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GRIGORIJ SHURENKOV

THE LENGTH OF THE INTERVAL OF
INDETERMINACY FOR THE ESTIMATE OF
MULTIPLE CHANGE-POINTS

This article considers the problem of estimating the length of the
interval of indeterminacy during construction of change-points’ esti-
mates using dynamical programming. It was proved that mathemati-
cal expectation of the length of the interval has asymptotically linear
dependency on the penalty for a change of distribution when the
number of estimations tends to infinity.

1. INTRODUCTION

The change-points’ problem arises during analysis of geological, economical
data and telemetrical information. There are several ways to the search
for change-points. One of the ways is to consider a-posteriori estimates
of change-points [1,2]. The other tries to find change-point in a minimal
time while observations are still arriving [1,3-5]. In this article we consi-
der the problem of the search for multiple change-points using dynamical
programming. The algorithm of dynamical programming first was applied to
a similar problem in [6]. In |7], there was suggested the fast algorithm of the
search for multiple change-points, in which the problem was reduced to the
search for the optimal sequence of numbers of distributions (‘trajectories’).
When using this algorithm we look for an argument of minimum of some
functional from trajectory, that consists of a linear part and penalties for a
change of distribution in a trajectory. The changes in the found trajectory
will be the estimates for change-points. As that algorithm can be used in
sequential search of that trajectory, the question arises if trajectory obtai-
ned on the current stage change when new data arrives, what is the length
of the interval between the last observation and the observation till which
the trajectory is finalized. In the work [8] was shown that for two distri-
butions the length of the interval of indeterminacy has linear dependency
on the penalty for the change when the number of observations tends to
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infinity. This article extends the results of [8] on the case of several distri-
butions. It was proven that dependency between the length of the interval
of indeterminacy and the penalty for the change is asymptotically linear
when the penalty tends to infinity.

2. THE PROBLEM

The family of random sequences =V = {5{\7,,5%}, N > 1 is consi-
dered. {&N, ... &N} = {&,..., &} is a sequence of independent random
values. It is known, that every element of the sequence has a distribution
from the set {F},..., Fx}. That distributions are unknown to us. P(¢; €
A) = Fyp(A), where h" = {hY,j =1,...,N} is a non-random sequence if
numbers h? € {1,..., K}, that has the following property hg = const when
k’j = [QZN] < ] < [9i+1N], where 0 = 90 < 91 < ... < QR < 9R+1 =1 are
fixed non-random numbers that are called change-moments, k; are called
change-points. Sequences of numbers of distributions h are called trajectori-
es, hY is called the real trajectory of the sequence {&;, ...,y }. Numbers of
distributions are called states.
Denote I' = {1,..., K}. Let a set of functions be given

Qb(,j)RHR, jEF
Functions ¢ can be random. Denote

HY = {(hy,...hn) | hj €T,5=1,..,N}, H= UHN'
N

Let’s introduce the functional J: H — R. The functional is specified for
a trajectory h € ‘H" by the following formula

n

J(h) = Z(Cb(fza hi) — mn(his hic1)),  7n(9,1) = 78 g,

i=1

where mn > 0 is a non-random value. Consider

A~

h = argmax J(h). (1)

heHN

as an estimate for h°
Estimates for change-points are calculated using the trajectory A in the
following way

lzflzkl(il):mlﬂ{l|Bl§£ilj,1§j<l}

~

ki = ki(h) = min{l | by # ;lj,ki—l(h) <J< l}
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— 1-th change-point in the trajectory h. We can say that we consider the
trajectory as series of transitions from one state to another. And i-th transi-
tion in A is the estimate for i-th change-point.

Definition 1. Trajectories g and h are called equivalent if J(h) = J(g).
So, h is defined accurate to equivalent trajectories. Denote

0 = mini;,gj |9, - 9j|,
3. MAIN RESULTS

Trajectory h (1) can be searched sequentially. Denote

¢ (1) = argmax J(h),lel

h={ho,..shj—1,h;} b=l
Then ' '
g, (1) = argmax (J(g'(0)) + 6(§41,1) = mn(0,0)
1€
h = argmax J(h).
h=hN(l),leT
Denote

h* = argmax J(h)
h=g(l),l€T

Until some moment trajectories g’(l) can coincide, that means until that
moment the optimal trajectory is known already. In the case of delays
between observations’ arrival, the question appears about the length of the
interval of indeterminacy. Under that value we mean the number of avai-
lable observations for which the optimal trajectory cannot be found at the
current moment.

To estimate that number for every moment s, consider a random value

x(s) =min {t > s | gi(i) = gi(1),i € '} .

X(s) is the first moment at which the optimal trajectory is known till the
moment s. We are interested in estimation of the difference Ay(s) = x(s)—s.
Denote

x(s,k) =min{t > s | ¢g'(i) =k,i €T}, keT,

TO1
x(s) = min x(s, k).
Definition 2. The state ¢ is called non-favorable at the moment ¢ if the

trajectory ¢**1(i) ends with a transition and favorable in the complement
case.
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Definition 3. The trajectory h is called better that the trajectory g if
J(h) > J(9g).

Definition 4. The state 7 is called optimal at the moment ¢, if J(g'(i)) >
J(g'(4)), Jj €T, j+#i,thestateiis called almost optimal at the moment

t,if J(g'(1)) > J(g'(4)), JeT.
It is obvious that a state is almost optimal at the moment ¢ if there’s a
trajectory equivalent to A’ that ends in that state. If all such trajectories
are ending with the same state then that state is optimal.
Definition 5. Let a € R. The state ¢ is called « - optimal at the moment
t if

J(g'(0)) > J(g'(j) —e, JET, j#i.
The state ¢ is called almost a - optimal at the moment ¢ if

J(g'(0) = J(g'(j) —e, JET, j#i.

We denote the set of all a-optimal states at the moment ¢ as O,.

Introduce the probability measure Px(-), in which &;,...&y have the
distribution Fj. Denote as E; mathematical expectation by that measure.
Formulate the conditions

A. Kk = min;4; E¢/*((;) > 0, ne ¢; is a random value that has the distri-
bution Fj

B. ¢"(¢;) <C <00, i,jeTl
C. D¢'(¢;) <o? < o0, 4,j€T
D. functions ¢(z,j) are independent from &, ... &y

Consider the sequence of stopping epochs

wit = wki(ty) = to, Wi (ty) = min {t > to | max, Z;‘:toﬂ (&) > 7TN}

wy = wi(to) =to,  wi'(to) = w}(to) = wi(wi, (to))

wy = wf(to) = wf(to) = max. wy"(to)

and the set of events

£ = {E(tl,tQ) | t1 < tg},

i#k t1<l1<l2<t2

=1

lo
E(tl,tg) = {mln min ZQSI“ (fj) > —WTN} , b1 <t
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Denote
E_ k ok R k k
v = vi(t) = vi(ty,¢) = min{uf() | E(s.of(s)) occurs . 1> 1)
o = 0k (to) = (to, @) = min{vf (to) | E(vf_y, vf) occurs }

It is evident that vE(tg) < 9k (to).
Theorem 1. Let ty be a random value.

< t to > s.
x(8) Ilgellzwg(o) Axwo  to > s

If conditions A-D hold then

6(ry + C)K —1)(1+671)
Clli ’

EAx(t) <

where
480‘2(K — 1)2 ™ + C

TN TNR

Ci=1-

Lemma 1.

Ju 0<u<t gt(k):{ﬁﬁ‘,...ﬁz,k,...,k}

Proof. Suppose that the lemma does not hold. Trajectories with the followi-
ng shape {k,...,k} satisfy the condition given in the lemma’s conditi-
on. So let u + 1 be the last transition in the trajectory g¢'(k). Denote

= {g1(k), ..., g.(k)}. Trajectory
B — {ﬁ’{,...ﬁg,kz,...,k}

will be better than ¢*(k):

J(g' (k) = J(B) — 7y + Z o(&, k <Jh“)—7rN+Z o(&, k) = J(h").

Jj=u+1 Jj=u+1

We came to contradiction. The lemma is proved.
So, the last transition to state k in the trajectory g¢'(k) is performed from

the almost optimal state.

Lemma 2. A state that is almost optimal at the moment t also is favorable
at the moment t.

Proof. Let k be an almost optimal state at the moment ¢. J(h!) = J(g'(k)).
Suppose that it is non-favorable. Then trajectory ¢"*1(k) ends with a transi-
tion. Consider trajectories

{gt+1 ) 79?_1(]{;)} ) H_l {gl ’gt k} :
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Compare trajectories g1 (k) and g™ (k). g"™1(k) is not worse than g™ (k)
by the definition.

J(g™ (k) = J(3" (k) = J(g"(K)) + 6 (Eesr, ).

The following equality holds

J(g"H (k) = J(G'(K)) — 7 + ¢(Eesr, ).

because trajectory ¢'*1(k) ends with a transition. But k is almost optimal
at the moment ¢

J(g' (k) = J(g' (k).
So,

0> J(5'(k) = J(g' (k) = J(g"" (k) = J (G (k) + 75 > 7.

We came to contradiction. The lemma is proved.
Lemma 3. State i is non-favorable at moment t if and only if the following

condition holds

J (ﬁt> —J(¢'(@)) > 7N (2)

Proof. Necessity. Let the state ¢ at the moment ¢ to be non-favorable. We get
the following from the previous lemma g'(i) # h'. Then J(g'(z)) < J(h').
For ¢'*1(i) to be better than {g!(i),...,gl(:),i} the following condition is
needed

J(g"H (@) = J(0') = 7y + $(&i1,1) > (9" (D) + (&, )

So, )
J(h') = J(g' (1)) > 7w

Sufficency. Let inequality (2) to hold. Suppose that trajectory g‘**(i)
does not end with a transition. Consider the following trajectory

§G) = {ht B
That trajectory is better than g'*1(4)

J(GFG)) = J(g76) = J(BY) — mn + ¢(Ep, i) — J(gH(0)) — B(Eya,7) > 0.

As ¢""1(7) is the best from all the trajectories that end at the moment ¢
in the state 7, we came to contradiction. So the state ¢ at the moment ¢ is
non-favorable. The lemma is proved.
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Remark. A state is non-favorable at the moment ¢ if and only if it is not
almost my-optimal at the moment.

Lemma 4. Let i,k € I', i # k, t > ty, to <u<t, x € R. a,a, € [0, 7pn].
Denote

Cit(w,0) = {Xi_p H(&) > a—mx +a, keOs},
Dit(a) = { i s 04(85) > 7}
The following random event

(M (Ci(x,au) U Dii(2)) N D} (n + )

to<u<t

implies

J(g'(k)) = J (¢'(1)) > =

Proof. Let trajectory ¢'(i) contain change-point at the interval from ¢, to t.
Let u be the last change-point in ¢*(i).
Let the state k to be a-optimal at the moment v — 1 and

t

d (g s a—my o

j=u
For ¢“(i) the following statement holds

J(g" (1) < J(g" (k) — 7y + o + (&, 1)

because at the moment u — 1 state ¢ is non-favorable, and k is a-optimal
with o > 0.

(g™ R) + D 0§, k) = J(g" @) = 3 0(&0) > =

j=u+1

From J(g'(k)) = J(g" " (k) + 325_, 0(&, k) we get

T(g'(k)) = T (g"@0) = D ¢(&.i) >

j=u+1
Let the event

Zcb’“' (&) > .
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hold. In any case

J(g"(k)) = J(hy—1) — 7n + S(Eu k), J(g"(0) = J(hui) — Tn + D(Eus9).

+ Y G& k) = J(g"(0) = Y 6(&.i) >

j=ut1 j=u+1
From the previous inequality we get

t

J(g' (k) = J(g"(D) = Y &(&,0) >

Jj=u+1
Let ¢'(i) not to have change-point at the interval [to, ] and

t

Z " (&) >+

j=to+1

As J(g'(k)) = J(g" (i) + Sy 11 &£, k) — my, then

t

J(g' (k) = J(g" (D) = D #(&,i) >

j=u+1

The lemma is proved.
Lemma 5. Let the state k be optimal on [ty, wi(to)], then trajectories

gwlf(to)(z') have transition from the state k to the state i on that interval.
Proof. As the state k is optimal at the moment to, we have J(g"(k)) —
J(g"(i)) > 0 for ¢ # k. Remark that

wh(to)

Z ¢*(&) > T

Jj=to+1

Show that there is a trajectory with a transition on the interval (to, w}(to)]
that is better than any trajectory without transitions. Consider the trajecto-
ry

={g°(k),...90(k). k... . k,i,...i},

where transition from the state k to ¢ happens at the moment w?(¢y). Show
that trajectory is better than

{g ), gtO i),1, z}
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But

wh(to)

J(5(0)) = J(g(0) = J(g° (k) = J(g" (D) + Y ¢"(§) —mn > 0.

Jj=to+1

So, g“’lf(to)(i) is optimal among the trajectories that end at the state ¢ and
it cannot have no transitions on the interval (¢, w¥(¢y)]. As a transition
is always made from an almost optimal state, trajectories g“’f(to)(i) have a
transition from the state k to the state i. Lema is proved.

Lemma 6. Let ty be a random value. The following inequality holds

X(s, k) < Ulg(to), if tg>s.

Proof. Let the random event E(vf ,(to),vF(to)) take place. Denote w; =
wf(to). Show that on the interval [ws_s,ws) the state k is TX-optimal.
Prove that the following event takes place

w TN
n ﬂ ki 2 a 2
1#k wa;_3<u<t

for w3 <t < wy. Then Lemma 4 implies the state &k is 7*-optimal on
the interval mentioned above. The random event

Dy (‘%) - {j;lﬁbki(&‘) > —%V}

occurs as the event

E(vf,vf) = {mm min Zgb’“ (&) > __}

i#k ok 1<ll<l2<vl il

take place. From that event and the definition of w® we have

ki

t Wsj_o t
; i i TN TN
Yo M= X M+ Y ) -5 =
Jj=w3i—3+1 J=w3z;—3+1 J=wh ,+1

So, the event thgl * (72) takes place. And the state k is ZX-optimal.
Prove that on the interval [wg;_1,ws;) the state k is optimal. Show that
the event

N N oEon ) o (-5 nDE (m).

i#k wy—3<u<ws;_2 wap—2<u<t
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takes place for wg 1 <t < ws;. Then optimality will follow from the Lemma
4. Let u € [wg_3,ws3_2). The event D (0) occurs because

P D S (e
J=w3—2+1 j=u

Let u € [wg_g,w3—1). The event C,?Z‘( ,—WTN) takes place as the event

E(vF |, vF) occurs and the state k is TX-optimal on the interval [ws;_o, w3 _1).
The event D,*~*(my) takes place as

w3l —2 wi_y t
i i i TN ™~
> M+ X M@+ Y MG >y =
Jj=wg;—3+1 J=wg;—2+1 j=whki 41

=7N, tE€ [wy_1,ws).

So, the state k is optimal on the interval [ws_1,ws), and condition of the
Lema 5 holds. Trajectories g"(7) coincide till the moment ws;_; and

X(s,k) < vg(to)-

The lemma is proved
Denote E; = E(vf_,,vF).

Lema 7. Let the condition D hold and &§; have the distribution Fj, then

- Ex vk
k < 1
Bl = BTED, o)

Proof. Let us introduce conditional mathematical expectation by event

(| 4) = [ P 4)

Expand sequence &1, ...&y with independent random values £y, ... that
have distribution F},. 9§ will only become greater after that procedure. Then

Er ik < ZEk P NZVE N EDP (NZVE N E))

oo 1
=D > E(A | E N E)Py (M E; N E)

=1 j=1
= Ex(v} | E)P le_Pk ) +Ex(vr | B) =
1=0

Ex(v})
Pr(E)

Ex(v} | E)Pe(E)Pr(E)™" + Ex(vf | E) =
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The lemma is proved.

Lemma 8. If the conditions A-B and D hold and &; have the distribution
Fk then

EL b (t) — g < L= 1>I(fN +C)

Proof. In the case of homogeneously distributed &, ...&y
Ew®(ty) — to = Ew?(0).
From wj(0) = maxiz, wi’(0) < 37, wi(0) follows
Ewf(0) > Z Ew*.
ik
Estimate Ew*’. Using Vald’s lemma for the case of non-homogeneous random

values we get

wk?

ki v +C
E;cb (&) <= —,

and
Euk(0) < (K —1)(my +C)

K
The lemma is proved.

Remark. If &, ... {y are homogeneous then Aw;(ty) are too and

(K —1 C
it 1y < S 4 )

Lemma 9.If &, ...&x have the distribution Fy and conditions A-D hold
then

lo 2 _ 2
P (min min Zgbki (&) > —%) >1- ABo (K~ 1) v +C

i#k 1g11§12§v’fj ; TN KT N
=1

Proof. Estimate the probability of the complementary event.

lz l2
P (min min_ Y ¢M () < ZV) <>Pp ( min_ Y ¢k (g) < ”2N)
ik

itk k k
#k 1<l <lo<o¥ i=h 1<l <la<vf =l
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Estimate the probability under the sign of sum

l2
P ( min Y ¢M (&) < —%) <

1<l <lp <ol 4
Jj=h

1<l <lp<of

la
(i S0 e ) <) <
<l <lp <oy =
l2
P ( max Z (6% (&) — E¢¥ (¢)))| = 7T7N -

Jj=bh

I
P <1£Illaxk D (¢(&) —Ee¥ ()| = %V
<l <of =1

From Kolmogorov’s inequality we get

Il

> (0¥ (&) - E* (&)

J=1

16 o
> %) <5 DY 9"(g) <

Pl max
1<l <o

1602EvF  4802%(K — 1)(7y + C
L <

2 = 2
TN KTy

So

l2
P (min min Zgblﬂ (é’]) > _W7N> >1— 4802(K - 1)2(7TN + C)

i#k 1<h<b <o} KT
=l1

The lemma is proved.
Lemma 10.1f the following condition holds for to >t :

< minvg(t
x(t) < minvg(to),

then

EAx(t) <2(1+671 max Ey vR
€
Proof. Denote
v(s) = vE(s), de k=h"

Denote as p(s) the number of change-points between moments s and v(s).
Denote as k° the first change-point after s, k; - n-th change-point after s.

EAX(t) = EAX(t) 1p0=0 +EAX(t) 1,0=1 +EAX(t) 1p)>1 = a1 + az + a3
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Expand as,.
EAX() Lon=1 = E (X(£) = k) Loy=1 +E (K" = 1) L0
Emax(x(t) — £, 0) 1,021 +E(K" — 1) 1p0=1 = a21 + ax
1) Estimate a; + age, using inequalities k' > ¢t and x(t) < v(t)

EAX(t) 1p—0 +E(K" — 1) 1p0=1 < EAX(t) Lpiy—o +E(K" — 1) 1p0)>1 <
E (AX(t) Loyart +(K = ) L= ) < Emin (Av(t), k' — )

Let’s estimate the right side of inequality. Obtained expression is determined
by homogeneous random values ; from the interval (¢, kf].

Emin(Av(t), k" —t) = Epo min(Av(t), k' —t) < Epov(t) < max Ey vE(0),
t t c

2) Estimate ag

Emax (x(t) — k*,0) 1,4)=1 < Emin (max(x(t) — k', 0), kj — k')
< Emin (max(v(k") — k', 0), k5 — k') = Emin (Av(k"), &} — k)

From the previous case we get

E min(Av(k"), kb — k') < max Ey AvE(0)
S

3) Estimate asz: E(AX(t) 1yp>1) < (N + 1)P (Av(k') > §N). We get the
following formula from Markov’s inequality

t ) E Au(k")

So

2 0
E(AX(D) Lygon) < 220 B (D)

Lema is proved.
Proof of theorem 1. From lemma 6 follows

< min v}
x(s) < minvg(fo),

where ¢y > s. When ¢; have the distribution Fj, we can use lemma 7, from
which we get
Ex vt (0)

Exvz(to) < B T(lo) < 5 g oy

From lemma 9 follows

480‘2(K — 1)2 ™ + C
TN TNKE

Pu(£(0,0%) >1—
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Then

k Ex Uf(o)

to) < .
Erve(to) < c,
From the remark to the lemma 8 follows

Then
(K —1)(my+C)

Cll{

Ex Ué(to) <

Using lemma 10 we get
- 6(1+0"1) (K —1)(ny +C)
< ! k<
Ex(s) <2(1+07") maxEy vz < O

The theorem is proved.

3. GENERALIZATION FOR THE CASE E ¢"((;) = oo

Generalize obtained results for the case of unconstrained difference
#(C5,7) — o(¢j, 7). We assume that difference can have infinite mathematical
expectation.

Formulate conditions

E. E¢/(¢;) >0, i # j, where (; is a random value that has the distri-
bution F; (including the case E ¢/*((;) = +00)
G. DQSjZ(C]) 1¢ji(Cj)<0 <0< o0, Z,] el
Denote (2)
ki . ! x), ) < xZ,
Theorem 2. Let conditions D-G hold then exists k > 0, C € R

6(my + C)(K —1)(1+671)
Cgli ’

EAx(t) <

where
48(02 + 02)([( — 1)2 my + C

TN TNK

Cp=1-

Proof. From theorem 1, lemma 10 and lemma 7 follows

Ex(s)—s<2(1+ 9_1)%.
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Estimate Ezovf(0) = 3E;wF(0). As was shown in lemma 8
Ex wi(0) < 32, Ex wi(0).
Ockinpxu 22:1 ¢ZZ(§J) Z] L (&), o wi'(0,9) < wi(0, By).

From Lebegue’s theorem about monotonous convergence

EQSI;Z(g]) - Eqka(C])a when Yy — o0,

TO

Jk>0 3ICeR: EGH) >k

Then from Vald’s lemma follows

mny +C
Ekw1( Cb(J) al .

So

EkUl( ,9c) = 3Ekw1( ,9c) < i 1>(7TN+C)-

Estimate Py (E(0,v}))

Pr(E(0,2%) > Py (mln min qu )

i#k 0<ly <l2<1}1
As

D ¢ (Ck) < D ¢ (C)ghi(y<o + E (¢Ig(fk)¢ki(gk)zo)2 <o*4C?

then from lemma 9 follows
Pe(E(0,21)) < Ca.

Then

6(ry +C)K —1)(1+6071Y)

Ax(s) <
EAx(s) < o

The theorem is proved.

3. CONCLUSION.

It was proved that mathematical expectation of the length of interval inde-
terminacy that is retrieved during estimation of multiple change-points has
asymptotically linear dependency on the penalty for change of the distri-
butions.
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