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SILVELYN ZWANZIG

ON LOCAL LINEAR ESTIMATION IN
NONPARAMETRIC ERRORS-IN-VARIABLES

MODELS

Local linear methods are applied to a nonparametric regression model
with normal errors in the variables and uniform distribution of the
variables. The local neighborhood is determined with help of decon-
volution kernels. Two different linear estimation method are used:
the naive estimator and the total least squares estimator. Both local
linear estimators are consistent. But only the local naive estimator
delivers an estimation of the tangent.

1. Introduction

Errors-in-variables models are essentially more complicated as ordinary
regression models. The design points are observed with errors only, such
that the models include an increasing number of nuisance parameters. Nev-
ertheless it is wanted to estimate a regression function belonging to some
smoothness class.

Fan and Truong (1993) applied the deconvolution technique of density
estimation to nonparametric regression with errors in variables. The main
idea was to use kernel estimators with deconvolution kernels.

In ordinary regression a method of bias reducing is the local polynomial
regression, see [1]. Local linear regression has two main aspects.

- Around the wanted x a local neighborhood is defined.
- The regression function is approximated by its tangent at x. This

tangent is estimated by usual methods with observations coming from the
neighborhood.

The definition of the neighborhood of x is not trivial in errors-in-variables
models, because observations of design points near the wanted x can come
from a design point lying far away.
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J. Staudenmayer and D. Ruppert (2004) applied the local polynomial
approach to errors-in-variables models. They derived asymptotic results for
decreasing error variances. The local neighborhood is described by weights
basing on ordinary kernels at the observed variables. The tangent (or the
best polynomial) was estimated by a weighted naive estimator.

In this paper we are interested in consistent local linear regression, where
the consistency is based on increasing sample size. Unfortunately the best
possible rates are slow. For normal errors of the variables the best possible
rate is OP

(
(log n)−

1
2

)
.

In this paper we describe the local environment by deconvolution kernels.
That is an adjustment of the errors in variables. As estimation methods for
the tangent two different estimators from the theory of the linear errors-in-
variables model are taken: a weighted linear naive estimator and a weighted
total least squares estimator. The unweighted naive estimator has a bias in
usual linear errors-in-variables models. The unweighted total least squares
estimator is consistent and is the maximum likelihood estimator in linear
errors-in-variables models with normal error distributions.

The main result is that both procedures deliver consistent estimators,
but only the weighted naive estimator is an estimator of the tangent. The
weighted total least squares estimator estimates something else. The limit
value of the slope is derived. A heuristic interpretation of this effect may
be, that the weights basing on the deconvolution kernels and the total least
squares estimation principle are two independent adjustments for the same
thing.

2. The model and methods

Let the observations (x1, y1), ...(xi, yi), ...(xn, yn) be independently dis-
tributed, generated by

yi = g (ξi) + εi (1)

xi = ξi + δi. (2)

The error variables εi, δi, i = 1, ..., n are mutually independent with
expectation zero and bounded fourth moments, with V ar (εi) = σ2 and
V ar (ε2

i ) ≤ μ4
ε. The errors in the errors-in-variables equation (2) are normal

distributed
δi ∼ N(0, σ2) i.i.d., σ2 > 0. (3)

The unobserved design points come from an uniform distribution

ξi ∈ [0, 1] , i.i.d. U [0, 1]. (4)

and ξi, εi, δi are mutually independent. We assume a smooth regression
function g ∈ C2

[0,1] with
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∣∣∣g(2) (x) − g(2) (x + δ)
∣∣∣ ≤ Lδ. (5)

The aim is to estimate g(x) for a given x ∈ (0, 1).
Further we introduce kernel functions K(.) with∫ ∞

−∞
K(u)du = 1, K(u) = K(−u),

∫ ∞

−∞
K(u)2du = μK < ∞ (6)

and with compact supported Fourier transform

ΦK (t) =
∫

exp(itu)K(u)du, ΦK (t) = 0 for t < a, t > b. (7)

Furthermore we assume that the second derivative of the kernel exists and
that for some constants μ′

K , μ′′
K , cK , c′K∫ ∞

−∞
K ′(u)2du = μ′

K < ∞;
∫ ∞

−∞
K ′′(u)2du = μ′′

K < ∞, (8)

∣∣∣u4K(u)
∣∣∣ ≤ cK ,

∣∣∣u4K ′(u)
∣∣∣ ≤ c′K . (9)

Examples for kernels fulfilling these conditions (6) - (9) are

K2(u) = 48 cos(u)
πu4 (1 − 15

u2 ) − 144 sin(u)
πu5 (2 − 5

u2 ) and K3(u) = 3
8π

(
sin(u

4 )
(u

4 )

)4

.

Note the sinc kernel K1(u) = 1
π

sin(u)
u

does not fulfill the condition (9).

We set the bandwidth hn = C(log n)−
1
2 , C sufficiently large. That is the

optimal bandwidth in the model (1) - (3), see [2].
In ordinary local linear regression common local weights are

wi (x) =
K

(
ξi−x
hn

)
∑n

i=1 K
(

ξi−x
hn

) . (10)

In errors-in-variables models the design points ξi are unknown, that is why
we have chosen

w∗
i (x) =

K∗
hn

(
xi−x
hn

)
∑n

i=1 K∗
hn

(
xi−x
hn

) , (11)

where K∗
hn

is the deconvolution kernel of K defined by

K∗
hn

(u) =
1

2π

∫
exp(−itu +

1

2
σ2 t2

h2
n

) ΦK (t) dt. (12)

Note, that the dominators in (10) and (11) are positive with increasing
probability, because they are consistent density estimators, compare also
(22).
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For weighted means and weighted quadratic forms with weights (10) we
use an analog notation as in [3]: xw, ξw, mξξ, myx, ..., mgg. If the weights (11)
are used, then we write x∗

w, ξ
∗
w, m∗

ξξ, m∗
yx, ..., m

∗
gg. Thus xw =

∑n
i=1 wi(x)xi,

x∗
w =

∑n
i=1 w∗

i (x)xi and mxy =
∑n

i=1 wi(x)(xi − xw)(yi − yw) and m∗
xy =∑n

i=1 w∗
i (x)(xi − x∗

w)(yi − y∗
w) and so on.

Denote the local linear approximation of g(ξ) by t(ξ) = β0 + β1(ξ − x).
Then the local naive estimator is defined as

ĝnaive(x) = y∗
w − m∗

xy

m∗
xx

(x∗
w − x). (13)

Note that ĝnaive(x) = t̂naive(0) = β̂0,naive, where

(
β̂0,naive, β̂1,naive

)T
= arg min

β0,β1

n∑
i=1

w∗
i (x) (yi − t(xi))

2 .

The local total least squares estimator is defined for m∗
xy �= 0 as

ĝtls(x) = y∗
w − β̂1,tls (x∗

w − x) (14)

with

β̂1,tls =
m∗

yy − m∗
xx +

√
(m∗

yy − m∗
xx)

2 + 4
(
m∗

xy

)2

2m∗
xy

. (15)

Note that ĝtls(x) = t̂tls(0) = β̂0,tls, where

(
β̂0,tls, β̂1,tls

)T
= arg min

β0,β1

n∑
i=1

w∗
i (x) min

ξ

[
(yi − t(ξ))2 + (xi − ξ)2

]
.

3. Main result

In this section the main theorems are proved. The proofs are based on
auxiliary results shown in Section 4.

The following theorem states the consistence of the local naive estima-
tor. Further it is shown that the naive estimator is really an estimator of
the tangent.

Theorem. In the model (1) - (5) and for kernels with (6) - (9) it holds

1. β̂1,naive = g′(x) + OP

(
(log n)−

1
2

)
2. ĝnaive(x) = g(x) + OP

(
(log n)−

1
2

)
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Proof.

1. Using (37) and (38) we get

β̂1,naive =
m∗

xy

m∗
xx

=
−σ2g′(x)

−σ2
+ Op (hn) = g′(x) + Op (hn) .

2. Remember (13). Applying (35), (36) and that β̂1,naive is stochastically
bounded, we obtain the statement.

The following theorem delivers the results for the local total least squares
estimator. The estimator is consistent but does not yield a consistent of the
tangent.
Theorem. In the model (1) - (3) and for kernels with (6) - (9) it holds

1. for g′(x) �= 0

β̂1,tls = − 1

g′(x)

(
1 +

√
1 + g′(x)2

)
+ OP

(
(log n)−

1
2

)
.

2. ĝtls(x) = g(x) + OP

(
(log n)−

1
2

)
Proof.

1. Introduce

F (x) =

⎧⎪⎨⎪⎩
F1(x) for m∗

xy > 0
undefined for m∗

xy = 0
F2(x) for m∗

xy < 0
, (16)

where F1(x) = 1
2
x + 1

2

√
x2 + 4 and F2(x) = 1

2
x − 1

2

√
x2 + 4. Both

functions are increasing. F1 is convex and F2 is concave. The first
derivatives are bounded by 1 for all x. It holds

β̂1,tls = F

(
m∗

yy − m∗
xx

m∗
xy

)
.

Consider zn =
m∗

yy−m∗
xx

m∗
xy

. From (37), (38) and (39) it follows for g′(x) �=
0 that zn = −z + Op (hn) , where z = − 2

g′(x)
. Denote

βlim = − 1

g′(x)

(
1 +

√
1 + g′(x)2

)
.

It holds for g′(x) < 0 that F1(z) = βlim and for g′(x) > 0 that
F2(z) = βlim. Suppose g′(x) > 0, then from (37) follows that

limn→∞ P
(
m∗

xy > 0
)

= 0. We have for T > 0

P
(∣∣∣β̂1,tls − βlim

∣∣∣ > T hn

)
= P

(∣∣∣β̂1,tls − βlim

∣∣∣ > T hn/m∗
xy < 0

)
+ o(1).
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Further

P (|F2(zn) − βlim| > T hn) = P (|F2(zn) − F2(z)| > T hn) = o(1)

for T → ∞. Assume g′(x) < 0, then limn→∞ P
(
m∗

xy < 0
)

= 0. For
T > 0

P
(∣∣∣β̂1,tls − βlim

∣∣∣ > T hn

)
= P (|F1(zn) − F1(z)| > T hn) + o(1).

Hence
lim

T→∞
lim sup

n→∞
P

(∣∣∣β̂1,tls − βlim

∣∣∣ > T hn

)
= 0.

2. Remember (14). Applying (35), (36) and that β̂1,tls is stochastically
bounded, we obtain the statement.

3. Auxiliary results

In [2] it is shown that ExK
∗
h(

x−a
h

) = K( ξ−a
h

). Furthermore we have the
following integral equations.
Lemma. Under x = ξ + δ, δ ∼ N(0, σ2) and for kernels with (6) - (9) it
holds for all a that the expectation with respect to δ is

1.

Ex/ξK
∗
h(

x − a

h
) (x − ξ) =

σ2

h
K

′
(
ξ − a

h
) (17)

2.

Ex/ξK
∗
h(

x − a

h
) (x − ξ)2 =

σ4

h2
K

′′
(
ξ − a

h
) + σ2K(

ξ − a

h
). (18)

Proof.

1. Note that

K ′(u) =
1

2π

∫
(−it) exp(−itu) ΦK (t) dt. (19)

Using exp(−it(x−a
h

)) = exp(−it( ξ−a
h

) exp(−it(x−ξ
h

) and (12) we get

Ex/ξK
∗
h(

x − a

h
)(x − ξ) =

1

2π

∫
exp(−it(

ξ − a

h
))

ΦK (t)

Φδ

(
t
h

)I2 (t) dt

where Φδ (t) = exp(−1
2
σ2t2) and I2(t) =

∫
u exp(−i t

h
u) ϕδ (u) dx with

ϕδ (u) = 1√
2π

exp(−u2

2
). Using the quadratic decomposition we get

exp(−i
t

h
u) ϕδ (u) = Φδ

(
t

h

)
ϕ

(−itσ2

h
,σ2)

(u) , (20)
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where

ϕ(
−itσ2

h
,σ2

) (u) =
1√
2π

σ exp(− 1

2σ2

(
u + it

σ2

h

)2

).

Thus

I2(t) = Φδ

(
t

h

) ∫
u ϕ(

−itσ2

h
,σ2

)(u)du = −it
σ2

h
Φδ

(
t

h

)
.

Summarizing and applying (19) we obtain

Ex/ξK
∗
h(

x − a

h
)(x − ξ) =

σ2

h

1

2π

∫
(−it) exp(−it(

ξ − a

h
)) ΦK (t) dt

=
σ2

h
K ′

(
ξ − a

h

)
.

2. Note that

K ′′(u) = − 1

2π

∫
t2 exp(−itu) ΦK (t) dt. (21)

In the same way as above we get

Ex/ξK
∗
h(

x − a

h
)(x − ξ)2 =

1

2π

∫
exp(−it(

ξ − a

h
))

ΦK (t)

Φδ

(
t
h

)I3 (t) dt,

with I3(t) =
∫

u2 exp(−i t
h
u)ϕδ (u) du. Applying (20) we obtain

I3(t) = Φδ

(
t

h

) ∫
u2ϕ

(−itσ2

h
,σ2)

(u) du =

(
σ2 − σ4

(
t

h

)2
)

Φδ

(
t

h

)
.

Summarizing and using (21) we get

Ex/ξK
∗
h(

x − a

h
)(x − ξ)2

=
1

2π

∫
exp(−it(

ξ − a

h
)) ΦK (t)

(
σ2 − σ4

(
t

h

)2
)

dt

=
σ4

h2
K ′′

(
ξ − a

h

)
+ σ2K

(
ξ − a

h

)
.

Lemma. In the model (1) - (5) and for kernels with (6) - (9) and hn =

C (log n)−
1
2 , C sufficiently large, it holds that:

1.
1

nhn

n∑
i=1

K∗
hn

(
xi − x

hn

)
= 1 + OP

(
(log n)−

1
2

)
(22)
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2.
1

nhn

n∑
i=1

K∗
hn

(
xi − x

hn

)
xi = x + OP

(
(log n)−

3
2

)
(23)

3.

1

nhn

n∑
i=1

K∗
hn

(
xi − x

hn

)
x2

i −
1

nhn

n∑
i=1

K

(
ξi − x

hn

)
ξ2
i (24)

= −σ2 + OP

(
(log n)−

1
2

)
4.

1

nhn

n∑
i=1

K∗
hn

(
xi − x

hn

)
yi =

1

nhn

n∑
i=1

K

(
ξi − x

hn

)
g(ξi)+OP

(
(log n)−

1
2

)
(25)

5.

1

nhn

n∑
i=1

K∗
hn

(
xi − x

hn

)
y2

i (26)

=
1

nhn

n∑
i=1

K

(
ξi − x

hn

) (
g(ξi)

2 + σ2
)

+ OP

(
(log n)−

1
2

)

6.

1

nhn

n∑
i=1

K∗
hn

(
xi − x

hn

)
xiyi − 1

nhn

n∑
i=1

K

(
ξi − x

hn

)
ξig(ξi)(27)

= −σ2g′(x) + OP

(
(log n)−

3
2

)
Proof.

The proofs are based on a sum of i.i.d. random variables of the form
S = 1

nh

∑n
i=1 Zi. For Vn =

∑n
i=1 V ar (Zi) we have

S = ES + Op

(
1

(nh)2
Vn

)
. (28)

Here only the main steps are given, but all details are shown in [5].

1. First we consider S1 = 1
nh

∑n
i=1 Z1,i with Z1,i = K∗

h

(
xi−x

h

)
. We have

for the expectation with respect to δi

Exi/ξi
Z1,i = Exi/ξi

K∗
h

(
xi − x

h

)
= K

(
ξi − x

h

)
.
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Further E
(
K∗

h

(
xi−x

h

))2 ≤ hVK (h) with VK (h) =
∫

K∗
h(u)2du. From

the Parseval equality and (12) it follows that

VK (h) =
∫ ∣∣∣ΦK∗

h
(t)

∣∣∣2 dt =
∫

exp(σ2 t2

h2
) ΦK (t)2 dt.

For kernels K with compactly supported Fourier transform, (7), we
get

VK (h) ≤ max
t∈[a,b]

(exp(σ2 t2

h2
) ΦK (t)2) ≤ const exp(c0h

−2). (29)

Thus for h = hn,

V ar(S1) = 1
nhn

VK (hn) ≤ const exp(c0h
−2
n − ln n − ln(hn)) < const√

n
.

The expectation of S1 with respect to all δi is the ordinary density
estimator of pξ : ES1 = p̂ξ (x) with

p̂ξ (x) =
1

nhn

n∑
i=1

K

(
ξi − x

hn

)
.

Using the model assumption (3) we get (for more details see the
report [5])

p̂ξ (x) = 1 + OP

(
(log n)−

1
2

)
. (30)

2. Here S2 = 1
nh

∑n
i=1 Z2,i with Z2,i = K∗

h

(
xi−x

h

)
xi. From (17) it follows

that

Exi/ξi
Z2,i =

σ2

h
K ′

(
ξi − x

h

)
+ K

(
ξi − x

h

)
ξi. (31)

Further E (Z2,i)
2 ≤ E

(
K∗

h

(
xi−x

h

)
xi

)2 ≤ hc2(ξi)VK (h) . Thus using

a similar argumentation as in (29) we get that the V ar (S2) < const√
n

.
The conditional expectation of S2 can be interpreted as a sum of an
ordinary estimator of p′ξ and of the expectation of an ordinary kernel
estimator

f̂(x) =
1

nh

∑
K

(
ξi − x

h

)
xi (32)

of f(x) = x. Using the model assumption (3) we get (for more details
see the report [5]) for h = hn

ES2 = x + OP

(
h3

n +
1

nhn

)
= x + OP

(
(log n)−

3
2

)
. (33)
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3. Now we have a sum of independent r.v. S3 = 1
nh

∑n
i=1 Z3,i with Z3,i =

K∗
h

(
xi−x

h

)
x2

i . Applying (17), (18) and (31), we obtain Exi/ξi
Z3,i =

K(
ξi − x

h
)
(
σ2 + ξ2

i

)
+ 2ξi

σ2

h
K ′

(
ξi − x

h

)
+

σ4

h2
K

′′
(
ξi − x

h
).

Further we apply similar argumentation as above and use

p̂′ξ (x) = 0 + OP

(
hn +

1

nhn

)
and

1

nhn

n∑
i=1

σ2

hn
K ′

(
ξi − x

hn

)
ξi = −σ2 + OP

(
h3

n +
1

nh3
n

)
.

We estimate V ar (S3) < const√
n

in a similar way as above.

4. Can be shown similarly, see [5].

We use Exi/ξi
Z4,i = K

(
ξi−x

h

)
g (ξi) .

5. Can be shown similarly, see [5].

We use Exi/ξi
Z5,i = K

(
ξi−x

h

) (
g (ξi)

2 + σ2
)
.

6. Can be shown similarly, see [5] with Z6,i = K∗
h

(
xi−x

h

)
yixi. We use

Exi/ξi
Z6,i = E

(
K∗

h

(
xi − x

h

)
xi

)
g (ξi)

=

(
K

(
ξi − x

h

)
ξi +

σ2

h
K ′

(
ξi − x

h

))
g (ξi) .

and that

1

nhn

n∑
i=1

σ2

hn
K ′

(
ξi − x

hn

)
g (ξi) = g′(x) + OP

(
h3

n +
1

nh3
n

)
.

Now we summarize the results for means and quadratic forms with
weights w∗

i .
Lemma. In the model (1) - (5) and for kernels with (6) - (9) and

hn = C (log n)−
1
2 , C sufficiently large, it holds that:

mξξ = OP

(
(log n)−1

)
(34)

xw∗ = x + OP

(
(log n)−

1
2

)
(35)

yw∗ = g(x) + OP

(
(log n)−

1
2

)
(36)

m∗
xx = −σ2 + OP

(
(log n)−

1
2

)
(37)

m∗
xy = −σ2g′(x) + OP

(
(log n)−

1
2

)
(38)

m∗
yy = σ2 + OP

(
(log n)−

1
2

)
(39)
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Proof.

1. We decompose mξξ =
∑n

i=1 wi (x) (ξi − x)2 −
(
ξw − x

)2
thus mξξ ≤∑n

i=1 wi (x) (ξi − x)2 .

Consider 1
nh

∑n
i=1 K

(
ξi−x

h

)
(ξi − x)2 as S = 1

nh

∑n
i=1 Zi . We get from

(9) that

EZi ≤ h2
∫ 1−x

h

0−x
h

|K (u)| u2 du ≤ h2cK

∣∣∣∣∣
∫ 1−x

h

0−x
h

1

|u2|du

∣∣∣∣∣ = O(h3).

The variance term is estimated by E
(
K

(
ξ−x
h

)
(ξ − x)2

)2
= O(h).

Remember (30) we get
∑n

i=1 wi (x) (ξi − x)2 = Op (hn) .

2. Applying (22) and (23) we get

xw∗ =
1

1 + Op (hn)

(
x + Op

(
h3

n

))
= x + Op (hn) .

3. Analogously we estimate yw∗ by using (22) (25), (30)

yw∗ =

1
nhn

∑n
i=1 K

(
ξi−x
hn

)
g (ξi) + Op (hn)

1 + Op (hn)

= gwp̂ξ (x) + Op (hn) = gw + Op (hn) .

Furthermore it holds gw = g(x)+Op

(
h2

n + 1
nhn

)
, compare for instance

Theorem 4 in [5]. Thus yw∗ = g(x) + Op (hn) .

4. Using the decomposition m∗
xx =

∑n
i=1 w∗

i x
2
i − (xw∗)2 . Because of (22),

(24) it holds that

n∑
i=1

w∗
i x

2
i =

1

1 + Op (hn)

1

nhn

n∑
i=1

K∗
hn

(
xi − x

hn

)
x2

i

= −σ2 +
1

nhn

n∑
i=1

K

(
ξi − x

hn

)
ξ2
i + Op (hn) .

Applying (30) we obtain
∑n

i=1 w∗
i x

2
i =

∑n
i=1 wiξ

2
i − σ2 + Op (hn) .

Thus m∗
xx = mξξ−σ2 +Op (hn) . Then the statement (37) follows from

(34).

5. Using the decomposition m∗
xy =

∑n
i=1 w∗

i xiyi − yw∗xw∗ and (22), (27),
and (30) we get

∑n
i=1 w∗

i xiyi =

1

1 + Op (hn)

(
1

nhn

n∑
i=1

K

(
ξi − x

hn

)
ξig(ξi) − σ2g′(x) + Op (hn)

)

=
n∑

i=1

wiξig(ξi) − σ2g′(x) + Op (hn) .
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Under (5) we can show (compare Theorem 4 in [5]) that

mξg = g′(x)mξξ + Op

(
h2

n +
1

nhn

)
.

Then (38) follows from (34), (35), and (36).

6. We consider now m∗
yy =

∑n
i=1 w∗

i y
2
i − (yw∗)

2 . From (22) and (26) we
get

n∑
i=1

w∗
i y

2
i =

1

nhn

n∑
i=1

K

(
ξi − x

hn

)
(g(ξi)

2 + σ2) + 1 + Op (hn) .

Thus by (30)

n∑
i=1

w∗
i y

2
i =

n∑
i=1

wig(ξi)
2 + σ2 + Op (hn) .

Under (5) we can show (compare Theorem 4 in [5]) that

mgg = g′(x)2mξξ + Op

(
h

5
2
n +

1

nhn

)
.

Then (39) follows from (34), (35) and (36).
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