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YEVGEN TURCHYN

ON ACCURACY OF SIMULATION OF GAUSSIAN
STATIONARY PROCESSES IN Ly([0,7])

A theorem about simulation of a Gaussian stochastic process with given
accuracy and reliability in Ls([0, T]) using wavelets has been proved.

1. INTRODUCTION

Problems of expansion of random processes in series over uncorrelated
random variables using wavelets were considered in [3], [4], [5] and other
papers. There has been proved in [3] a theorem about accuracy and reli-
ability of such expansions in L,([0,T]) for Gaussian wide-sense stationary
processes. We'll give a refinement of this theorem for Ly([0,77]). Since
Gaussian processes are widely used in financial and actuarial mathematics
results of the article may be used in these areas.

First of all we need to list some necessary facts.

Let ¢ € La(R) be such a function that the following assumptions hold:

1) Y rer |@(y+2mk)|? = 1 almost everywhere, where ((y) is the Fourier
transform of ¢,

B(y) = / exp{—iyz}o(z)dz:

ii) There exists a function mg € Lo([0,27]) such that mg(z) has pe-
riod 27 and almost everywhere

o) =mo (3) @ (5):

iii) ¢(0) # 0 and the function ¢(y) is continuos at 0.

Function o(z) is called f-wavelet. Let ¢(x) be the inverse Fourier trans-
form of the function

h(y) = Y i (Y
¢(y)_m°<2+7r) exp{ ZQ}SD(Q)'
Function ¢ (z) is called m-wavelet. Let ¢;,(z) = 25 (2w — k), V() =

Q%w(ij—k’), ke Z, j=0,1,2,..., It is known that the family of functions
{@ok, Yjk, 7 =0,1,2,....k € Z} is an orthonormal basis in Ly(R) (see, for
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example, the book [1]). Such a basis is called wavelet basis. Any function
f € La(R) can be represented in the form

(1) f(z) = Z%k%k(w) + ZZﬁjk%‘k(I)

keZ j=0 keZ

where aq = fR (Pok( )dz, Bik = fR %k )

Z |Oé(]k|2 + ZZ |ﬁjk|2 < Q.

keZ j=0 keZ

That is, series (1) converges in the norm of the space Lo(R). Representation
(1) is called wavelet representation.

Let X = {X(t),t € R} be a centered wide-sense stationary random
process (from this moment we will refer to wide-sense stationary processes
simply as stationary processes), X (t,w) € Ly(Q, F, P) for all t € R (where
(Q, F, P) is the standard probability space to which belong all random vari-
ables X (t,w) ), R(1) = EX(t + )X (t).

There has been proved the following theorem in [3].

Theorem 1. Let X = {X(t),t € R} be centered stationary random
process, R(1) = EX (t+7)X(t). Suppose that R( ) is a continuous function
and process X (t) has spectral density, i.e. = [pexp{—iTA} f(A)dA
where [ is real-valued, f(A) >0, [7 f(A d)\ = R(O) < o0o. Let {pok(x),
Yi(z), ke Z,7=0,1,2,. } be a wcwelet basis. Then

2) X(1) =" onaoe(t) + DD niuBin(t)

keZ 71=0 keZz
where
1 1/2 . YIY
(3) o (t 7/ )= exp{—iy(t — k) }o(y)dy,

W w0 = o [ e { =i (1= 5) } 9 (5o

Sor and n;, are centered random variables such that Eﬁoka = 01, EMpr Tt =
OmnOkt, EorTm = 0, 0y is Kronecker delta and series (2) converges in mean
square.

The expansion (2) has been used in [3] for modeling of Gaussian stochas-
tic processes and obtaining inequality for given accuracy and reliability of
appropriate model in L, ([0, 7). We'll give refinement of these theorems for
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2. SIMULATION OF STATIONARY (GAUSSIAN PROCESSES.

If we have a Gaussian process X (t) which satisfies conditions of theorem
1, then we can consider as a model of X (¢) a process

No—1

0= Y fan®+Y Y mudl),
)

k=—(No—1 J=0 k=—(M;-1)

where &y, 1;1 are independent random variables with distribution N (0, 1),
aor(t) and (;x(t) are calculated using formulae (3) and (4), Nop > 1, N > 1,
M;>1(j=0,...,N—1).

Definition. Model X (t) approzimates process X (t) with given reliability
1-9,0<6 <1, and accuracy € > 0 in L,([0,T]) if

1/p

P{ (/OT X(t) - X’(t)|pdt) >} <s

There has been proved the following theorem in [3].

Theorem 2. Stochastic process X (t) approzimates process X (t) with reli-
ability 1 — 6 and accuracy € in Ly,([0,7]) (p>1,0<6 < min{1,2e77/2}),

(5) P{ (/OT X(t) - X(t)|pdt> " c} <o
if

sup E|X(t) — X@)|]? = sup( Z |a0k(t)|2—l—z_: Z 1Bk (H)])*+

te[0,7) LEOTT ™ k> No J=0 k:|k|>M;

> D 10OF) £ g

j=N keZ

This result can be made more exact for p = 2. We'll give first some
auxiliary facts.

There has been proved the following assertion in [2], which we give here
in simplified form.

Theorem 3. Let {T,U,u} be a measurable space. Consider a random
series

(6) S(t) = &fr(t), teT,

where & = {&k, k = 1,2,...} is a family of Gaussian random variables and
f=Aft),k=1,2,...} is a family of real-valued Lo(T) functions. Let the
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random variables in (6) be either uncorrelated with EEE = o} or the system
of functions fi(t) be orthogonal, that is,

/T S fi(t)du(t) = e,

where 0y 1s the Kronecker symbol. If the series

o0
E orai < oo
k=1

converges, then the series (6) is mean square convergent in Lo(T) and for
all x > /A, and n=1,2, ... we have

= T z?
ngfk(t) >z p <elf? exp{— },
k=n L2(T) VAn 2/
where A, =Y 1o oraz.

The following statement about bounds for coefficients ag(t) and 5% (t)
was proved in [3].

(7) P

Lemma 1. Let R(7) be a covariance function which satisfies conditions of
theorem 1, R(t) = [, exp{—iTA}f(N)dX. Let ¢(y) be the Fourier transform
of a f-wavelet p(z). Let $(y) be a continuous function and assertions i) —
ii1) hold true for ally € R. Let @@(y) be the Fourier transform of m-wavelet
U(x) corresponding to o(z). Let g(y) = /f(y) and there exist ¢'(y), ¥'(y),
P'(y); [Vl < Cu, [9(Y)] < Co, [6(y)] s bounded,

/ o(y)dy < o, / 19/()lyldy < oo, / 9()lyldy < oo,
R R R

[lswlipwlay <o [ gl iy <o
R R
aor(t) and Bji(t) are given in (3) and (4). If k # 0 then for allt € R

A+ Bt
1Bix(t)] < T2
where
w0 =
VT R(Ig Wyl + g(y))dy Nors Rg(y)lyl y
e ()] < LBllﬂ’
k|
where

A = J% /R (19 @8] + 9@)I&' W))d,

Bi- o= /R 9 ()1l 6(v)ldy.
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Forallt € R cmdj:O,l,Q
(8] < =2 [ ooy, foan(0)] < —= [ atwletlas

Now we can formulate the main result of our paper.
Theorem 4. Let Gaussian process X(t) satisfy restrictions of theorem 1,

frwavelet ¢ and m-wavelet o satisfy conditions of lemma 1. Model X (t)
approxzimates process X (t) with accuracy € and reliability 1 —6 (0 <5 <1)
in Ly([0,T7),

T 1/2
®) P{ (/ X (1) — X(t)|2dt) > e} <4,
0
if A, < %, where x5 (x5 > 1) is a root of equation e 2y "/2 = §,
= Y / |cvor (1) 2dt+
k:|k|>No
53> [ soras S5 [ oo

§=0 k:|k|>M, j=N keZ
aox(t) and Bi(t) are defined by formulae (3) and (4).
Proof. Let’s consider stochastic process

(9) X(t) = Z Eowcvor (1) + Z Z Mk (t)

keZ j=0 keZz
where §g,my (5 = 0,1,2,...5k,1 € Z) are i.id. random variables with
distribution N(0,1). It s easy to see that correlation functions of processes
X(t) and X(t) are the same. Therefore we may consider process X (t)

instead of process X (t). If we apply theorem 3 to series (9) we obtain
inequality (8).

Corollary. Model X(t) approzimates process X (t) with accuracy e and
reliability 1 — & in Lo([0,T]) if the following inequalities are satisfied:

6D, 3 8DT
N0>1+— N>10g2< (8D1 7 )),
€1

12D, 1
M > 1—— 1
J £1 ( 2N> + ’

(7=01,...,N—1), whereelzfc—i,
5

= ;;—W/}%g(y)lyldy,

Dy = A’T + ABT? + 1 B*T®, D, = AT + A\B,T* + 1BIT?; g(y), A, B,
Ay, By Cy are defined in lemma 1, xs is defined in theorem 4.
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Proof. If we apply lemma 1 it’s easy to see that under conditions of the
corollary the following inequalities are true:

2D, 4Dy ., 1 1
A, < DT— D,y —
No—1 on1 TP e T 1;2]—1(%—1)
2D2 &1 4D1 2 1 €1
<— DT < —
No—1 37 2N o 7-8N-1 3’
N-1 c
1
12231 . 1)<3'

Statement of the corollary 1mmed1ately follows from these inequalities and
theorem 4. [

3. CONCLUSIONS

There has been obtained a theorem about accuracy and reliability of
simulation in L ([0, T7) for a certain class of stationary Gaussian processes.
This theorem is more exact than previous result for L,([0,7]) when p = 2.

Author expresses his thanks to professor Yuriy V. Kozachenko for valu-
able discussions.
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