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VERTICAL AND HORIZONTAL FLUID

QUEUES IN HEAVY AND LOW TRAFFIC

The paper considers vertical and horizontal fluid queueing systems with consecutive
service. The workload processes in these systems satisfy the Langevin equations with
Poisson input. The objective is to investigate the main stationary characteristics in
heavy and low traffic.

Introduction

Investigating the fluid queues became popular during the last decade. Contrary to
ordinary queueing system, the input flow to a fluid queue has continuous structure. A
fluid queue is the input-output system, whose input flow consists of substance flowing into
a reservoir and flowing out from it with random speed. Fluid models play an important
role in analyzing the operating characteristics of high-speed networks and repetition
work systems when a huge amount of small tasks are processed. They are actively
used in the sphere of telecommunications. Studying the fluid queues with priorities is
motivated by their usefulness in analyzing the effectiveness of ATM-commutators and
IP-routers which support classes of traffic with different qualities of service [6]. Involving
the fluid queues with priorities is effective for checking the overload in modern high-speed
integrated networks, such as Internet. Fluid queues are also used in the dam theory and
in transport systems for simulating the flow of transport facilities on crossroads.

1. Statement of the problem

The matters of investigation are two fluid systems which will be referred to as vertical
and horizontal. The choice of these names is explained by the peculiarities of their
functioning.

Vertical system is a fluid system with consecutive service consisting of n servers. The
input flow to the first server is given by a generalized Poisson process z1 (t) with parameter
λ and jumps η1

1 = η1, η2
1 , . . . , η

i
1, . . .. The output from any server constitutes the input

flow to the next server. The service speed on the k-th server is proportional to the value
of incomplete work on this server. Any demand entering the system has to pass through
all servers. To be served, the i-th demand needs ηi

1 units of work. If xk (t), k = 1, n,
denotes the value of incomplete work on the k-th server at the moment t, then it serves
with the speed μkxk (t), k = 1, n, and the vector of incomplete work

x (t) = (x1 (t) , x2 (t) , . . . , xn (t))T ∈ RRn

in this system satisfies the Langevin equation

dx (t) = Ax (t) dt + dz (t), (1)
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where z (t) = (z1 (t) , 0, . . . , 0)T ∈ R
n,

A =

∥∥∥∥∥∥∥∥∥

−μ1 0 0 . . . 0 0
μ1 −μ2 0 . . . 0 0
0 μ2 −μ3 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . μn−1 −μn

∥∥∥∥∥∥∥∥∥
,

μk > 0, k = 1, n.
Horizontal systems only differ from vertical in the matrices A. For horizontal systems,

processes xi (t) satisfy the system of differential equations

dx1 (t) = −μ1 (x1 (t) − x2 (t)) dt + dz1 (t),

dxk (t) = −μk (xk (t) − xk+1 (t)) dt + μk−1 (xk−1 (t) − xk (t)) dt,

k = 2, . . . , n − 1,

dxn (t) = −μnxn (t) dt + μn−1 (xn−1 (t) − xn (t)) dt,

where μk > 0, k = 1, 2, . . . , n.
Hence, the vector x (t) of incomplete work in this system satisfies the Langevin equa-

tion (1) with the same process z(t), but with the matrix

A =

∥∥∥∥∥∥∥∥∥∥∥

−μ1 μ1 . . . 0 0 0
μ1 − (μ1 + μ2) . . . 0 0 0
0 μ2 . . . 0 0 0
. . . . . . . . . . . . . . . . . .
0 0 . . . μn−2 − (μn−2 + μn−1) μn−1

0 0 . . . 0 μn−1 − (μn−1 + μn)

∥∥∥∥∥∥∥∥∥∥∥
,

where μk > 0, k = 1, n.
We establish conditions for the stationary regimes of these systems to exist and inves-

tigate the behavior of their stationary characteristics in heavy (λ → ∞) and low (λ → 0)
traffic.

2. Conditions of existence of stationary regimes

It follows from [1] that the process x(t) satisfying Eq. (1) possesses a limit distribution
as t → ∞ which does not depend on the initial value x0 = x(0) if and only if
a) all eigenvalues of A have negative real parts,
b) E(ln η1; η1 > 1) < ∞.
If these conditions are satisfied, then the limit distribution is the unique stationary
distribution of x(t) with the characteristic function

Ξξ (s) = exp{−λ

∫ ∞

0

(1 − ϕ(exp{uAT }s))du}, (3)

where ϕ(s) = E{exp i(s, η)}, s = (s1, s2, . . . , sn), η = (η1, 0, . . . , 0).
Note that, for a vertical system, condition a) is equivalent to

μ1 > 0, μ2 > 0, . . . , μn > 0.
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3. Behavior of the stationary characteristics
of a vertical system in heavy traffic

Let the stationary distribution of the process

x (t) = (x1 (t) , x2 (t) , . . . , xn (t))T

coincide with the distribution of the vector ξ = (ξ1, ξ2, . . . , ξn)T . Let also

F (y1, y2, . . . , yn)

be the distribution function of η = (η1, 0, . . . , 0)T , Eη = (Eη1, 0, . . . , 0)T , Eη1 = m1.

Lemma 1. If Eη1 = m1 < ∞, then λ−1 (ξ1, ξ2, . . . , ξn)T converges in probability to
m1

(
μ−1

1 , μ−1
2 , . . . , μ−1

n

)T
as λ → ∞.

D. ue to condition a), ∫ ∞

0

exp
{
uAT

}
du = − (AT

)−1
,

and (3) implies

lim
λ→∞

Ξλ−1ξ (s) = exp
{
i
(
s1m1μ

−1
1 + s2m1μ

−1
2 + · · · + snm1μ

−1
n

)}
.

The following lemma is obvious.

Lemma 2. If Eη1 = m1 < ∞, then λ−1 (z1 (t) , 0, . . . , 0)T converges in probability to
(m1t, 0, . . . , 0)T as λ → ∞.

Assume that a demand entering the system at the moment t0 needs y units of work
to be served and that

x (t0) = (x1 (t0) , x2 (t0) , . . . , xn (t0)) = (x∗
1 + y, x∗

2, . . . , x
∗
n).

Denote, by T , the time to complete servicing this demand by all servers and, by Wi, the
time that passes till the moment when this demand enters the i-th server (i = 1, n). In-
troduce the process βi (t) which is equal to the amount of work executed by the i-th server
at the moment t ≥ t0 (without loss of generality, put t0 = 0). Then dβi (t) = μixi (t) dt,
βi (0) = 0. It follows from the definition of βi (t), that

{T > t} = {x∗
1 + x∗

2 + · · · + x∗
n + y > βn (t)},

{Wi > t} = {x∗
1 + x∗

2 + · · · + x∗
i > βi (t)}.

Rewriting system (1) in the form⎧⎪⎨
⎪⎩

dx1 (t) = dz1 (t) − μ1x1 (t) dt,
dx2 (t) = μ1x1 (t) dt − μ2x2 (t) dt,

. . .
dxn (t) = μn−1xn−1 (t) dt − μnxn (t) dt

and adding all equations of this system, we obtain

μnxn (t) dt = dz1 (t) − dx1 (t) − dx2 (t) − · · · − dxn (t),

dβn (t) = dz1 (t) − dx1 (t) − dx2 (t) − · · · − dxn (t),∫ t

0

dβn (u) =
∫ t

0

dz1 (u) −
∫ t

0

dx1 (u) −
∫ t

0

dx2 (u) − · · · −
∫ t

0

dxn (u),

βn (t) = z1 (t) − x1 (t) + x1 (0) − x2 (t) + x2 (0) − · · · − xn (t) + xn (0)
= z1 (t) − x1 (t) − x2 (t) − · · · − xn (t) + x∗

1 + x∗
2 + · · · + x∗

n + y.
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Hence,
P {T > t} = P {x1 (t) + x2 (t) + · · · + xn (t) > z1 (t)}. (4)

In a similar manner, we get

P {Wi > t} = P {x1 (t) + x2 (t) + · · · + xi (t) > z1 (t) + y} . (5)

If the system operates in a stationary regime, we use notations T s and W s
i for the analogs

of the above-mentioned characteristics. Their distributions are given by formulas (4) and
(5), respectively, provided that the distribution of x (t) = (x1 (t) , x2 (t) , . . . , xn (t))T is
stationary and coincides with that of ξ = (ξ1, ξ2, . . . , ξn)T [2].

Theorem 1. If Eη1 = m1 < ∞, then(
μ−1

1 + μ−1
2 + · · · + μ−1

n

)−1
T s w.⇒ 1

as λ → ∞.

E. quality (4) implies

P {T s > t} = P {ξ1 + ξ2 + · · · + ξn > z1 (t)} = P
{
λ−1 (ξ1 + ξ2 + · · · + ξn) > λ−1z1 (t)

}
.

Lemmas 1 and 2 give

P {T s > t} w.⇒P
{
m1μ

−1
1 + m1μ

−1
2 + · · · + m1μ

−1
n > m1t

}
= P

{
μ−1

1 + μ−1
2 + · · · + μ−1

n > t
}

=
{

1, t < t1

0, t ≥ t1

as λ → ∞, where t1 = μ−1
1 + μ−1

2 + · · · + μ−1
n . This suffices to prove the theorem.

Theorem 2. If Eη1 = m1 < ∞, then(
μ−1

1 + μ−1
2 + · · · + μ−1

i

)−1
W s

i
w.⇒ 1

as λ → ∞.

Theorems 1 and 1 allow us to investigate the following characteristics:
time Ti spent by a demand in the system till completing the servicing at the i-th server,
time T ′

i spent by a demand in the system since it enters the i-th server till the moment
of its output from the system,
time Vi spent by a demand at the i-th server,
time Ki spent by a demand in the queue to the i-th server,
time Si of servicing a demand by the i-th server provided that the system operates in
the stationary regime.

The following results are given in [3].

Theorem 3. If Eη1 = m1 < ∞, then(
μ−1

i + · · · + μ−1
n

)−1
T ′

i
w.⇒ 1

as λ → ∞.

Theorem 4. If Eη1 = m1 < ∞, then

μiKi
w.⇒ 1

as λ → ∞.
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Theorem 5. If Eη1 = m1 < ∞, then

μiVi
w.⇒ 1

as λ → ∞.

Denote exp {tA} = ‖aij(t)‖n
i,j=1. The following results indicate the speed of conver-

gence of T s and W s
n to μ−1

1 + μ−1
2 + · · · + μ−1

n .
Depending on the values of μk, k = 1, n, consider the following cases:

1. μ1 = μ2 = · · · = μn = μ. In this case ani (t) = 1
(n−i)!μ

n−itn−i exp {−μt}, i = 1, . . . , n,
ai1 (t) = 1

(i−1)!μ
i−1ti−1 exp {−μt}, i = 1, . . . , n.

2. All μk, k = 1, n, are different. In this case ai j+1 (t) = 0, i = 1, . . . , n−1, j = i, . . . n−1,
ai i (t) = exp {−μit} , i = 1, . . . , n, ai 1 (t) =

∑i
k=1 ci

k1 exp {−μkt}, i = 2, . . . , n,

anj (t) =
n∑

k=j

cn
kj exp {−μkt}, j = 1, . . . , n − 1

(here, ci
kj is the coefficient of exp {−μkt} in the i-th row and the j-th column of the

matrix exp {tA}).
3. The characteristic polynomial of A has the form

χ (γ) = (γ + μ1)
r1 (γ + μ2)

r2 . . . (γ + μs)
rs ,

μi �= μj , i �= j, r1 + r2 + · · · + rs = n (we do not indicate the elements of exp {tA}, since
we do not consider this case for brevity).

In case 1, we have the following results.

Theorem 6. Let F (x) belong to the domain of attraction of a stable law with exponent α,
1 < α ≤ 2. Then there exists a function f (λ) > 0 regularly varying with exponent 1

α − 1

such that the distributions of the variables
(
T s − n

μ

)
1

f(λ) and
(
W s

n − n
μ

)
1

f(λ) weakly
converge as λ → ∞ to the distribution of the sum of independent random variables w1

and w2 with the characteristic functions

χw1 = exp

⎧⎨
⎩
∫ ∞

0

ln χ

⎛
⎝s1

n∑
k=1

n−k+1∑
j=1

(
nμ−1

)n−k+1−j
μn−j

(n − k + 1 − j)! (k − 1)!
uk−1 exp {− (n + μu)}

⎞
⎠du

⎫⎬
⎭

and

χw2 = exp

{∫ n
μ

0

ln χ

(
s1

n∑
k=1

μn−kun−k

(n − k)!
exp {−μu} − 1

)
du

}
,

where

χ (s1) = exp
{
− |s1|α

(
1 − i

s1

|s1| tg
πα

2

)}
.

This distribution is stable with exponent α.

The following theorem considers the case m1 = ∞.

Theorem 7. Let F (x) belong to the domain of attraction of a stable law with exponent
α, 0 < α < 1. Then

lim
λ→∞

P {T s < t} = lim
λ→∞

P {W s
n < t} = P {v1 + v2 < 0},
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where the random variables v1 and v2 are independent and have Laplace transforms
exp

{−sα
1

∫∞
0

qα
1 (u)du

}
and exp

{−sα
1

∫∞
0

qα
2 (u) du

}
, respectively,

q1 (u) =
n∑

k=1

n−k+1∑
j=1

tn−k+1−jμn−j

(n − k + 1 − j)! (k − 1)!
uk−1 exp {−μ (t − u)},

q2 (u) =
n∑

k=1

μn−kun−k

(n − k)!
exp {−μu} − 1.

Further, we denote 1
μ1

+ · · · + 1
μn

= c.
In case 2, we have the following results.

Theorem 8. Let F (x) belong to the domain of attraction of a stable law with exponent
α, 1 < α ≤ 2. Then there exists a function f (λ) > 0 regularly varying with exponent
1
α − 1 such that the distributions of the variables (T s − c) 1

f(λ) and (W s
n − c) 1

f(λ) weakly
converge as λ → ∞ to the distribution of the sum

n∑
k=1

cn
k1

μk
exp {−μkc} v1 +

n∑
k=2

cn
k2

μk
exp {−μkc}

2∑
j=1

c2
j1vj + . . .

+
n∑

k=n−1

cn
kn−1

μk
exp {−μkc}

n−1∑
j=1

cn−1
j1 vj +

1
μn

exp {−μkc}
n∑

j=1

cn
j1vj +

n∑
k=1

cn
k1

μk
wk.

This distribution is stable with exponent α. The sum consists of summands involving the
independent random variables vj, wj, j = 1, . . . , n with the characteristic functions

χ
1

αμj (s1), exp
{
|s1|α

(
1 + i

s1

|s1| tg
πα

2

)∫ c

0

(exp {−μju} − 1)α
du

}
, j = 1, . . . , n,

respectively.

Theorem 9. Let F (x) belong to the domain of attraction of a stable law with exponent
α, 0 < α < 1, then limλ→∞ P {T s < t} = limλ→∞ P {W s

n < t} =

P

⎧⎨
⎩

n∑
k=1

cn
k1

μk
exp {−μkt}w∗

1 +
n∑

k=2

cn
k2

μk
exp {−μkt}

2∑
j=1

c2
j1w

∗
j + · · ·+

n∑
k=n−1

cn
kn−1

μk
exp {−μkt}

n−1∑
j=1

cn−1
j1 w∗

j +
1
μn

exp {−μkt}
n∑

j=1

cn
j1w

∗
j +

n∑
k=1

cn
k1

μk
v∗k < 0

⎫⎬
⎭,

where random variables w∗
j , v∗j , j = 1, . . . , n, are independent and have the Laplace trans-

forms exp
{
− sα

1
μjα

}
, exp

{
−sα

1

∫ t

0 (1 − exp {−μju})α
du
}
, j = 1, . . . , n, respectively.

4. Behavior of the stationary characteristics
of a horizontal system in heavy traffic

Assume that a demand entering a horizontal system at the moment t0 needs y units
of work to be served. Let Ss denote the time to complete servicing this demand by all
servers and let V s

n be the time that passes till the moment when this demand enters the
n-th server provided that the system operates in the stationary regime.

As earlier, F (y1, y2, . . . , yn) is the distribution function of η = (η1, 0, . . . , 0)T ,

Eη = (Eη1, 0, . . . , 0)T ,
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Eη1 = m1, ξ = (ξ1, ξ2, . . . , ξn)T is a vector, whose distribution is stationary for x(t).
The main results can be formulated as the following statements [5].

Lemma 3. If Eη1 = m1 < ∞, then λ−1 (ξ1, ξ2, . . . , ξn)T converges in probability to
m1

(∑n
i=1 μ−1

i ,
∑n

i=2 μ−1
i , . . . , μ−1

n

)T
as λ → ∞.

Theorem 10. If Eη1 = m1 < ∞, then(
μ−1

1 + 2μ−1
2 + · · · + nμ−1

n

)−1
Ss w.⇒ 1

as λ → ∞.

Theorem 11. If Eη1 = m1 < ∞, then(
μ−1

1 + 2μ−1
2 + · · · + nμ−1

n

)−1
V s

n
w.⇒ 1

as λ → ∞.

Investigating the speed of convergence of Ss and V s
n to μ−1

1 + 2μ−1
2 + · · · + nμ−1

n

turned out to be a troublesome problem. The proofs of limiting theorems contain cum-
bersome expressions even in the case of two servers with μ1 = μ2 = μ, and the theorems
themselves have unattractive forms. At the same time, changing the processes x (t)
and z (t) by some linear transformations x̃ (t) and z̃ (t) allows us to establish the limit
theorems in the n-dimensional case.

Consider the case where the matrix A is similar to a diagonal matrix D, i.e.

A = TDT−1,

where D = ‖δijλi‖n
i,j=1, λi, i = 1, . . . , n are the eigenvalues of A (real and negative) and

T is a non-singular matrix, T = ‖ tij‖n
i,j=1, T−1 =

∥∥ t′ij
∥∥n

i,j=1
.

If x̃ (t) = (x̃1 (t) , x̃2 (t) , . . . , x̃n (t))T =T−1x (t), then

dx̃ (t) = Dx̃ (t) dt + dz̃ (t),

where

z̃ (t) = (z̃1 (t) , z̃2 (t) , . . . , z̃n (t))T = T−1z (t) = (t′11z1 (t) , t′21z1 (t) , . . . , t′n1z1 (t))T
.

Lemma 4. If Eη1 = m1 < ∞, then λ−1ξ̃ = λ−1T−1ξ = λ−1
(
ξ̃1, ξ̃2, . . . , ξ̃n

)T

converges

in probability to m1

(∑n
j=1 t′1j

∑n
i=j μ−1

i ,
∑n

j=1 t′2j

∑n
i=j μ−1

i , . . . ,
∑n

j=1 t′nj

∑n
i=j μ−1

i

)T

as λ → ∞.

Denote c =
∑n

j=1 t′j1λ
−1
j

∑n
k=1 tkj

(
μn

∑n
j=1 tnjt

′
j1λ

−1
j

)−1

.

Theorem 12. Let F (x) belong to the domain of attraction of a stable law with exponent
α, 1 < α ≤ 2. Then there exists a function f (λ) > 0 regularly varying with exponent
1
α − 1 such that the distributions of the variables (Ss − c) 1

f(λ) and (V s
n − c) 1

f(λ) weakly
converge as λ → ∞ to the distribution of the sum

n∑
j=1

t′j1

(
n∑

k=1

tkj − μntnjλ
−1
j (exp {λjt} − 1)

)
vj + μn

n∑
j=1

tnjt
′
j1λ

−1
j wj ,

This distribution is stable with exponent α. The sum consists of summands involving the
independent random variables vj, wj, j = 1, . . . , n with characteristic functions

χ
− 1

αλj (s1), exp
{
|s1|α

(
1 + i

s1

|s1| tg
πα

2

)∫ c

0

(1 − exp {λju})α
du

}
, j = 1, . . . , n,
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respectively, where χ (s1) = exp
{
− |s1|α

(
1 − i s1

|s1| tg
πα
2

)}
.

Theorem 13. If F (x) belongs to the domain of attraction of a stable law with exponent
α, 0 < α < 1, then

lim
λ→∞

P {Ss < t} = lim
λ→∞

P {V s
n < t}

= P

⎧⎨
⎩

n∑
j=1

t′j1

(
n∑

k=1

tkj − μntnjλ
−1
j (exp {λjt} − 1)

)
v∗j + μn

n∑
j=1

tnjt
′
j1λ

−1
j w∗

j < 0

⎫⎬
⎭ ,

where the random variables v∗j , w∗
j , j = 1, . . . , n, are independent and have the Laplace

transforms exp
{

sα
1

λjα

}
, exp

{
−sα

1

∫ t

0 (1 − exp {λju})α
du
}
, j = 1, . . . , n, respectively.

5. Limit theorems for the solution to
the Langevin equation in low traffic

Consider Eq. (1) in a wider case where a matrix A has the form A = UJU−1, J is a
Jordan matrix, U = ‖uij‖n

i, j=1 is a non-singular matrix, and

z(t) = (z1(t), z2(t), . . . , zn(t))T ∈ R
n

is a generalized Poisson process with parameter λ and jumps η1, η2, . . . , ηj , . . . . In this
section, we investigate the limit behavior, as λ → 0, of x̃ = (x̃1, . . . , x̃n)T = U−1x(·, λ)
provided that x(·, λ) is in a stationary regime.

Denote η̃j = (η̃j
1, . . . , η̃

j
n)T = U−1ηj , j = 1, 2, . . . , pr = P

{
η̃j

r = 0
}

, p+
r =

P{η̃j
r > 0}, sgn z = (sgn z1, . . . , sgn zn)T , if z = (z1, . . . , zn)T ∈ R

n, J = {J1, . . . , Jm},
where Ji is a Jordan cell of dimension ki related to the eigenvalue λi, i = 1, m, of A
(some λi can coincide),

∑m
i=1 ki = lm, m = 1, n, ln = n.

Since the components of x̃ = (x̃1, . . . , x̃n)T are determined by Jordan cells, we restrict
ourselves by the description of the part of x̃ which corresponds to Ji. Denote it by
(x̃li−1+1, x̃li−1+2, . . . , x̃li)T . Let also (η̃j

li−1+1, η̃
j
li−1+2, . . . , η̃

j
li
)T , j = 1, 2, . . . , be the

part of η̃j which corresponds to Ji, A1 = {η̃1
li

�= 0}, B1 = {η̃1
li−1 �= 0}, P{A1} =

p, P{B1} = q. (All processes and random variables are supposed to be determined on
the same probability space.)

Consider the following cases:
I. λi < 0. If this is the case, then x̃li−1+1, . . . , x̃li are real.
II. λi = ai + ibi, (ai < 0, bi �= 0). If this is the case, then x̃li−1+1, . . . , x̃li are

complex. So, x̃li−1+1 =
∣∣x̃li−1+1

∣∣ exp
{
iϕli−1+1

}
, . . . , x̃li = |x̃li | exp {iϕli}, where

ϕli−1+1 = arg x̃li−1+1, . . . , ϕli = arg x̃li , ϕli−1+1, . . . , ϕli ∈ (0 , 2π).
Let us introduce the notation νi = λλ−1

i , if λi is real, and κi = λa−1
i , if λi = ai + ibi.

In the rest of the paper, α stays for a random variable which does not depend on other
variables and is uniformly distributed on (0, 1).

In case I, we have the following theorems [4].

Theorem 14. If pli = 0, then the distribution of

( ∣∣x̃li−1+1

∣∣−νi
, . . . , |x̃li |−νi , sgn (x̃li−1+1, . . . , x̃li)

)

weakly converges as λ → 0 to the distribution of (α, . . . , α, sgn (η̃1
li
, . . . , η̃1

li
)).
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Theorem 15. If 0 < pli < 1, then the distribution of( ∣∣x̃li−1+1

∣∣−νi
, . . . , |x̃li |−νi , sgn x̃li−1+1, . . . , sgnx̃li

)
weakly converges as λ → 0 to the distribution of

(
α

1
p , . . . , α

1
p , γ, . . . , γ

)
, where γ takes

values 1 and −1 with probabilities p+
li

and 1 − p+
li
, respectively.

Theorem 16. If pli = 1, pli−1 = 0, then the distribution of(∣∣x̃li−1+1

∣∣−νi
, . . . , |x̃li−1|−νi , |x̃li | , sgnx̃li−1+1, . . . , sgnx̃li−1, sgnx̃li

)
weakly converges as λ → 0 to the distribution of

(
α, . . . , α, 0, sgnη̃1

li−1, . . . , sgnη̃1
li−1, 0

)
.

Theorem 17. If pli = 1, 0 < pli−1 < 1, then the distribution of(∣∣x̃li−1+1

∣∣−νi
, . . . , |x̃li−1|−νi , |x̃li | , sgnx̃li−1+1, . . . , sgnx̃li−1, sgnx̃li

)
weakly converges as λ → 0 to the distribution of

(
α

1
q , . . . , α

1
q , 0, γ, . . . , γ, 0

)
, where γ

takes values 1 and −1 with probabilities p+
li−1 and 1 − p+

li−1, respectively.

In case II, the following theorems are proved [4].

Theorem 18. If pli = 0, then the distribution of(∣∣x̃li−1+1

∣∣−κi
, . . . , |x̃li |−κi , ϕli−1+1, . . . , ϕli

)
weakly converges as λ → 0 to the distribution of (α, . . . , α, β, . . . , β), where β is uniformly
distributed on (0, 2π).

Theorem 19. If 0 < pli < 1, then the distribution of( ∣∣x̃li−1+1

∣∣−κi
, . . . , |x̃li |−κi , ϕli−1+1, . . . , ϕli

)
weakly converges as λ → 0 to the distribution of

(
α

1
p , . . . , α

1
p , β, . . . , β

)
, where β is uni-

formly distributed on (0, 2π).

These results can be applied in a natural way to vertical and horizontal systems. Note
that a vertical system only uses Theorems 14–17, since its matrix A possesses only real
eigenvalues.
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