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INVESTIGATION OF THE ASYMPTOTICS
OF A RENEWAL MATRIX

A semi-Markov process with finite state space and continuous time without finiteness
condition of a mean stay time of this process in every fixed state is considered. The
asymptotic behaviour of the renewal matrix at infinity is established under condition
that the distribution tail of the stay time of the semi-Markov process in every fixed
state is a regularly varying function at infinity with exponent —1.

INTRODUCTON

The classical renewal theorems give the asymptotic behaviour of the renewal function
associated with a distribution F' at infinity (see [1, §12.1]). These theorems are valid when
the mean of the distribution F' is equal to infinity. In the case of a regularly varying
distribution function tail 1 — F' at infinity with exponent —«, 0 < o < 1, Erickson defined
more precisely the behaviour of the renewal function at infinity (see [2, Theorems 1,5]).
An analogy of the renewal function for a semi-Markov process with finite state space
is the so-called renewal matrix associated with a semi-Markov matrix P. If the matrix
P(o0) is irreducible and a mean stay time of the semi-Markov process in every fixed
state is finite, then the asymptotic behaviour of the renewal matrix is well known (see
[1, §12.6]). V.S. Korolyuk and A.F. Turbin have investigated a limit properties of the
renewal matrix too (see, [3, Chapter 4]). In this paper, a semi-Markov process with finite
state space without finiteness condition of a mean stay time of this process in every fixed
state is considered. The asymptotics of the renewal matrix is found under condition
that the distribution tail of this stay time is a regularly varying function at infinity with
exponent = —1.

THE ASYMPTOTIC BEHAVIOUR OF THE RENEWAL MATRIX

Let X(t), t > 0, be a semi-Markov process with finite state space {1,2,...,m} and
continuous time. Define

n=7r=inf{t >0 : X(t)#X(0)}, ...,

T =inf{t > 11 : X(t) # X(7n-1)}, n>2.

A sequence of the random quantities X (0), X(71), ..., X(7), ... creates the so-called
imbedded Markov chain in X (¢) with the transition probabilities

pij = P{X(7) =7 ]X(0)

iy, ij=1,m.
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The matrix P = |[p;;|[;"_; is irreducible. Therefore, a unique stationary distribution py,
D2, ..., Pm exists such that

=1

m m
i=1

Denote
Fij(t) =P{r <t, X(1) =7 | X(0) =i},

m

Fi(t) =Y Fy(t) = P{r <t| X(0) =i}, i=Tm.

Assume that the mean stay time of the semi-Markov process X (t) in every fixed state is
infinite, that is,

MZ-T_M{7'|X(O)—i}—/oooxdﬂ-(x)—/Ooo(l—ﬂ(x)) dx = 400,

i=1,m.
Consider the Markov renewal equation (see [3, p. 38])

I
3

qi(t):bi(t)—i-Z/o Fy{dz}q(t—x), i=T,m, t>0, (1)

where the matrix F'(t) = ||Fi;(t)|[[";=; is semi-Markov.
The solution of Eq. (1) is (see [3, p. 40])

at) =3 [ Ugddath e —a) -

1

m

_Z/O U, {tda}b; (t(1 — 2)), i = Tom, (2)

where U;;{[0, ]} = Ui;(t), i,j = 1,m, are the elements of the renewal matrix U(¢) which
is an analogy of the renewal function, that is,

U(t) =y F™(t), (3)
n=0
where F(t) = E = |[d;;[7"—, is the unit matrix,

FY(t) = F(t),
FOHDx () = /t F"(t —u)F{du}, n € N.
0

Theorem 1. Let

L(t
1—Fi(t)~ai¥7 i=1,m, as t— oo, (4)

where L is a slowly varying function at infinity, and ay,...,a,, are some nonnegative
constants such that Zznzl a;p; > 0. Then

b

Z;’;1 a;Pi ’

t
Ll(t):/ L&) 4o a0,
1/d T

t—oo t

i?.j = 17m7 (5)

where
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Remark 1. Since >, p; = 1, the condition >_.", a;p; > 0 excludes a possibility,
when a; = 0,7 =1,m.

Proof. Find the asymptotics of the renewal measure U (tz) = ||Ui; (t2)||;"=, = € [0,1],
as t — oo. Denote, by

U\ = / e MU{dx}, \>0,
0

the Laplace transform of a measure U and, by
F(\) = / e MF{dz}, \>0,
0

the Laplace transform of a distribution F'.
From (3), using properties of the Laplace transformation (see [4, p. 500]), we have

U\ = i (ﬁ(A)) N

n=0

Count the norm of the matrix F(\):

1<i<m <= 1<i<m %

PO = sup S IF;0 = sup ) / N F, {da) =
j=1 j=1

= sup/ e M F{dx}.
0

1<i<m

+/\/ Fi(x)e_’\wdcx:/ Fi(f)e—tdt.
0 0 0 A

By the geometrical matter of an integral, we get

o0 t o0
/ F; (—)etdt < / e tdt, i=T1,m.
0 A 0

IFV)| = sup / F¢(£>e_tdt<1.
0 A

1<i<m
Thus, by Theorem 5 in [5, p. 216], we obtain

i (ﬁ(x)) T [E—F(\)]

n=0

Integrating by parts, we obtain

/ e M F{dr} = e M Fi(x)
0

Therefore

Hence, R R
U =[E-FN] (6)

A
For a fixed A, consider the matrix sequence | F’ (? as t — oo. It is a monotonous

nondecreasing matrix sequence with nonnegative elements, for which
~( A
F e P for t— oo,

where P = ||p;;||{"—, is the transition matrix of the imbedded Markov chain. Since P is
an irreducible matrix, we obtain (see [6, p. 599])

/AN !
(E—F( )) Iy as f— oo, 7)

t
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where ¢; =1 — ( ,ﬁ(?) ~1),p— (P1,--3Pm), 1 =1(1,...,1).
It follows from Theorem 1 in [7, p. 30] that, for all A > 0,

1—E é N)\ai-Ll 3 , t=1,m, as t— oo.
t t A

w=(nF(2) 1) = (A (7))~

oy t
NZpii-Ll(—> as t— oo.
P t A

Since L is a slowly varying function at infinity (see [8, p. 220]), we get

Consequently,

)\ m
Cp ~ ;Ll(t) Zaipi as t— oo. (8)

=1

Thus, in view of (7) and (8), relation (7) yields

_ 2
—L1 Zalpl/ e t"U{dr} — ||1-p;||i%=; as t— oo,
that is,

||1 p]||1] 1 as t— o0

1 oo
“La(t “AugrLtd

Whence we get

1 e D;
—Lq(t / e MU {tdu} —» ————, i,j=1,m, as t— oo.
t () 0 ’LJ{ } Azzlaipz J

By the generalized continuity theorem (see [4, c. 499]), the quantity

by
AL aip;
is a Laplace transform of some measure p;u; such that
/OO e My {du} = m;? A >0, 9)
0 AD ity aipi
and
%Ll(t)Uij{tdu} — pjm{du}, i,j=1,m, as t— oo (10)

for every bounded continuity interval of the measure ;.

Since
/OO —Au 1
e du = —,
0 A

we see from (9) that uq is the Lebesgue measure multiplied by a constant. Therefore,
the interval (0,1) is a continuity interval of the measure ;. Thus, we get from (10) that

1 D; .
Jim SOV 0.0} = pyp {00} = s, g =Tom.
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Note that U;;{(0,¢)} = U;;(t —0) — U;;(0), i, = 1, m. From (3), we obtain U;;(0) = d;;,
i,7 =1, m. Since L;1(t) — oo as t — 0o, we count, by the L’Hospital rule,

t L(I)
La(t Jyja—d= L(t
i 20 oy e T LB
t—oo t—o0 t t—oo t

1 =1, m. Consequently,

Jim ZLA(OU(0,6) = Jim <Ly (5[0 (¢~ 0) — 5] =

1 D
= lim ~Li(H)U;;(t) = =2—, 4,j=1,m.
tl{go t 1( ) ”( ) Zgl ;P bJ m
Theorem 1 is proved.
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