈ B,

lim
ε→0

ε2Wε(B) ≥ − inf{I(ψ); ψ ∈ B}. (12)

The functional I(ψ) is called the action functional for a family Wε(·). For any a < ∞,
the set {ψ : I(ψ) ≤ a} is closed in the space (Θ,B).

Introduce a class of functions LR :

LR = {θ(t) ∈ H1 : ||θ||H1([0,∞);Ed) ≤ R2}, (13)

where R = R(ϕ) is defined in (5).
Theorem 1. For ϕ ∈ Φ with probability 1, the set of limit points of sequence (1) is

LR, where R is defined in (5).
Proof. We prove the theorem in three standard steps. Let us denote nk = [ck],

zk(t) = ξnk
(t).

Step 1). We need to prove that, for every R2 < ∞, every c > 1, and every δ > 0,
there exists a positive integer k0 such that, for every k > k0,

ρ(zk,LR) < δ. (14)

We set Nδ = {ψ : ρ(ψ,LR) ≥ δ}. Then there exists η > 0 such that

inf
ψ∈Nδ

I(ψ) ≥ R2

2
+ η.

As the set Nδ is closed, relation (11) yields

P
{
zk ∈ Nδ

}
≤ exp

{
− ϕ2(ck)

(R2

2
+ η

)}
By the definition of the number R, we have

∑
k P

{
zk ∈ Nδ

}
< ∞. By applying the

Borel–Cantelli lemma, we get (14). Step 1) is proved.
Step 2). For R2(ϕ) < ∞, we need to prove that every limit point of the sequence ξn(t)

is an element of LR. If n = nk, thos follows from step 1). Let now n ∈ [nk, nk+1]. Denote
ψ(n) =

√
nϕ(n). Since the function ψ(n) is nondecreasing, we can write

1
ψ(n)

=
αnk

ψ(nk)
+

βnk

ψ(nk+1)
, (15)

where αnk ≥ 0, βnk ≥ 0 and αnk +βnk = 1. Set z̃nk(t) = αnkzk(t)+βnkzk+1(t). We note
that, for large k, the functions z̃nk ∈ {f : ρ(f,LR) < δ}. This follows from the fact that
if the functions x(t), y(t) ∈ LR and α, β ≥ 0, α + β = 1, then αx(t) + βy(t) ∈ LR. The
assertion of step 2) will be proved if we prove the following estimate: for every δ > 0,
there exist a number c > 1 and a positive integer k0 such that, for every k > k0,

sup
t≥0

1
1 + t

sup
n∈[nk,nk+1]

|ξn(t) − z̃nk(t)| < δ (16)

with probability 1. From (15), we have

ξn(t) =
w(nk

n
nk

t)

ψ(n)
= zk

( n

nk
t
)ψ(nk)

ψ(n)
= αnkzk

( n

nk
t
)

+ βnkzk+1

( n

nk+1
t
)
.
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Hence,
|ξn(t) − z̃nk(t)| ≤

∣∣∣zk(t) − zk

( n

nk
t
)∣∣∣ +

∣∣∣zk+1(t) − zk+1

( n

nk+1
t
)∣∣∣ (17)

Then
sup

n∈[nk,nk+1]

∣∣∣zk(t) − zk

( n

nk
t
)∣∣∣ ≤ sup

s∈[t,ct]

|zk(t) − zk(s)|. (18)

Similarly,

sup
n∈[nk,nk+1]

∣∣∣zk+1(t) − zk+1

( n

nk+1
t
)∣∣∣ ≤ sup

s∈[ t
c ,t]

|zk+1(t) − zk+1(s)|. (19)

For an arbitrary fixed c, we introduce the sets Lδ and Mδ:

Lδ =
{
f(t) ∈ Θ : sup

t≥0

1
1 + t

sup
s∈[t,ct]

|f(s) − f(t)| ≥ δ
}
,

Mδ =
{
f(t) ∈ Θ : sup

t≥0

1
1 + t

sup
s∈[ t

c ,t]

|f(s) − f(t)| ≥ δ
}

From (17)–(19), we get

P
{

sup
t≥0

1
1 + t

sup
n∈[nk,nk+1]

|ξn(t) − z̃nk(t)| ≥ δ
}
≤ P{zk ∈ L δ

2
} + P{zk+1 ∈ M δ

2
}. (20)

The sets Lδ and Mδ are closed in Θ for every c < ∞. We prove this assertion, for
example, only for the set Lδ. Let fn(t) ∈ Lδ and limn→∞ ||fn − f ||Θ = 0. Then the
inequalities

δ ≤ sup
t≥0

1
1 + t

sup
s∈[t,ct]

|fn(s) − fn(t)| ≤ sup
t≥0

1
1 + t

sup
s∈[t,ct]

|fn(s) − f(s)|+

+ sup
t≥0

1
1 + t

sup
s∈[t,ct]

|f(s) − f(t)| + sup
t≥0

1
1 + t

sup
s∈[t,ct]

|fn(t) − fn(t)| ≤

≤ sup
t≥0

1
1 + t

sup
s∈[t,ct]

(1 + s)
|fn(s) − f(s)|

1 + s
+ sup

t≥0

1
1 + t

sup
s∈[t,ct]

|f(s) − f(t)|+

+ ||fn − f ||Θ ≤ c||fn − f ||Θ + sup
t≥0

1
1 + t

sup
s∈[t,ct]

|f(s) − f(t)| + ||fn − f ||Θ

yield

δ ≤ (1 + c)||fn − f ||Θ + sup
t≥0

1
1 + t

sup
s∈[t,ct]

|f(s) − f(t)|.
Passing to the limit in the last inequality as n → ∞, we obtain f ∈ Lδ.

Applying (11), we have

P{zk ∈ L δ
2
} ≤ exp{−ϕ2(nk) inf

f∈Lδ

I(f)}. (21)

Since

sup
s∈[t,ct]

|f(s) − f(t)|2 = sup
s∈[t,ct]

∣∣∣ ∫ s

t

ḟ(u)du
∣∣∣2 ≤ (c − 1)tI(f),

we get
δ2

4
≤ sup

t≥0

1
(1 + t)2

sup
s∈[t,ct]

|f(s) − f(t)|2 ≤ c − 1
4

I(f)

for f ∈ L δ
2
. If we choose c = 1 + 2δ2

R2 , then

inf
f∈Lδ

I(f) ≥ R2

2
. (22)
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Relations (21) and (22) and the definition of R2 yield
∑

k

P{zk ∈ L δ
2
} ≤

∑
k

exp
{
− ϕ2(nk)

R2

2

}
< ∞. (23)

In an analogous way, we can prove for the same c that∑
k

P{zk+1 ∈ M δ
2
} ≤

∑
k

exp
{
− ϕ2(nk)

R2

2

}
< ∞. (24)

From (20), (23), (24) and the Borel–Cantelli lemma, we get (16). Thus, step 2) is proved.
Step 3). In order to complete the proof of Theorem 1, we need to prove that if R2 ≤ ∞,

then every g ∈ Lr is a limit point of zk for r < R. That is, there exists a sequence nk

such that, with probability 1,
lim

k→∞
ρ(ξnk

, g) = 0. (25)

Applying the Itô formula to the Wiener process w(t) and to the function f(s, x) =
n

n−s(x, a) s ∈ [0, tn
t+n ], n > 0, a is an arbitrary vector from Ed, we have

t + n

n

(
w

( tn

t + n

)
, a

)
=

∫ tn
t+n

0

n

(n − s)2
(w(s), a) ds +

∫ tn
t+n

0

n

n − s
(dw(s), a).

Whence we get∫ tn
t+n

0

n

n − s
dw(s) =

t + n

n
w

( tn

t + n

)
−

∫ tn
t+n

0

n

(n − s)2
w(s) ds =

=
t + n

n
w

( tn

t + n

)
− 1

n

∫ t

0

w
( vn

v + n

)
ds.

(26)

The random process ηn(t) =
∫ tn

t+n

0
n

n−s dw(s) is a process with independent increments,
because it is defined on nonintersecting intervals by independent increments of the Wiener
process. By the property of stochastic integrals, we have

E exp
{
iλ(ηn(t) − ηn(s))

}
= exp

{
− λ2

2

∫ tn
t+n

sn
s+n

n2

(n − u)2
du

}
= exp

{
− λ2

2
(t − s)

}
.

Hence, the process ηn(t) is also a Wiener process for any n. From (26), we obtain

η̃n(t) =
ηn(nt)√
nϕ(n)

= (t + 1)
w

(
n t

t+1

)
√

nϕ(n)
−

∫ t

0

w
(
n s

s+1

)
√

nϕ(n)
ds. (27)

Let a function g ∈ Lr . Define a function f(t) by (9). By virtue of the lemma, f ∈ Kr. It
follows from (8) that the function g(t) admits the representation

g(t) = (t + 1)f
( t

t + 1

)
−

∫ t

0

f
( s

s + 1

)
ds. (28)

From (27) and (28), we get

η̃n(t) − g(t) = (t + 1)

[
w

(
n t

t+1

)
√

nϕ(n)
− f

( t

t + 1

)]
−

∫ t

0

[
w

(
n s

s+1

)
√

nϕ(n)
− f

( s

s + 1

)]
ds.

Whence

|η̃n(t) − g(t)|
1 + t

≤
∣∣∣∣∣
w

(
n t

t+1

)
√

nϕ(n)
− f

( t

t + 1

)∣∣∣∣∣+ t

1 + t
sup

t∈[0,1]

|ξn(t) − f(t)|.
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Thus,
||η̃n − g||Θ ≤ 2||ξn − f ||,

and {
||ξn − f || < δ

}
⊂

{
||η̃n − g||Θ < 2δ

}
. (29)

As has been stated above, the law of the process ηn(t) is the same as that of the process
w(t). Therefore,

P
{
||η̃n − g||Θ < 2δ

}
= P

{
||ξn − g||Θ < 2δ

}
. (30)

Consider the events

Ak = {||ξnk
− f || < δ}, Bk = {||η̃nk

− g||Θ < 2δ}, Ck = {||ξnk
− g||Θ < 2δ}

By the Bulinskii theorem, there exists a sequence nk such that, for the processes ξn(s)
for s ∈ [0, 1] and every δ- neighborhood of the function f :

P{ξnk
∈ (f)δ i.o.} = 1, (31)

where i.o. means ”infinitely often”. Equality (31) yields

P
{ ∞⋂

m=1

∞⋃
l=m

Al

}
= lim

m→∞P
{ ∞⋃

l=m

Al

}
= 1.

By virtue of (29), Ak ⊂ Bk. Hence,

P
{ ∞⋂

m=1

∞⋃
l=m

Bl

}
= lim

m→∞P
{ ∞⋃

l=m

Bl

}
≥ lim

m→∞P
{ ∞⋃

l=m

Al

}
= 1.

For this reason, the events Bk take place infinitely often, and

lim
k→∞

P (Bk) = 1.

¿From this and (30), we get

P
{ ∞⋂

m=1

∞⋃
l=m

Cl

}
= lim

m→∞P
{ ∞⋃

l=m

Cl

}
≥ lim

m→∞P
{

Cm

}
= lim

m→∞P
{
Bm

}
= 1. (32)

It follows from (32) that, with probability 1, the events Ck take place infinitely often.
Equality (25) and Theorem 1 are proved.

3. Small-time functional iterated logarithm law.
We will prove a result similar to Theorem 1 for the process

wn(t) =
w( t

n )√
1
nϕ(n)

, t ∈ [0,∞), n ≥ 3. (33)

To this end, we make use a method from [3]. On the space Θ, we define a time inversion
transformation T by the formula

(Tθ)(t) =

⎧⎨
⎩

0, t = 0,

t θ(
1
t
), t > 0.

In [3], it is noted that the transformation T is bijective on Θ. Furthermore, T is an
isometry from Θ onto Θ and from H1 onto H1:

||θ||Θ = ||Tθ||Θ, ||θ||H1 = ||Tθ||H1 . (34)

Theorem 2. For ϕ ∈ Φ, the set of limit points of sequence (33) is LR with probability
1, where R is defined in (5).
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Proof. We denote

w̃(t) = (Tw)(t) =

⎧⎨
⎩

0, t = 0,

t w(
1
t
), t > 0.

It is known that w̃(t) is also a Wiener process. For t > 0,

w̃(nt)√
nϕ(n)

= t
w(1

t
1
n )√

1
nϕ(n)

. (35)

From (35), we get

sup
t≥0

1
1 + t

∣∣∣∣∣ w̃(nt)√
nϕ(n)

− (Tf)(t)

∣∣∣∣∣= sup
t≥0

1
1 + t

∣∣∣∣∣wn(t) − f(t)

∣∣∣∣∣. (36)

Suppose that there exists a subsequence nk such that

lim
nk→∞ ||wnk

− f ||Θ = 0. (37)

From (36), we have

lim
nk→∞ sup

t≥0

1
1 + t

∣∣∣∣∣ w̃(nkt)√
nϕ(nk)

− (Tf)(t)

∣∣∣∣∣= 0. (38)

According to Theorem 1, we conclude that (Tf)(t) ∈ LR. Then relations (34) imply that
f(t) ∈ LR. Thus, each limit point of the sequence wn(t) is an element of LR. Conversely,
let a function f(t) ∈ LR. Then, by (34), the function (Tf)(t) ∈ LR and, by virtue of
Theorem 1, there exists a subsequence nk such that

lim
nk→∞ sup

t≥0

1
1 + t

∣∣∣∣∣ w̃(nkt)√
nϕ(nk)

− (Tf)(t)

∣∣∣∣∣= 0.

This relation and (36) yield (37). Theorem 2 is proved.
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