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THE NORMAL LIMIT DISTRIBUTION OF THE

NUMBER OF FALSE SOLUTIONS OF A SYSTEM OF

NONLINEAR RANDOM EQUATIONS IN THE FIELD GF(2)

The theorem on a normal limit (n → ∞) distribution of the number of false solutions
of a beforehand consistent system of nonlinear random equations in the field GF(2)
with independent coefficients is proved. In particular, we assume that each equation
has coefficients that take values 0 and 1 with equal probability; the system has a
solution where the number of ones equals [ρn], ρ = const, 0 < ρ < 1.

Statement of the problem. Formulation of the theorem

Let us consider a system of equations over the field GF(2) consisting of two elements

(1)
gi(n)∑
k=1

∑
1≤j1<...<jk≤n

a
(i)
j1...jk

xj1 . . . xjk
= bi, i = 1, . . . , N,

that satisfies condition (A).
Condition (A):
1) Coefficients a

(i)
j1...jk

, 1 ≤ j1 < . . . < jk ≤ n, k = 1, . . . , gi(n), i = 1, . . . , N, are

independent random variables that take value 1 with probability P{a(i)
j1...jk

= 1} = pik

and value 0 with probability P{a(i)
j1...jk

= 0} = 1 − pik.
2) Elements bi, i = 1, . . . , N , are the result of the substitution of a fixed n-dimensional

vector x0, that has [ρn] /n−[ρn]/ components equal to one /zero/, ρ = const, 0 < ρ < 1
on the left-hand side of system (1) .

3) Function gi(n), i = 1, . . . , N, is nonrandom, gi(n) ∈ {2, . . . , n}, i = 1, . . . , N.
Denote by νn the number of false solutions of the system (1) , i.e. the number of

solutions of system (1) different from the vector x0.
Put m = n−N . We are interested in the conditions, under which the random variable

νn has a normal limit (n → ∞) distribution.

Theorem. Let, for an arbitrary i, i = 1, . . . , N, there exist a nonempty set

(2) Ti ⊆ {2, 3, . . . , ϕ(n)}, Ti �= ∅,
such that

(3) pit =
1
2

for t ∈ Ti,
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where the function ϕ(n) takes integer values,

(4) 2 ≤ ϕ(n) ≤ ε
n1−p

lnn
,

(5) p = const, 0 < p < 1,

(6) ε is a positive number, 0 < ε <
ρ

2
,

and

(7) m = [log2(
p

14
log2 n)].

Then

(8) λ → ∞, n → ∞,

where λ = Mνn, and the random variable νn−λ√
λ

has asymptotically (n → ∞) standard
normal distribution.

Auxiliary statements

Proposition 1. ([1]) Let X and Y be random variables that take non-negative integer
values, and λ = MX. If the distributions of the random variables are changed so that

(9) sup
1≤r≤7λ

∣∣M(X)r(M(Y )r)−1 − 1
∣∣ e2λ

√
λ
→ 0

and, for all r ≤ 7λ,

(10) M(Y )r ≤ Cλr

with some constant C, then

(11) max
1≤r≤2λ

|P {X ≥ t} − P {Y ≥ t}| → 0.

Proposition 2. ([2]) If condition (A) holds, then the expectation of the random variable
νn equals

(12) Mνn =
n−[ρ n]∑

i=0

Ci
n−[ρ n]

[ρ n]∑
j=0

Cj
[ρ n]

N∏
i=1

⎛
⎝1

2
+

1
2

gi(n)∏
t=1

(1 − 2pit)
Γt

⎞
⎠ ,

where Γt = Ct
i+[ρ n]−j + Ct

[ρ n] − 2Ct
[ρ n]−j , t = 1, ..., gi(n) , i + j ≥ 1.

Proposition 3. ([3]) If condition (A) holds, then, for integer r ≥ 1,

(13) M (νn)r = 2−r NS(n, r; Q),

where

(14)

S(n, r; Q) =
n−[ρ n]∑

s=0

∑
(n − [ρ n]) !

(
(n − [ρ n] − s) !

∏
i∈I

i!

)−1

×

[ρ n]∑
s′=0

s′+s≥1

∑ ′ ([ρ n])!

⎛
⎝([ρ n] − s′) !

∏
j∈J

j!

⎞
⎠

−1

Q,
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(15) Q =
N∏

i=1

⎛
⎝1 +

r∑
ν=1

∑
1≤u1<...<uν≤r

gi(n)∏
t=1

(1 − 2pit)
Γ
{u1,...,uν}
t,r

⎞
⎠ ,

the sum
∑

(
∑ ′ ) is taken over all i ∈ I (j ∈ J), where I = { i{u1,...,uν} : 1 ≤ u1 <

... < uν ≤ r, ν = 1, ..., r } , J =
{

j{u1,...,uν} : 1 ≤ u1 < ... < uν ≤ r, ν = 1, ..., r
}

,
such that

(16)
∑
i∈I

i = s

⎛
⎝∑

j∈J

j = s′

⎞
⎠ ;

the numbers i (i ∈ I) , j (j ∈ J) satisfy the relations

(17)
∑

i∈I{u},j∈J{u}

(i + j) ≥ 1, u = 1, ..., r,

in equality (14),

(18)

r−2∑
l=0

∑
1≤μ1<...<μl≤r

(
i{u1,μ1,...,μl} + j{u1,μ1,...,μl} + i{u2,μ1,...,μl} + j{u2,μ1,...,μl}

) ≥ 1,

1 ≤ u1 < u2 ≤ r ;

for 1 ≤ u1 < ... < uν ≤ r, ν ∈ {1, ..., r} and t ∈ {1, ..., n}, the inequality

(19) Γ{u1,...,uν}
t, r ≥

∑
(i,j)∈T

(
Ct

i + Ct
j

)

holds true, where T = I{u1,...,uν} × J{u1,...,uν} ; and if

(20) [ρ n] − s′ ≥ t,

then

(21) Γ{u1,...,uν}
t, r ≥ Ct−1

[ρ n]−s′
∑

(i,j)∈T

(i + j) .

Here,
I{ur ,...,uν} =

{
i{σ1,...,σψ, μ1,...,μl} : A (ψ, l, r)

}
,

J{ur ,...,uν} =
{

j{σ1,...,σψ, μ1,...,μl} : A (ψ, l, r)
}

,

where A (ψ, l, r) is a notation for the following set of restrictions: 1 ≤ σ1 < ... < σψ ≤
r, σz ∈ {u1, ..., uν} , z = 1, ..., ψ, ψ = 1, ..., ν, ψ ≡ 1 (mod2) , 1 ≤ μ1 < ... < μl ≤
r, μ1, ..., μl /∈ {u1, ..., uν} , l = 0, ..., r − ν.

Remark 1. The explicit expression Γ{u1,...,uν}
t, r for 1 ≤ u1 < ... < uν ≤ r, ν ∈ {1, ..., r} ,

t = 1, 2, ..., gi (n) , i = 1, ..., N is given in [3].
Let W be a set of all nonempty subsets of the set Ω, the potency of which equals

|Ω| = k, 1 ≤ k < ∞. Let us define two subsets WΔ and Is of the set W :

WΔ ⊆ W, WΔ = {ω1, ..., ωΔ} , |WΔ| = Δ , Δ ≥ 1, ωi �= ωj

for i �= j, i, j ∈ {1, ...,Δ};
Is ⊆ W, Is = {m1, ..., ms} , |Is| = s, s ≥ 0, mi �= mj

for i �= j, i, j ∈ {1, ..., s} .
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Proposition 4. ([3]) Let

(22) |mi ∩ ωj| ≡ (mod2), i = 1, ..., s, j = 1, ..., Δ;

(23) Δ ∈ [2r−1, 2r − 1] , 1 ≤ r ≤ k.

Then

(24) s ≤ 2k−r − 1.

Proposition 5. ([3]) Let Ω = {1, ..., k} , 3 < k < ∞. If conditions (22),

(25) Δ = 2r − 1, s = 2k−r − 1, 1 ≤ r ≤ k − 2;

(26) |ωj | ≥ 3, j = 1, ...,Δ,

hold for the sets WΔ and Is, then there exists such a number α, α ∈ {1, ...,Δ} , that, for
some miν , miν ∈ Is, ν = 1, 2, 3,

(27) |ωα ∩ miν | = 2, ν = 1, 2, 3, |ωα ∩ (a ∪ b) | = 3,

where a �= b, a, b ∈ {miν : ν = 1, 2, 3} .

Remark 2. Condition (26) does not hold for r = k − 1 and s = 1. This fact follows from
the proof of Proposition 5 (see also [3, p.45]).

Proof of the theorem

Let us show that, under the conditions of the theorem, we can use Proposition 1.
Let the random variable Y in the mentioned proposition have the Poisson distribution

with parameter 2m, while the distribution of the random variable X coincides with the
distribution of the random variable νn.

Provided that condition (3) holds, Proposition 2 implies

(28) Mνn = 2m − 1
2N

.

Next, using relation (28), conditions (5) and (7), it is easy to show that (8) is valid and
inequality (10) is fulfilled with C ≥ 2 for all n, beginning from some n0, n ≥ n0.

Let us proceed to the verification of condition (9).To achieve this, we will use equal-
ity (13) written as

(29) M (νn)r =
1

2rN

2r−1∑
Δ=0

S(Δ) (n, r; Q),

where S(Δ) (n, r; Q) differs from S (n, r; Q) so that all i and j, i ∈ I, j ∈ J , participating
in the notation S (n, r; Q) given by (14) take only such values that there exist precisely
Δ various sets

(30)
ωα =

{
u

(α)
1 , ..., u

(α)
ξα

}
, 1 ≤ u

(α)
1 < ... < u

(α)
ξα

≤ r,

ξα ∈ {1, 2, ..., r} , α = 1, 2, ...,Δ,

for each of which a number t(α) ∈ {2, ..., ϕ (n)} can be found such that

(31) Γωα

t(α), r
= 0,

and, for the sets {ϑ1, ..., ϑγ} , 1 ≤ ϑ1 < ... < ϑγ ≤ r, γ = 1, ..., r, satisfying the relation

(32) {ϑ1, ..., ϑγ} �= ωα, α = 1, 2, ..., Δ,
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the estimate

(33) Γ{ϑ1,...,ϑγ}
t, r ≥ 1

is valid for all t ∈ {2, ..., ϕ (n)} .

Let us show that

(34) sup
1≤r≤7λ

∣∣∣∣S(0) (n, r; Q)
2r NM (Y )r

− 1
∣∣∣∣ e2λ

√
λ
→ 0, n → ∞.

Firstly, we state that the equality Δ = 0 can really be achieved.
Indeed, if the inequality i ≥ ϕ (n) , j ≥ ϕ (n) , holds for all i, i ∈ I and (or) j, j ∈ J ,

then, by virtue of (19), estimation (33) holds true for all sets {ϑ1, ..., ϑγ} , 1 ≤ ϑ1 < ... <
ϑγ ≤ r, γ = 1, ..., r, and t ∈ {2, ..., ϕ (n)} ; and the inequality max (|I|ϕ (n) , |J |ϕ (n)) ≤
min (n − [ρn], [ρn]) holds for r ≤ 7λ.

Thus, the equality Δ = 0 can be really reached.
With Δ = 0, estimate (33) and condition (3) imply

(35) Q = 1.

Hence, by the polynomial theorem,

(36) S(0) (n, r; Q) = S(0) (n, r; 1) = 2r n − σ0,

where

(37) σ0 = 1 +
2r−1∑
q=1

S(0)
q (n, r; 1),

S
(0)
q (n, r; 1) differs from S (n, r; 1) so that the numbers i ∈ I and j ∈ J on the right-

hand side of (14) are changed so that there exist precisely q expressions of the type
Γ{u1,...,uν}

t, r , for each of which

(38) Γ{u1,...,uν}
t, r = 0,

where q = 1, 2, 3, ..., 2r − 1.

Let all expressions Γ{u1,...,uν}
t, r , 1 ≤ u1 < ... < uν ≤ r, ν ∈ {1, ..., r}, be numbered by

1, 2, 3, ..., 2r − 1. Then the sum S
(0)
q (n, r; 1) can be written as

(39) S(0)
q (n, r; 1) =

∑
1≤γ1<...<γq≤2r−1

S
(0)
〈γ1,...,γq〉 (n, r; 1),

q = 1, 2, 3, ..., 2r − 1, where S
(0)
〈γ1,...,γq〉 (n, r; 1) differs from S

(0)
q (n, r; 1) so that rela-

tion (38) holds only for those expressions Γ{u1,...,uν}
t, r to which the numbers γ1, γ2, ..., γq

correspond. Denote, by A (γ1, ..., γq) /B (γ1, ..., γq) /, the set of all those i ∈ I /j ∈ J/
that are used in estimate (19) for all γ1, γ2, ..., γq. By virtue of (38), the number of
elements in the set A (γ1, ..., γq) /B (γ1, ..., γq) / is not less than 2r−1:

(40) |A (γ1, ..., γq)| ≥ 2r−1,

(41) |B (γ1, ..., γq)| ≥ 2r−1.
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Now, the sum S
(0)
q (n, r; 1) can be given as

(42)

S(0)
q (n, r; 1) =

∑
1≤γ1<...<γq≤2r−1

n−[ρ n]∑
s=0

Cs
n−[ρ n]×

×
∑

s1+s2=s

Cs1
s

⎧⎪⎨
⎪⎩
∑

1

s1 !∏
i∈A(γ1,..., γq)

i !

⎫⎪⎬
⎪⎭
⎛
⎜⎝∑

2

s2 !∏
i∈I\A(γ1,..., γq)

i !

⎞
⎟⎠×

×
[ρ n]∑
s′=0

∑
s′
1+s′

2=s′
C

s′
1

s′

⎧⎪⎨
⎪⎩
∑

3

s′1!∏
j∈B(γ1,..., γq)

j !

⎫⎪⎬
⎪⎭
⎛
⎜⎝∑

4

s′2!∏
j∈J\B(γ1,..., γq)

j !

⎞
⎟⎠,

where
∑

1 is the sum over all i ∈ A (γ1, ..., γq) such that
∑

i = s1,
∑

2 is the sum over
all i ∈ I\A (γ1, ..., γq) such that

∑
i = s2,

∑
3 is the sum over all j ∈ B (γ1, ..., γq) such

that
∑

j = s′1, and
∑

4 is the sum over all j ∈ j\B (γ1, ..., γq) such that
∑

j = s′2.
Relations (37), (39) – (42), and the polynomial formula allow us to obtain the following

estimate for σ0:

(43) σ0 ≤ 22r−12(r−1)n

⎛
⎝∑

s1≥0

Cs1
n−[ρ n]

(
2r−1

)s1

⎞
⎠
⎛
⎝∑

s′
1≥0

C
s′
1

[ρ n]

(
2r−1

)s′
1

⎞
⎠ .

Since s1 ≤ 2rϕ (n) and s′1 ≤ 2rϕ (n), relation (43) can be rewritten in the following way:

(44) σ0 ≤ 22r−12(r−1)n2r 2r+1ϕ (n)

⎛
⎝2rϕ (n)∑

s1=0

Cs1
n−[ρ n]

⎞
⎠
⎛
⎝2rϕ (n)∑

s′
1=0

C
s′
1

[ρ n]

⎞
⎠ .

Next, we can use the fact that, under the conditions of the theorem for 1 ≤ r ≤ 7λ,

(45) 2r+1ϕ (n) ≤ min (n − [ρn], [ρn]) .

This allows us to proceed from (44) to the estimate

σ0 ≤ 22r−12(r−1) n2r 2r+1ϕ (n) (2rϕ (n))2 C
2rϕ (n)
n−[ρ n]C

2rϕ (n)
[ρ n] ,

from whence, with the help of the Stirling’s formula, we can obtain

(46) σ0 ≤ 22r−12(r−1) n 2rϕ (n)
2π

(
(n − [ρ n]) [ρ n] e2

ϕ2 (n)

)2rϕ (n)

.

Now it is easy to verify that

(47) sup
1≤r≤7λ

σ0

2r n

e2λ

√
λ
→ 0

as n → ∞.
Indeed, by virtue of (46), we can find

(48)
sup

1≤r≤7λ

σ0

2r n

e2λ

√
λ
≤ 1

4π
exp
{
27λ ln 2 + 7λ ln 2+

+ 27λϕ (n) ln
(

(n − [ρ n]) [ρ n] e2

ϕ2 (n)

)
+ lnϕ (n) + 2λ − 1

2
lnλ − n ln 2

}
.
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Conditions (4), (7) and relation (28) allow us to conclude that

(49) 0 ≤ 27λϕ (n) ≤ ε
n1− p

2

lnn
.

In response to (48) and (49), we can apparently obtain (47).
From the relations (36), (47) and equality M (Y )r = 2r m, (34) follows.

By virtue of (29) and (34), in order to complete the checking of condition (9), it is
necessary to establish that, for 1 ≤ r ≤ 7λ,

(50)
1

2r N+r m

(
2r−1∑
Δ=1

S(Δ) (n, r; Q)

)
e2λ

√
λ
→ 0

as n → ∞.

Let us show that the restriction (R0)

(51) [ρ n] − ϕ (n) + 1 ≤ s′ ≤ [ρ n],

where s′ is the summation parameter introduced in (14), implies (50).
Let S

(Δ)
〈(R 0); γ1,...,γΔ〉 (n, r; 1) be defined in analogy to S

(0)
〈 γ1,...,γΔ〉 (n, r; 1) with the ad-

ditional condition (R0). Then, under condition (51), we have

(52)
2r−1∑
Δ=1

S(Δ) (n, r; Q) =
r∑

z=1

2z−1∑
Δ=2z−1

∑
1≤γ1<...<γΔ≤2r−1

S
(Δ)
〈(R 0); γ1,...,γΔ〉 (n, r; Q).

Each term on the right-hand side of (52) can be estimated as

(53) S
(Δ)
〈(R 0); γ1,...,γΔ〉 (n, r; Q) ≤ (Δ + 1)N

S
(Δ)
〈(R 0); γ1,...,γΔ〉 (n, r; 1) .

Denote, by M1 /M̃1/, the set of all i, i ∈ I /j, j ∈ J/, that do not belong to
Iωα /Jωα/, α = 1, ... ,Δ and put M2 = I\M1, M̃2 = J\M̃1.

Let z be the minimal integer number such that

(54) Δ ≤ 2z − 1, 1 ≤ z ≤ r.

Then by Proposition 4, the number of elements of the set M1 /M̃1/ does not exceed

(55) |M1| ≤ 2r−z − 1,
∣∣∣M̃1

∣∣∣ ≤ 2r−z − 1.

With the help of (55), we find the estimate

(56)

S
(Δ)
〈(R 0); γ1,...,γΔ〉 (n, r; 1) ≤

≤
n−[ρ n]∑

s=0

Cs
n−[ρ n]

(
2r−z − 1

)s s∑
s2=0

s2≤(2r−1)ϕ (n)

Cs2
s (2r − 1)s2×

× (2r−z − 1
)[ρ n]

[ρ n]∑
s′=[ρ n]−ϕ(n)+1

Cs′
[ρ n]

s′∑
s′
2=0

s′
2≤(2r−1)ϕ(n)

C
s′
2

s′ (2r − 1)s′
2 ,

where s2 =
∑

i∈M1

i, s′2 =
∑

j∈M̃2

j.
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Relations (52) – (54) and (56) provide the inequality

(57)

2r−1∑
Δ=1

S(Δ) (n, r; Q) ≤ 22r+r n−m

(
1 − 1

2r−1

)[ρ n]

(2r − 1)2(2
r−1)ϕ (n) ×

×
⎛
⎝(2r−1)ϕ (n)∑

s2=0

Cs2
n−[ρ n]

⎞
⎠
⎛
⎝(2r−1)ϕ (n)∑

s′
2=0

C
s′
2

[ρ n]

⎞
⎠ ϕ (n)∑

s′=0

Cs′
[ρ n].

Let us observe that

(58)
(2r−1)ϕ (n)∑

s2=0

Cs2
n−[ρ n] ≤

(
(n − [ρ n]) e

(2r − 1)ϕ (n)

)(2r−1)ϕ (n)√
(2r − 1)ϕ (n) ,

(59)
(2r−1)ϕ (n)∑

s′
2=0

C
s′
2

[ρ n] ≤
(

[ρ n] e
(2r − 1)ϕ (n)

)(2r−1)ϕ (n)√
(2r − 1)ϕ (n) ,

(60)
ϕ (n)∑
s′=0

Cs′
[ρ n] ≤

(
[ρ n] e
ϕ (n)

)ϕ (n)√
ϕ (n) .

Using (58) – (60), (7), and (29), we find that when the restriction (R0) holds for 1 ≤ r ≤
7λ and all n, beginning from some n1, n ≥ n1,

(61)

1
2r N+r m

(
2r−1∑
Δ=1

S(Δ) (n, r; Q)

)
e2λ

√
λ
≤ 227 λ−m

(
1 − 1

27 λ−1

)[ρ n]

×

×
(

(n − [ρ n]) [ρ n] e2

ϕ2 (n)

)(27 λ−1)ϕ (n)( [ρ n] e
ϕ (n)

)ϕ (n)
e2λ

√
λ

(
27λ − 1

)
(ϕ (n))3/2

.

With the help of relation (61) and conditions (4) and (7), it is easy to verify that (50)
follows from (51).

Let now

(62) 0 ≤ s′ ≤ [ρ n] − ϕ (n) .

Next, we will use the following lemma.

Lemma. If condition (62) and restriction (R∗),
(R∗): there exists i ∈ M2 and (or) j ∈ M̃2 such that

0 ≤ i ≤ ϕ (n) and (or) 0 ≤ j ≤ ϕ (n) ,

hold, then, for an arbitrary Δ, 1 ≤ Δ ≤ 2r − 1,

(63) 0 ≤ S(Δ) (n, r; Q) ≤ CΔ
2r−12

r n−m+r

(
1 − 1

2r

)[ρ n](
n e

ϕ (n)

)2(2r−1)ϕ(n)

ϕ (n) .

With the help of the lemma, we find that (62) and (R∗) imply the inequality

1
2r N+r m

(
2r−1∑
Δ=1

S(Δ) (n, r; Q)

)
e2λ

√
λ
≤ 1

2r N+r m
22r+r n−m

(
1 − 1

2r

)[ρ n]

×

×
(

n e

ϕ (n)

)2(2r−1)ϕ (n)√
ϕ (n)

e2λ

√
λ

.
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Hence, for 1 ≤ r ≤ 7λ, we obtain

(64)

1
2r N+r m

(
2r−1∑
Δ=1

S(Δ) (n, r; Q)

)
e2λ

√
λ
≤ exp

{
27λ ln 2 − m ln 2−

− [ρ n]
27λ

+ 2
(
27λ − 1

)
ϕ (n) ln

n e

ϕ (n)
+

1
2

lnϕ (n) + 2λ − 1
2

lnλ

}
.

Using (4), (7), and estimate λ ≤ 2m, we find that

(65)
214λ+1ϕ (n)

[ρ n]
ln

n e

ϕ (n)
≤ 2

ε

ρ

(
1 +

1
lnn

ln
e

2

)
< 1

holds for 0 < ε < ρ
2 and n → ∞.

Relations (64) and (65) allow us, apparently, to conclude that (50) holds true under the
conditions of the lemma.
The validity of condition (9) follows from relations (29), (34), and (50). Hence, the
conditions of Proposition 1 hold. Using Proposition 1, we obtain

max
1≤r≤2λ

|P {νn ≥ t} − P {Y ≥ t}| →
n→∞ 0.

The statement of the theorem follows now from the last relation and the fact that the
random variable (Y − 2m) (2m/2)−1 has the standard normal distribution as m → ∞ .

Proof of the lemma. Indeed, for S(Δ) (n, r; Q), we have the obvious estimate

(66) S(Δ) (n, r; Q) ≤
∑

1≤γ1<...<γΔ≤2r−1

S
(Δ)
〈γ1,...,γΔ〉 (n, r; Q),

where S
(Δ)
〈γ1,...,γΔ〉 (n, r; Q) is determined in accordance to S(Δ) (n, r; Q) but with an

additional condition, namely that relation (38) holds true only for those expressions
Γ{u1,...,uν}

t, r , 1 ≤ u1 < ... < uν ≤ r, ν ∈ {1, ..., r}, to which the numbers γ1, γ2, ..., γΔ ∈
{1, 2, 3, ..., 2r − 1} correspond.

Let z be the minimal integer number for which the inequality Δ ≤ 2z − 1 is valid.
Then, providing that conditions (62), (3) and restrictions (R1),

(R1): there exists i ∈ M2 and (or) j ∈ M̃2 such that

1 ≤ i ≤ ϕ (n) and (or) 1 ≤ j ≤ ϕ (n) ,

hold and taking into account relation (21), it is easy to check that

(67) Q ≤ (2z − 1)N
.

With the help of (66) and (67), we find that (63) and (R1) prove the correctness of the
inequality

(68) S(Δ) (n, r; Q) ≤ (2z − 1)N
∑

1≤γ1<...<γΔ≤2r−1

S
(Δ)
〈(R 1); γ1,...,γΔ〉 (n, r; 1),

where S
(Δ)
〈(R 1); γ1,...,γΔ〉 (n, r; 1) differs from S

(Δ)
〈γ1,...,γΔ〉 (n, r; 1) by the additional condition

(R1). In turn, accordingly to (56), we obtain

(2z − 1)N
S

(Δ)
〈(R 1); γ1,...,γΔ〉 (n, r; 1) ≤ 2r n−m

(
1 − 1

2r

)N

(2r − 1)2(2
r−1)ϕ(n) ×

×
(2r−1)ϕ(n)∑

s2=0

Cs2
n−[ρ n]

(2r−1)ϕ(n)∑
s′
2=0

C
s′
2

[ρ n],
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or, taking into account (58) and (59),

(69)
(2z − 1)N

S
(Δ)
〈(R 1); γ1,...,γΔ〉 (n, r; 1) ≤ 2r n−m

(
1 − 1

2r

)N (
n e

ϕ (n)

)2(2r−1)ϕ(n)

×
× (2r − 1)ϕ (n) .

Since [ρ n] < N = n − m for quite large values of n and ϕ (n) ≥ 2 by virtue of (4),
relations (68) and (69) imply inequality (63).

Denote, by (R2), the restrictions
(R2): (62); i = j = 0 for all i ∈ M2 and j ∈ M̃2.
Let us show that (63) holds under restrictions (R2).
Indeed, if, for the parameter Δ, the restrictions

(70) Δ < 2z − 1 or Δ = 2z − 1 and
∣∣∣M̃1

∣∣∣ < 2r−z − 1,

hold, then (66) implies

(71) S(Δ) (n, r; Q) ≤
∑

1≤γ1<...<γΔ≤2r−1

S
(Δ)
〈(R 2); (70); γ1,...,γΔ〉 (n, r; Q),

where S
(Δ)
〈(R 2); (70); γ1,...,γΔ〉 (n, r; Q) differs from S

(Δ)
〈γ1,...,γΔ〉 (n, r; Q) by the additional con-

ditions (R2) and (70).
Each term on the right-hand side of (71) can be estimated in the following way:

1) for Δ < 2z − 1, we have

(72) S
(Δ)
〈(R 2); (70); γ1,...,γΔ〉 (n, r; Q) ≤ 2r n−z(n−N)

(
1 − 1

2r

)N

,

2) for Δ = 2z − 1 and
∣∣∣M̃1

∣∣∣ < 2r−z − 1, we have

(73) S
(Δ)
〈(R 2); (70); γ1,...,γΔ〉 (n, r; Q) ≤ 2r n−m

(
1 − 1

2r

)[ρ n]

,

Combining (71) – (73), we come to the conclusion that (63) holds under the restrictions
(R2) and (70).

Denote, by s∗ and s̃∗, the sums s∗ =
∑

i∈M2

i and s̃∗ =
∑

j∈M̃2

j. From the conditions

(R2), we obviously have

(74) s∗ + s̃∗ = 0.

Next, let us verify that equality (74) implies that ξα ≥ 3 for all α ∈ {1, 2, ...,Δ}, where
ξα is the parameter from definition (30). Indeed, inequalities (17) and (18) allow us to
conclude that if ξα ≤ 2 for some α ∈ {1, 2, ...,Δ}, then s∗ + s̃∗ ≥ 1, which contradicts
equality (74).

Now, let us check that if Δ = 2z − 1, 1 ≤ z ≤ r, and z ∈ {r, r − 1} or r ∈ {1, 2},
then there exists some α, α ∈ {1, 2, ...,Δ}, such that ξα ≤ 2. Indeed, when z = r or
r ∈ {1, 2}, the existence of the mentioned parameter α is certain. For z = r − 1, the
existence of the parameter α such that ξα ≤ 2 follows from Remark 2.

Therefore, it remains to check relation (63) under restrictions (R3):

(75) ξα ≥ 3, α ∈ {1, 2, 3, ...,Δ} ,

(76) Δ = 2z − 1,
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(77)
∣∣∣M̃1

∣∣∣ = 2r−z − 1 for 1 ≤ z ≤ r − 2, 3 ≤ r < ∞.

In analogy to how it was done in work [3], we make use of Proposition 5 and con-
ditions (75) – (77) to verify that there exists an element j∗, j∗ ∈ M̃1, satisfying the
inequality j∗ ≤ ϕ (n). This allows us to obtain the estimation

(78) S
(Δ)
〈(R 3); γ1,...,γΔ〉 (n, r; Q) ≤ 2r n−z m

(
1 − 1

2r

)[ρ n]( [ρ n] e
ϕ (n)

)ϕ(n)√
ϕ (n).

Relation (78) and inequality

S(Δ) (n, r; Q) ≤
∑

1≤γ1<...<γΔ≤2r−1

S
(Δ)
〈(R 3); γ1,...,γΔ〉 (n, r; Q)

prove (63) under the restrictions (R3).
Analyzing restrictions (Ri), i = 1, 2, 3, it is easy to verify that (63) holds for all possible

values of the parameter s and those values of the parameters s′, i, and j that satisfy (62)
and (R∗), for which Δ ≥ 1. The lemma is proved.
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