N. V. BUHRII

INVESTIGATION OF THE ASYMPTOTICS OF A RENEWAL MATRIX

Abstract

A semi-Markov process with finite state space and continuous time without finiteness condition of a mean stay time of this process in every fixed state is considered. The asymptotic behaviour of the renewal matrix at infinity is established under condition that the distribution tail of the stay time of the semi-Markov process in every fixed state is a regularly varying function at infinity with exponent -1 .

Introducton

The classical renewal theorems give the asymptotic behaviour of the renewal function associated with a distribution F at infinity (see $[1, \S 12.1]$). These theorems are valid when the mean of the distribution F is equal to infinity. In the case of a regularly varying distribution function tail $1-F$ at infinity with exponent $-\alpha, 0 \leq \alpha \leq 1$, Erickson defined more precisely the behaviour of the renewal function at infinity (see [2, Theorems 1,5]). An analogy of the renewal function for a semi-Markov process with finite state space is the so-called renewal matrix associated with a semi-Markov matrix P. If the matrix $P(\infty)$ is irreducible and a mean stay time of the semi-Markov process in every fixed state is finite, then the asymptotic behaviour of the renewal matrix is well known (see $[1, \S 12.6])$. V.S. Korolyuk and A.F. Turbin have investigated a limit properties of the renewal matrix too (see, [3, Chapter 4]). In this paper, a semi-Markov process with finite state space without finiteness condition of a mean stay time of this process in every fixed state is considered. The asymptotics of the renewal matrix is found under condition that the distribution tail of this stay time is a regularly varying function at infinity with exponent $\alpha=-1$.

The asymptotic behaviour of the renewal matrix

Let $X(t), t \geq 0$, be a semi-Markov process with finite state space $\{1,2, \ldots, m\}$ and continuous time. Define

$$
\begin{gathered}
\tau_{1}=\tau=\inf \{t>0: X(t) \neq X(0)\}, \quad \ldots \\
\tau_{n}=\inf \left\{t>\tau_{n-1}: X(t) \neq X\left(\tau_{n-1}\right)\right\}, \quad n \geq 2
\end{gathered}
$$

A sequence of the random quantities $X(0), X\left(\tau_{1}\right), \ldots, X\left(\tau_{n}\right), \ldots$ creates the so-called imbedded Markov chain in $X(t)$ with the transition probabilities

$$
p_{i j}=P\{X(\tau)=j \mid X(0)=i\}, \quad i, j=\overline{1, m}
$$

[^0]The matrix $P=\left\|p_{i j}\right\|_{i, j=1}^{m}$ is irreducible. Therefore, a unique stationary distribution p_{1}, p_{2}, \ldots, p_{m} exists such that

$$
p_{i} \geq 0, \quad \sum_{i=1}^{m} p_{i}=1, \quad p_{j}=\sum_{i=1}^{m} p_{i} p_{i j}, \quad j=\overline{1, m}
$$

Denote

$$
\begin{gathered}
F_{i j}(t)=P\{\tau \leq t, X(\tau)=j \mid X(0)=i\} \\
F_{i}(t)=\sum_{j=1}^{m} F_{i j}(t)=P\{\tau \leq t \mid X(0)=i\}, \quad i=\overline{1, m} .
\end{gathered}
$$

Assume that the mean stay time of the semi-Markov process $X(t)$ in every fixed state is infinite, that is,

$$
M_{i} \tau=M\{\tau \mid X(0)=i\}=\int_{0}^{\infty} x d F_{i}(x)=\int_{0}^{\infty}\left(1-F_{i}(x)\right) d x=+\infty
$$

$i=\overline{1, m}$.
Consider the Markov renewal equation (see [3, p. 38])

$$
\begin{equation*}
q_{i}(t)=b_{i}(t)+\sum_{j=1}^{m} \int_{0}^{t} F_{i j}\{d x\} q_{j}(t-x), \quad i=\overline{1, m}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

where the matrix $F(t)=\left\|F_{i j}(t)\right\|_{i, j=1}^{m}$ is semi-Markov.
The solution of Eq. (1) is (see [3, p. 40])

$$
\begin{gather*}
q_{i}(t)=\sum_{j=1}^{m} \int_{0}^{t} U_{i j}\{d x\} b_{j}(t-x)= \\
=\sum_{j=1}^{m} \int_{0}^{1} U_{i j}\{t d x\} b_{j}(t(1-x)), \quad i=\overline{1, m}, \tag{2}
\end{gather*}
$$

where $U_{i j}\{[0, t]\}=U_{i j}(t), i, j=\overline{1, m}$, are the elements of the renewal matrix $U(t)$ which is an analogy of the renewal function, that is,

$$
\begin{equation*}
U(t)=\sum_{n=0}^{\infty} F^{n *}(t) \tag{3}
\end{equation*}
$$

where $F^{0 *}(t)=E \equiv\left\|\delta_{i j}\right\|_{i, j=1}^{m}$ is the unit matrix,

$$
\begin{gathered}
F^{1 *}(t)=F(t) \\
F^{(n+1) *}(t)=\int_{0}^{t} F^{n *}(t-u) F\{d u\}, \quad n \in N .
\end{gathered}
$$

Theorem 1. Let

$$
\begin{equation*}
1-F_{i}(t) \sim a_{i} \frac{L(t)}{t}, \quad i=\overline{1, m}, \quad \text { as } \quad t \rightarrow \infty \tag{4}
\end{equation*}
$$

where L is a slowly varying function at infinity, and a_{1}, \ldots, a_{m} are some nonnegative constants such that $\sum_{i=1}^{m} a_{i} p_{i}>0$. Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} L_{1}(t) U_{i j}(t)=\frac{p_{j}}{\sum_{i=1}^{m} a_{i} p_{i}}, \quad i, j=\overline{1, m} \tag{5}
\end{equation*}
$$

where

$$
L_{1}(t)=\int_{1 / d}^{t} \frac{L(x)}{x} d x, \quad d>0
$$

Remark 1. Since $\sum_{i=1}^{m} p_{i}=1$, the condition $\sum_{i=1}^{m} a_{i} p_{i}>0$ excludes a possibility, when $a_{i}=0, i=\overline{1, m}$.
Proof. Find the asymptotics of the renewal measure $U(t x)=\left\|U_{i j}(t x)\right\|_{i, j=1}^{m}, x \in[0,1]$, as $t \rightarrow \infty$. Denote, by

$$
\widehat{U}(\lambda)=\int_{0}^{\infty} e^{-\lambda x} U\{d x\}, \quad \lambda>0
$$

the Laplace transform of a measure U and, by

$$
\widehat{F}(\lambda)=\int_{0}^{\infty} e^{-\lambda x} F\{d x\}, \quad \lambda>0
$$

the Laplace transform of a distribution F.
From (3), using properties of the Laplace transformation (see [4, p. 500]), we have

$$
\widehat{U}(\lambda)=\sum_{n=0}^{\infty}(\widehat{F}(\lambda))^{n}
$$

Count the norm of the matrix $\widehat{F}(\lambda)$:

$$
\begin{gathered}
\|\widehat{F}(\lambda)\|=\sup _{1 \leq i \leq m} \sum_{j=1}^{m}\left|\widehat{F}_{i j}(\lambda)\right|=\sup _{1 \leq i \leq m} \sum_{j=1}^{m} \int_{0}^{\infty} e^{-\lambda x} F_{i j}\{d x\}= \\
=\sup _{1 \leq i \leq m} \int_{0}^{\infty} e^{-\lambda x} F_{i}\{d x\}
\end{gathered}
$$

Integrating by parts, we obtain

$$
\int_{0}^{\infty} e^{-\lambda x} F_{i}\{d x\}=\left.e^{-\lambda x} F_{i}(x)\right|_{0} ^{\infty}+\lambda \int_{0}^{\infty} F_{i}(x) e^{-\lambda x} d x=\int_{0}^{\infty} F_{i}\left(\frac{t}{\lambda}\right) e^{-t} d t
$$

By the geometrical matter of an integral, we get

$$
\int_{0}^{\infty} F_{i}\left(\frac{t}{\lambda}\right) e^{-t} d t<\int_{0}^{\infty} e^{-t} d t, \quad i=\overline{1, m}
$$

Therefore

$$
\|\widehat{F}(\lambda)\|=\sup _{1 \leq i \leq m} \int_{0}^{\infty} F_{i}\left(\frac{t}{\lambda}\right) e^{-t} d t<1
$$

Thus, by Theorem 5 in [5, p. 216], we obtain

$$
\sum_{n=0}^{\infty}(\widehat{F}(\lambda))^{n}=[E-\widehat{F}(\lambda)]^{-1}
$$

Hence,

$$
\begin{equation*}
\widehat{U}(\lambda)=[E-\widehat{F}(\lambda)]^{-1} \tag{6}
\end{equation*}
$$

For a fixed λ, consider the matrix sequence $\left\{\widehat{F}\left(\frac{\lambda}{t}\right)\right\}$ as $t \rightarrow \infty$. It is a monotonous nondecreasing matrix sequence with nonnegative elements, for which

$$
\widehat{F}\left(\frac{\lambda}{t}\right) \rightarrow P \quad \text { for } t \rightarrow \infty
$$

where $P=\left\|p_{i j}\right\|_{i, j=1}^{m}$ is the transition matrix of the imbedded Markov chain. Since P is an irreducible matrix, we obtain (see [6, p. 599])

$$
\begin{equation*}
c_{t}\left(E-\widehat{F}\left(\frac{\lambda}{t}\right)\right)^{-1} \rightarrow\left\|1 \cdot p_{j}\right\|_{i, j=1}^{m} \quad \text { as } \quad t \rightarrow \infty \tag{7}
\end{equation*}
$$

where $c_{t}=1-\left(p, \widehat{F}\left(\frac{\lambda}{t}\right) \cdot 1\right), p=\left(p_{1}, \ldots, p_{m}\right), 1=(1, \ldots, 1)$.
It follows from Theorem 1 in [7, p. 30] that, for all $\lambda>0$,

$$
1-\widehat{F}_{i}\left(\frac{\lambda}{t}\right) \sim \frac{\lambda a_{i}}{t} \cdot L_{1}\left(\frac{t}{\lambda}\right), \quad i=\overline{1, m}, \quad \text { as } \quad t \rightarrow \infty .
$$

Consequently,

$$
\begin{aligned}
c_{t}=1 & -\left(p, \widehat{F}\left(\frac{\lambda}{t}\right) \cdot 1\right)=\sum_{i=1}^{m} p_{i}\left(1-\widehat{F}_{i}\left(\frac{\lambda}{t}\right)\right) \sim \\
& \sim \sum_{i=1}^{m} p_{i} \frac{\lambda a_{i}}{t} \cdot L_{1}\left(\frac{t}{\lambda}\right) \text { as } t \rightarrow \infty .
\end{aligned}
$$

Since L_{1} is a slowly varying function at infinity (see [8, p. 220]), we get

$$
\begin{equation*}
c_{t} \sim \frac{\lambda}{t} L_{1}(t) \sum_{i=1}^{m} a_{i} p_{i} \quad \text { as } \quad t \rightarrow \infty . \tag{8}
\end{equation*}
$$

Thus, in view of (7) and (8), relation (7) yields

$$
\frac{\lambda}{t} L_{1}(t) \sum_{i=1}^{m} a_{i} p_{i} \int_{0}^{\infty} e^{-\frac{\lambda}{t} x} U\{d x\} \rightarrow\left\|1 \cdot p_{j}\right\|_{i, j=1}^{m} \quad \text { as } \quad t \rightarrow \infty
$$

that is,

$$
\frac{1}{t} L_{1}(t) \int_{0}^{\infty} e^{-\lambda u} U\{t d u\} \rightarrow \frac{1}{\lambda \sum_{i=1}^{m} a_{i} p_{i}} \cdot\left\|1 \cdot p_{j}\right\|_{i, j=1}^{m} \quad \text { as } \quad t \rightarrow \infty
$$

Whence we get

$$
\frac{1}{t} L_{1}(t) \int_{0}^{\infty} e^{-\lambda u} U_{i j}\{t d u\} \rightarrow \frac{p_{j}}{\lambda \sum_{i=1}^{m} a_{i} p_{i}}, \quad i, j=\overline{1, m}, \quad \text { as } \quad t \rightarrow \infty
$$

By the generalized continuity theorem (see [4, c. 499]), the quantity

$$
\frac{p_{j}}{\lambda \sum_{i=1}^{m} a_{i} p_{i}}
$$

is a Laplace transform of some measure $p_{j} \mu_{1}$ such that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\lambda u} \mu_{1}\{d u\}=\frac{1}{\lambda \sum_{i=1}^{m} a_{i} p_{i}}, \quad \lambda>0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{t} L_{1}(t) U_{i j}\{t d u\} \rightarrow p_{j} \mu_{1}\{d u\}, \quad i, j=\overline{1, m}, \quad \text { as } \quad t \rightarrow \infty \tag{10}
\end{equation*}
$$

for every bounded continuity interval of the measure μ_{1}.
Since

$$
\int_{0}^{\infty} e^{-\lambda u} d u=\frac{1}{\lambda}
$$

we see from (9) that μ_{1} is the Lebesgue measure multiplied by a constant. Therefore, the interval $(0,1)$ is a continuity interval of the measure μ_{1}. Thus, we get from (10) that

$$
\lim _{t \rightarrow \infty} \frac{1}{t} L_{1}(t) U_{i j}\{(0, t)\}=p_{j} \mu_{1}\{(0,1)\}=\frac{p_{j}}{\sum_{i=1}^{m} a_{i} p_{i}}, \quad i, j=\overline{1, m} .
$$

Note that $U_{i j}\{(0, t)\}=U_{i j}(t-0)-U_{i j}(0), i, j=\overline{1, m}$. From (3), we obtain $U_{i j}(0)=\delta_{i j}$, $i, j=\overline{1, m}$. Since $L_{1}(t) \rightarrow \infty$ as $t \rightarrow \infty$, we count, by the L'Hospital rule,

$$
\lim _{t \rightarrow \infty} \frac{L_{1}(t)}{t}=\lim _{t \rightarrow \infty} \frac{\int_{1 / d}^{t} \frac{L(x)}{x} d x}{t}=\lim _{t \rightarrow \infty} \frac{L(t)}{t}=0
$$

$i=\overline{1, m}$. Consequently,

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \frac{1}{t} L_{1}(t) U_{i j}\{(0, t)\}=\lim _{t \rightarrow \infty} \frac{1}{t} L_{1}(t)\left[U_{i j}(t-0)-\delta_{i j}\right]= \\
=\lim _{t \rightarrow \infty} \frac{1}{t} L_{1}(t) U_{i j}(t)=\frac{p_{j}}{\sum_{i=1}^{m} a_{i} p_{i}}, \quad i, j=\overline{1, m} .
\end{gathered}
$$

Theorem 1 is proved.

Bibliography

1. I.N. Kovalenko, N.Yu. Kuznetsov, V.M. Shurenkov, Chance Processes: Reference Book, Naukova Dumka, Kyiv, 1983.
2. K.B. Erickson, Strong renewal theorems with infinite mean, Trans. Amer. Math. Soc. 151 (1970), 263-291.
3. V.S. Korolyuk, A.F. Turbin, Semi-Markov Processes and Their Applications, Naukova Dumka, Kyiv, 1976.
4. W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1970.
5. A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka, Moscow, 1972.
6. V.M. Shurenkov, Ya.I. Yeleiko, Limit distributions of time mean values for a semi-Markov process with finite stste space, Ukr. Mat. Zh. 31 (1979), no. 5, 598-603.
7. Ya.I. Yeleiko, N.V. Buhrii, An asymptotics of Laplace transform of a distribution which has a regularly varying tail with exponent -1, Math. Meth. Physicomech. Fields 44 (2001), no. 2, 30-33.
8. S. Parameswaran, Partition function whose logarithms are slowly oscillating, Trans. Amer. Soc. 100 (1961), 217-240.

Department of mathematics and mechanics, Ivan Franko National University of Lviv, 1, Universytetska, Lviv 79602, Ukraine

E-mail: ol_buhrii@ua.fm

[^0]: 2000 AMS Mathematics Subject Classification. Primary 60J25.
 Key words and phrases. Semi-Markov process, renewal matrix, regular and slow variation, infinite mean.

