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VOLODYMYR MASOL AND SVITLANA SLOBODYAN

ON THE ASYMPTOTIC NORMALITY OF THE
NUMBER OF FALSE SOLUTIONS OF A SYSTEM

OF NONLINEAR RANDOM BOOLEAN
EQUATIONS

The theorem on a normal limit (n → ∞) distribution of the number
of false solutions of a system of nonlinear Boolean equations with
independent random coefficients is proved. In particular, we assume
that each equation has coefficients that take value 1 with probability
that varies in some neighborhood of the point 1

2 ; the system has a
solution with the number of ones equals ρ(n), ρ(n) → ∞ as n →
∞. The proof is constructed on the check of auxiliary statement
conditions which in turn generalizes one well-known result.

1. Introduction

Let us consider a system of equations over the field GF(2) consisting of
two elements

gi(n)∑
k=1

∑
1≤j1<...<jk≤n

a
(i)
j1...jk

xj1 . . . xjk
= bi, i = 1, . . . , N, (1)

that satisfies condition (A).
Condition (A):

1) Coefficients a
(i)
j1...jk

, 1 ≤ j1 < ... < jk ≤ n, k = 1, ..., gi(n), i =
1, ..., N , are independent random variables that take value 1 with probability
P

{
a

(i)
j1...jk

= 1
}

= pik and value 0 with probability P
{

a
(i)
j1...jk

= 0
}

= 1−pik.

2) Elements bi, i = 1, ..., N , are the result of the substitution of a fixed
n-dimensional vector x̄0, which has ρ (n) /n − ρ (n)/, components equal to
one /zero/ into the left-hand side of the system (1).

3) Function gi(n), i = 1, ..., N, is nonrandom, gi(n) ∈ {2, ..., n} , i =
1, ..., N.
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Denote by νn the number of false solutions of the system (1), i.e. the
number of solutions of the system (1) different from the vector x̄0.

We are interested in the conditions under which the random variable νn

has a normal limit (n → ∞) distribution.

2. Formulation of the theorem

Theorem. Let condition (A) hold, and moreover

[λ] = 2m, (2)

where m = n − N, [·] is the sign of the integral part,

λ =
1

2(1 + α + ω)
log2

ρ(n)

ϕ(n) lnn
, ϕ(n) > 0, (3)

λ → ∞, (4)

λ (α ln α − α − 1) → ∞, (5)

ω
√

λ → ∞ (6)

as n → ∞;
let for any arbitrary i, i = 1, ..., N, there exist a nonempty set Ti such that
for all sufficiently large values of n

Ti ⊆ {2, 3, ..., gi(n)} , Ti �= ∅,

δit(n) ≤ pit ≤ 1 − δit(n), t ∈ Ti; (7)

lim
n→∞ (α + ω)λ B (ρ(n) − 1, 1) < ∞, (8)

B (X, Y ) =
N∑

i=1
exp

{
−2

∑
t∈Ti

δit(n)Ct−Y
X

}
;

(2 + (1 + α + ω) ln 2)λ − ln λ

2
+ ln B (εϕ(n), 0) → −∞ (n → ∞), (9)

where ε = const, 0 < ε < 1;

lim
n→∞ (− ln N + ln B (εϕ(n), 1)) < 0 (n → ∞). (10)

Then distribution function of the random variable νn−λ√
λ

tends to the stan-
dard normal distribution function .
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3. Auxiliary statements

Lemma 1. Let ξ and η be random variables that take non-negative integer
values. If

max
1≤r≤T

∣∣∣M(ξ)r(M(η)r)
−1 − 1

∣∣∣ = εT < 1; (11)

M(η)r ≤ Cλ r
1 , 1 ≤ r ≤ T, (12)

where M(ζ)r denotes r–factorial moment of a random variable ζ, r ≥ 1,
then for an arbitrary t, 0 ≤ t ≤ T − αλ1 and α > 1,

|P {ξ ≥ t} − P {η ≥ t}| ≤
≤ C√

2π max(1,λ1−1)

(
εT e2λ1 + 1+εT√

2π max(1,αλ1)
exp {(t + λ1 − T )u(α)}

)
,

(13)

where u(α) = (α−1)−1(α ln α−α−1) for 2 > ln α > 0, and u(α) = ln α−1
for ln α ≥ 2.

Proof. By virtue of Bonferrony inequalities, for any arbitrary random vari-
able ζ that takes non-negative integer values, and for any arbitrary integers
t > 0 and d ≥ 0

t+2d+β∑
r=t

(−1)r+tCt−1
r−1

1

r!
M(ζ)r ≤ P{ζ ≥ t} ≤

t+2d∑
r=t

(−1)r+tCt−1
r−1

1

r!
M(ζ)r, (14)

where min (M(ζ)t+2d+β , M(ζ)t+2d) < ∞, β ∈ {−1, 1}. (Proof of relation
(14) for β = −1, M(ζ)t+2d−1 < ∞ look, for example, in ([1], p.136, 223))

Let numbers t and T have identical parity. Then, using (14) for β = −1,
we receive

P{ξ ≥ t} − P{η ≥ t} ≤ Γ(T ) + M(ξ)T Ct−1
T−1

1

T !
, (15)

P{ξ ≥ t} − P{η ≥ t} ≥ Γ(T ) − M(η)T Ct−1
T−1

1

T !
, (16)

where Γ(T ) =
T−1∑
r=t

(−1)r+tCt−1
r−1

1
r!
M(η)r

(
M(ξ)r

M(η)r
− 1

)
.

If the difference P{ξ ≥ t}−P{η ≥ t} is non-negative /non-positive/that
we obtain

|P{ξ ≥ t} − P{η ≥ t}| ≤ |Γ(T )| + 1

T !
Ct−1

T−1 max (M(ξ)T , M(η)T ) (17)

by virtue of conditions (15), (16).
It is easy to check up that

max (M(ξ)T , M(η)T ) ≤ M(η)T

(
1 +

∣∣∣∣∣M(ξ)r

M(η)r
− 1

∣∣∣∣∣
)

. (18)
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Using (17), (18) and conditions (11), (12), we obtain

|P{ξ ≥ t} − P{η ≥ t}| ≤
≤ C

(
εT

T−1∑
r=t

Ct−1
r−1

1
r!
λr

1 + (1 + εT )λT
1

1
T !

Ct−1
T−1

)
.

(19)

Hence

|P{ξ ≥ t} − P{η ≥ t}| ≤ C

(
λt

1

t!
eλ1εT + (1 + εT )

λT−t
1

(T − t)!

λt
1

t!

)
. (20)

Below the following relations will be established for the integer u, u ≥ 1,

λu
1

u!
≤ (2π max(1, λ1 − 1))−1/2 eλ1 ; (21)

for the integer N, N ≥ max(1, αλ1),

λN
1

N !
≤ (2π max(1, αλ1))

−1/2 exp{(λ1 − N)u(α) − λ1}, (22)

where u(α) = (α − 1)−1(α ln α − α − 1) for 2 > lnα > 0, u(α) = ln α − 1
for ln α ≥ 2.
Relations (20)–(22) prove (13), when t and T have identical parity .

Let now parameters t and T have different parity. Let us show, that
we can obtain (17) in this case. Using (14) for some d ≥ 0, β = 1 and
t + 2d = T − 1, we receive

P{ξ ≥ t} − P{η ≥ t} ≤ Γ(T ) + M(η)T
1

T !
Ct−1

T−1, (23)

P{ξ ≥ t} − P{η ≥ t} ≥ Γ(T ) − M(ξ)T
1

T !
Ct−1

T−1. (24)

By virtue of (23), (24), we obtain (17) similarly when we used inequalities
(15) and (16).

To complete the proof of Lemma 1 it is, therefore, enough to establish
(21) and (22).

Let us check (21). Indeed, it follows from Stirling formula that u! ≥
(u/e)u

√
2πu. Hence

λu
1

u!
≤

(
λ1e

u

)u
1√
2πu

. (25)

Let ϕ(u) =
(

λ1e
u

)u
and let us show that

max
u≥λ1−1

ϕ(u) = ϕ(λ1). (26)

Indeed, the first derivative ϕ′(u) = ϕ(u)(lnλ1 − ln u) and ϕ′(u) = 0 at
u = λ1. Since the second derivative ϕ′′(u) = ϕ(u)((lnλ1 − ln u)2 − u−1)
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is negative at u = λ1, ϕ′′(λ1) < 0, relation (26) holds. Using (26), we
establish (21) for u ≥ max(1, λ1 − 1).

Let further 1 ≤ u ≤ λ1 − 1; and let ψ(u) =
(

λ1e
u

)u
1√
u
, then

max
1≤u≤λ1−1

ψ(u) = ψ(λ1 − 1). (27)

Indeed,
ψ′(u) = ψ(u)(lnλ1 − f(u)), (28)

where f(u) = lnu + (2u)−1.
Let us show that function f(u) takes its maximal value on an interval

1 ≤ u ≤ λ1 − 1 at u = λ1 − 1,

max
1≤u≤λ1−1

f(u) = f(λ1 − 1). (29)

Indeed, f ′(u) = u−1 − 1
2
u−2, and f ′(u) = 0 at u = 1

2
. At the same time

f ′′(u)|u= 1
2

= (−u−2 + u−3)|u= 1
2

= 4. Therefore, function f(u) increases for

u > 1
2

and (29) holds on the interval 1 ≤ u ≤ λ1 − 1. As a result we get

ψ′(u) > 0 for 1 ≤ u ≤ λ1 − 1. (30)

Indeed, taking into account (29),

ln λ1 − f(u) ≥
≥ ln

(
1 + 1

λ1−1

)
− 1

2(λ1−1)
≥ 1

2(λ1−1)

(
1 − 1

λ1−1

)
> 0

(31)

for λ1 > 2. (Here the inequality ln(1 + x) > x − 1
2
x2 has been used for

x > 0.)
Relations (28) and (31) prove (30). Estimate (30) allows, apparently, to

conclude that equality (27) holds. With the help of (25) and (27) we find

λu
1

u!
≤

(
λ1e

λ1 − 1

)λ1−1
1√

2π(λ1 − 1)
≤ eλ1√

2π(λ1 − 1)
(32)

for 1 ≤ u ≤ λ1 − 1.
Estimate (32) proves (21) for 1 ≤ u ≤ λ1 − 1. Relation (21) is proved.

Let us check (22). With the help of Stirling formula and inequality
λ1

N
≤ 1

α
, we can obtain

λN
1

N !
≤ 1√

2πN
eλ1(1−ln α)×

× exp
{(

1 − ln α + 2−ln α
α−1

)
(N − λ1)

}
exp {−λ1(2 − ln α)} .

(33)

By virtue of conditions N ≥ αλ1, 2 − ln α > 0, and α > 1, the right-hand
side of the inequality (33) can be estimate as follows

1√
2πN

eλ1(1−ln α) exp
{(

1 − ln α + 2−ln α
α−1

)
(N − λ1)

}
×

× exp {−λ1(2 − ln α)} ≤ 1√
2πN

e−λ1 exp
{
(λ1 − N)α lnα−α−1

α−1

}
.

(34)
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From relations (33) and (34) the estimate (22) follows for α < e2.
Let now α ≥ e2. Then

λN
1

N !
≤ 1√

2πN
e−λ1 exp {−(N − λ1)(lnα − 1)} .

Relation (22) is proved for all α > 1. Lemma 1 is proved.
Lemma 2. Let X and Y be random variables that take non-negative integer

values, and MX = λ∗. If for all r ≤ (α + γ)λ∗

M(Y )r ≤ C(λ∗)r (35)

with some constant C, and

λ∗ (α ln α − α − 1) → ∞, (36)

γ ≥ 0, (37)

max
1≤r≤(α+γ)λ ∗

∣∣∣M(X)r(M(Y )r)
−1 − 1

∣∣∣ e2λ ∗

√
λ∗ → 0 (38)

as λ∗ → ∞,
then

max
0≤t≤γλ ∗ |P {X ≥ t} − P {Y ≥ t}| → 0 (λ∗ → ∞). (39)

Proof. Assumptions (35) and (38) imply the conditions of Lemma 1, by
virtue of which (13) holds for 0 ≤ t ≤ γλ ∗, α > 1. Using (36) and (37)
it is easy to show that exp{(t + λ ∗ − (α + γ)λ ∗) u(α)} → 0 as λ∗ → ∞
uniformly for 0 ≤ t ≤ γλ ∗. Taking into account (38), it follows from the
last statement that the right-hand side of the inequality (13) tends to zero
as λ∗ → ∞ uniformly, for 0 ≤ t ≤ γλ ∗. The left-hand side of the inequality
(13) tends, therefore, to zero too for λ ∗ and t mentioned above, which
proves, obviously, (39). Lemma 2 is proved.

Remark. The lemma 2 (for α = 5 and γ = 2) follows from the lemma 3 in
[2].

4. Proof of the theorem

Let us show that under the conditions of the theorem we can use Lemma 2.
Let the random variable Y in the mentioned lemma have a Poisson dis-
tribution with parameter 2m, while the distribution of the random vari-
able X coincides with the distribution of the random variable νn. Then
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M(Y )r = 2mr, r ≥ 1, while expectation Mνn can, by virtue of its explicit
form obtained in [3], be presented in the following way

Mνn = 2m
(
1 − 1

2n

)
M̃, (40)

where exp {−B(ρ(n) − 1, 1)} ≤ M̃ ≤ exp {B(ρ(n) − 1, 1)}.
Now condition (35) becomes

2mr ≤ C(Mνn)r. (41)

It follows from (40) that inequality (41) holds true for r ≤ (1 + α + ω)Mνn

and

C ≥
(
1 − 1

2n

)−(1+α+ω)Mνn

exp{(1 + α + ω)B(ρ(n) − 1, 1)Mνn}. (42)

By virtue of conditions (3), (8), and equality (40), the right-hand side of
(42) is limited as n → ∞. Therefore, it is possible to choose a limited
constant C < ∞ such that condition (35) holds true.

Further we note that under conditions (3)–(10) relation (38) is estab-
lished in [4] for α = 5 and ω = 1. For arbitrary α and ω satisfying conditions
of the theorem, verification of the relation (38) can be executed similarly.

By virtue of Lemma 2, we obtain

max
0≤t≤(1+ω)λ ∗

|P {νn ≥ t} − P {Y ≥ t}| → 0 as n → ∞, (43)

where λ∗ = Mνn according to the notations introduced above. By virtue of
(40) and conditions (3) and (8), the last equality allows to present λ∗ as

λ∗ = [λ] (1 + r(n)) , (44)

where

r(n) = O (B(ρ(n) − 1, 1)) + O
(

1

2n

)
(45)

and r(n) → 0 as n → ∞.
We can write relation (43) in the following way

max
−√

λ∗≤l≤ω
√

λ ∗

∣∣∣∣∣P
{

νn − λ∗
√

λ∗ ≥ l

}
− P

{
Y − λ∗
√

λ∗ ≥ l

}∣∣∣∣∣ → 0, n → ∞, (46)

where l = t−λ∗√
λ∗ .

Let us show that distributions of the random variables νn−λ∗√
λ∗ and νn−λ√

λ
coincide as n → ∞. Indeed,

νn − λ∗
√

λ∗ =
νn − λ√

λ
+ ηn, (47)
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where ηn = νn−λ√
λ

(
O

(
ε(n)
λ

)
+ O(r(n))

)
− λr(n)−ε(n)(1+r(n))√

λ∗ , [λ] = λ − ε(n),

0 ≤ ε(n) < 1.
The random variable ηn tends in probability to zero as n → ∞. Indeed, for
an arbitrary ε > 0

P {|ηn| > ε} ≤ 1

ε
M |ηn| ≤ 1

ε

(∣∣∣∣∣O
(

1√
λ

)∣∣∣∣∣ +
∣∣∣O (√

λr(n)
)∣∣∣

)
(48)

and, by virtue of (3), (8), and (45), the right-hand side of (48) tends to zero
as n increases, i.e.

P {|ηn| > ε} → 0, n → ∞. (49)

Relations (47), (49), and theorem ([5], p.157) prove that distributions of
the random variables νn−λ∗√

λ∗ and νn−λ√
λ

coincide as n → ∞. Similarly we can

verify that distributions of Y −λ∗√
λ∗ and Y −[λ]√

[λ]
are the same as n → ∞.

Thus, relation (46) can be writen as

max
−√

λ∗≤l≤ω
√

λ ∗

∣∣∣∣∣∣P
{

νn − λ√
λ

≥ l

}
− P

⎧⎨
⎩Y − [λ]√

[λ]
≥ l

⎫⎬
⎭

∣∣∣∣∣∣ → 0, n → ∞. (50)

Finally we notice that the random variable Y −[λ]√
[λ]

has the standard normal

distribution as λ → ∞. The theorem is proved.
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