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INVESTIGATION OF THE ASYMPTOTICS

OF A RENEWAL MATRIX

A semi-Markov process with finite state space and continuous time without finiteness
condition of a mean stay time of this process in every fixed state is considered. The
asymptotic behaviour of the renewal matrix at infinity is established under condition
that the distribution tail of the stay time of the semi-Markov process in every fixed
state is a regularly varying function at infinity with exponent −1.

Introducton

The classical renewal theorems give the asymptotic behaviour of the renewal function
associated with a distribution F at infinity (see [1, §12.1]). These theorems are valid when
the mean of the distribution F is equal to infinity. In the case of a regularly varying
distribution function tail 1−F at infinity with exponent −α, 0 ≤ α ≤ 1, Erickson defined
more precisely the behaviour of the renewal function at infinity (see [2, Theorems 1,5]).
An analogy of the renewal function for a semi-Markov process with finite state space
is the so-called renewal matrix associated with a semi-Markov matrix P . If the matrix
P (∞) is irreducible and a mean stay time of the semi-Markov process in every fixed
state is finite, then the asymptotic behaviour of the renewal matrix is well known (see
[1, §12.6]). V.S. Korolyuk and A.F. Turbin have investigated a limit properties of the
renewal matrix too (see, [3, Chapter 4]). In this paper, a semi-Markov process with finite
state space without finiteness condition of a mean stay time of this process in every fixed
state is considered. The asymptotics of the renewal matrix is found under condition
that the distribution tail of this stay time is a regularly varying function at infinity with
exponent α = −1.

The asymptotic behaviour of the renewal matrix

Let X(t), t ≥ 0, be a semi-Markov process with finite state space {1, 2, . . . , m} and
continuous time. Define

τ1 = τ = inf{t > 0 : X(t) �= X(0)}, . . . ,

τn = inf{t > τn−1 : X(t) �= X(τn−1)}, n ≥ 2.

A sequence of the random quantities X(0), X(τ1), . . . , X(τn), . . . creates the so-called
imbedded Markov chain in X(t) with the transition probabilities

pij = P{X(τ) = j | X(0) = i}, i, j = 1, m.
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The matrix P = ||pij ||mi,j=1 is irreducible. Therefore, a unique stationary distribution p1,
p2, . . . , pm exists such that

pi ≥ 0,

m∑
i=1

pi = 1, pj =
m∑

i=1

pipij , j = 1, m.

Denote
Fij(t) = P{τ ≤ t, X(τ) = j | X(0) = i},

Fi(t) =
m∑

j=1

Fij(t) = P{τ ≤ t | X(0) = i}, i = 1, m.

Assume that the mean stay time of the semi-Markov process X(t) in every fixed state is
infinite, that is,

Miτ = M{τ | X(0) = i} =
∫ ∞

0

x dFi(x) =
∫ ∞

0

(1 − Fi(x)) dx = +∞,

i = 1, m.
Consider the Markov renewal equation (see [3, p. 38])

qi(t) = bi(t) +
m∑

j=1

∫ t

0

Fij{dx}qj(t − x), i = 1, m, t ≥ 0, (1)

where the matrix F (t) = ||Fij(t)||mi,j=1 is semi-Markov.
The solution of Eq. (1) is (see [3, p. 40])

qi(t) =
m∑

j=1

∫ t

0

Uij{dx}bj(t − x) =

=
m∑

j=1

∫ 1

0

Uij{tdx}bj(t(1 − x)), i = 1, m, (2)

where Uij{[0, t]} = Uij(t), i, j = 1, m, are the elements of the renewal matrix U(t) which
is an analogy of the renewal function, that is,

U(t) =
∞∑

n=0

Fn∗(t), (3)

where F 0∗(t) = E ≡ ||δij ||mi,j=1 is the unit matrix,

F 1∗(t) = F (t),

F (n+1)∗(t) =
∫ t

0

Fn∗(t − u)F{du}, n ∈ N.

Theorem 1. Let

1 − Fi(t) ∼ ai
L(t)

t
, i = 1, m, as t → ∞, (4)

where L is a slowly varying function at infinity, and a1, . . . , am are some nonnegative
constants such that

∑m
i=1 aipi > 0. Then

lim
t→∞

1
t
L1(t)Uij(t) =

pj∑m
i=1 aipi

, i, j = 1, m, (5)

where

L1(t) =
∫ t

1/d

L(x)
x

dx, d > 0.
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Remark 1. Since
∑m

i=1 pi = 1, the condition
∑m

i=1 aipi > 0 excludes a possibility,
when ai = 0, i = 1, m.
Proof. Find the asymptotics of the renewal measure U(tx) = ||Uij(tx)||mi,j=1, x ∈ [0, 1],
as t → ∞. Denote, by

Û(λ) =
∫ ∞

0

e−λxU{dx}, λ > 0,

the Laplace transform of a measure U and, by

F̂ (λ) =
∫ ∞

0

e−λxF{dx}, λ > 0,

the Laplace transform of a distribution F .
From (3), using properties of the Laplace transformation (see [4, p. 500]), we have

Û(λ) =
∞∑

n=0

(
F̂ (λ)

)n

.

Count the norm of the matrix F̂ (λ):

||F̂ (λ)|| = sup
1≤i≤m

m∑
j=1

|F̂ij(λ)| = sup
1≤i≤m

m∑
j=1

∫ ∞

0

e−λxFij{dx} =

= sup
1≤i≤m

∫ ∞

0

e−λxFi{dx}.
Integrating by parts, we obtain∫ ∞

0

e−λxFi{dx} = e−λxFi(x)
∣∣∣∣
∞

0

+λ

∫ ∞

0

Fi(x)e−λxdx =
∫ ∞

0

Fi

(
t

λ

)
e−tdt.

By the geometrical matter of an integral, we get∫ ∞

0

Fi

(
t

λ

)
e−tdt <

∫ ∞

0

e−tdt, i = 1, m.

Therefore

||F̂ (λ)|| = sup
1≤i≤m

∫ ∞

0

Fi

(
t

λ

)
e−tdt < 1.

Thus, by Theorem 5 in [5, p. 216], we obtain
∞∑

n=0

(
F̂ (λ)

)n

= [E − F̂ (λ)]−1.

Hence,
Û(λ) = [E − F̂ (λ)]−1. (6)

For a fixed λ, consider the matrix sequence
{

F̂

(
λ

t

)}
as t → ∞. It is a monotonous

nondecreasing matrix sequence with nonnegative elements, for which

F̂

(
λ

t

)
→ P for t → ∞,

where P = ||pij ||mi,j=1 is the transition matrix of the imbedded Markov chain. Since P is
an irreducible matrix, we obtain (see [6, p. 599])

ct

(
E − F̂

(
λ

t

))−1

→ ||1 · pj||mi,j=1 as t → ∞, (7)
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where ct = 1 −
(

p, F̂

(
λ

t

)
· 1

)
, p = (p1, . . . , pm), 1 = (1, . . . , 1).

It follows from Theorem 1 in [7, p. 30] that, for all λ > 0,

1 − F̂i

(
λ

t

)
∼ λai

t
· L1

(
t

λ

)
, i = 1, m, as t → ∞.

Consequently,

ct = 1 −
(

p, F̂

(
λ

t

)
· 1

)
=

m∑
i=1

pi

(
1 − F̂i

(
λ

t

))
∼

∼
m∑

i=1

pi
λai

t
· L1

(
t

λ

)
as t → ∞.

Since L1 is a slowly varying function at infinity (see [8, p. 220]), we get

ct ∼ λ

t
L1(t)

m∑
i=1

aipi as t → ∞. (8)

Thus, in view of (7) and (8), relation (7) yields

λ

t
L1(t)

m∑
i=1

aipi

∫ ∞

0

e−
λ
t xU{dx} → ||1 · pj ||mi,j=1 as t → ∞,

that is,

1
t
L1(t)

∫ ∞

0

e−λuU{tdu} → 1
λ

∑m
i=1 aipi

· ||1 · pj ||mi,j=1 as t → ∞

Whence we get

1
t
L1(t)

∫ ∞

0

e−λuUij{tdu} → pj

λ
∑m

i=1 aipi
, i, j = 1, m, as t → ∞.

By the generalized continuity theorem (see [4, c. 499]), the quantity

pj

λ
∑m

i=1 aipi

is a Laplace transform of some measure pjμ1 such that∫ ∞

0

e−λuμ1{du} =
1

λ
∑m

i=1 aipi
, λ > 0, (9)

and
1
t
L1(t)Uij{tdu} → pjμ1{du}, i, j = 1, m, as t → ∞ (10)

for every bounded continuity interval of the measure μ1.
Since ∫ ∞

0

e−λudu =
1
λ

,

we see from (9) that μ1 is the Lebesgue measure multiplied by a constant. Therefore,
the interval (0, 1) is a continuity interval of the measure μ1. Thus, we get from (10) that

lim
t→∞

1
t
L1(t)Uij{(0, t)} = pjμ1{(0, 1)} =

pj∑m
i=1 aipi

, i, j = 1, m.
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Note that Uij{(0, t)} = Uij(t− 0)−Uij(0), i, j = 1, m. From (3), we obtain Uij(0) = δij ,
i, j = 1, m. Since L1(t) → ∞ as t → ∞, we count, by the L’Hospital rule,

lim
t→∞

L1(t)
t

= lim
t→∞

∫ t

1/d

L(x)
x

dx

t
= lim

t→∞
L(t)

t
= 0,

i = 1, m. Consequently,

lim
t→∞

1
t
L1(t)Uij{(0, t)} = lim

t→∞
1
t
L1(t)[Uij(t − 0) − δij ] =

= lim
t→∞

1
t
L1(t)Uij(t) =

pj∑m
i=1 aipi

, i, j = 1, m.

Theorem 1 is proved.
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