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A. N. ALEKSEYCHUK

RANDOM COVERS OF FINITE HOMOGENEOUS LATTICES

We develop and extend some results for the scheme of independent random elements
distributed on a finite lattice. In particular, we introduce the concept of the cover of
a homogeneous lattice Ln of rank n and derive the exact equations and estimations
for the number of covers with a given number of blocks and for the total covers
number of the lattice Ln. A theorem about the asymptotic normality of the blocks
number in a random equiprobable cover of the lattice Ln is proved. The concept of
the cover index of the lattice Ln, that extend the notion of the cover index of a finite
set by its independent random subsets, is introduced. Applying the lattice moments
method, the limit distribution as n → ∞ for the cover index of a subspace lattice of
the n-dimensional vector space over a finite field is determined.

1. Basic notions and preliminary results

In this paper, we use notions and results from [1, 2]. We refer also to [3, 4] for the
terminology and detailed exposition of finite lattices theory.

Let L = {Ln : n = 0, 1, ...} be a sequence of finite lattices. Denote the Moebius func-
tion, the maximal and minimal elements of the lattice Ln by μn, 1n, and 0n respectively.
We assume that the sequence L satisfies the following homogeneity conditions (see [4]):

(a) Ln is a graduate lattice with rank function r, where r(1n) = n for any n = 0, 1, ...;
(b) for any X ∈ Ln such that r(X) = n−k, k ∈ 0, n, the interval [X, 1n] is isomorphic

to the lattice Lk.
Let

(1) w(n, k) =
∑

a∈Ln:r(a)=k

μn(0n, a), W (n, k) =
∑

a∈Ln:r(a)=k

1,

where k ∈ 0, n, n = 0, 1, . . . ; w(n, k) = W (n, k) = 0 otherwise. The numbers w(n, k) and
W (n, k) are called the k-th level numbers of the lattice Ln of the first kind and of the
second kind respectively [3, 4].

By χn(z), we denote the characteristic polynomial of the lattice Ln,

(2) χn(z) =
n∑

k=0

w(n, n − k)zk, n = 0, 1, . . . .

In what follows, we assume that there exists a sequence of real numbers ai ≥ 1 (i =
1, 2, . . . ) such that

(3) χn(z) =
n∏

i=1

(z − ai), n = 1, 2, . . . , χ0(z) ≡ 1.
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Note that condition (3) holds for the characteristic polynomial of any finite super-
solvable geometric lattice (see [4, 5]).

We consider the following most important examples of homogeneous lattices which
satisfy condition (3). Other examples can be found in [3, 4, 5].

1. Ln = B(n), where B(n) is the set of all subsets of Nn = {1, 2, . . . , n}. The
rank function, level numbers, and characteristic polynomial of the lattice B(n) are equal,
respectively, to r(X) = #X (where #X denotes the cardinality of a set X ∈ B(n)),

w(n, k) = (−1)k

(
n

k

)
, W (n, k) =

(
n

k

)
, χn(z) = (z − 1)n, k ∈ 0, n, n = 0, 1, . . . .

2. Ln = L(n, q) is a subspace lattice of the n-dimensional vector space V (n, q) over a
field with q elements. In this case, the rank r(X) of a subspace X ∈ Ln is equal to the
dimension of X ,

w(n, k) = (−1)kq(
k
2)

[n

k

]
q
, W (n, k) =

[n

k

]
q
, χn(z) =

n∏
i=1

(z − qi−1),

where [n

k

]
q

=
(q−1)n

(q−1)k(q−1)n−k
qk(n−k)

is the Gauss coefficient (the number of k-dimensional subspaces of the vector space
V (n, q), k ∈ 0, n), (q−1)n = (1 − q−1)(1 − q−2) . . . (1 − q−n), n = 0, 1, . . . .

3. Ln = �(n + 1) is the lattice of all partitions of the set Nn+1 = {1, 2, . . . , n + 1}.
The rank of a partition π ∈ �(n + 1) is equal to r(π) = n + 1 − b(π), where b(π) is the
number of blocks in π. The level numbers and the characteristic polynomial of the lattice
�(n + 1) are, respectively, equal to

w(n, k) = s(n + 1, n + 1 − k), W (n, k) = S(n + 1, n + 1 − k), χn(z) =
n∏

i=1

(z − i),

where k ∈ 0, n, n = 0, 1, . . . , s(·, ·) and S(·, ·) are Stirling numbers of the first kind and
of the second kind, respectively.

Let’s consider a sequence of random variables ξ0, ξ1, . . . , where ξn takes values in the
set {0, 1, . . . , n}, n = 0, 1, . . . . Let pn,k = P{ξn = k}, Bn,k = EW (ξn, ξn − k), k ∈
0, n, n = 0, 1, . . . . We call Bn,k the k-th lattice moment of the random variable ξn [2].

The following statement was proved in [2].

Statement 1. Let L be a sequence of finite homogeneous lattices with the level numbers
(1) and the characteristic polynomials (2) that satisfies condition (3). Then

1. We have the following mutually inverse relations:

(4) Bn,l =
n∑

k=l

pn,kW (k, k − l), pn,l =
n∑

k=l

Bn,kw(k, k − l), l ∈ 0, n, n = 0, 1, . . . .

2. For the generating function of the random variable ξn, the following equalities hold:

pn(z) =
n∑

l=0

pn,lz
l =

n∑
k=0

Bn,kχk(z), n = 0, 1, . . . ,

(5)
2ν+1∑
k=0

Bn,kχk(z) ≤ pn(z) ≤
2ν∑

k=0

Bn,kχk(z), z ∈ [0, 1],
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where ν = 0, 1, . . . .

Assuming that z = 0 in (5), we obtain the following inequalities:

2ν+1∑
k=0

Bn,kw(k, k) ≤ pn,0 ≤
2ν∑

k=0

Bn,kw(k, k), ν = 0, 1, . . . ,

and, for ν = 0,

(6) 1 − Bn,1 ≤ pn,0 ≤ 1.

2. Random covers of the lattice Ln

By Λn,T , we denote the collection of all sets X = {X1, . . . , XT } such that X1 . . .XT are
different non-zero elements of the lattice Ln. Let’s assign the equiprobable distribution
to the Λn,T , assuming that

(7) p(X) =
(

λn − 1
T

)−1

, X = {X1, . . . , XT } ∈ Λn,T ,

where λn = #Ln. Put

(8) λn(Y ) = #[0n, Y ], Y ∈ Ln,

(9) λ(n−1) = max{λn(Y ) : Y ∈ Ln, r(Y ) = n − 1}, n = 0, 1, . . . .

Definition 1. A set X = {X1, . . . , XT } ∈ Λn,T will be called a T -block cover of the
lattice Ln (and its elements be called blocks of the cover X), if X1 ∨ . . . ∨ XT = 1n.

By rn,T = n − r(X1 ∨ . . . ∨ XT ), we denote the random variable equal to the co-rank
of the join of X1, . . . , XT , where X = {X1, . . . , XT } is a random element distributed
according to (7). Let’s denote

p
(T )
n,l = P{rn,T = l}, B

(T )
n,l = EW (rn,T , rn,T − l), l ∈ 0, n, n = 0, 1, . . . .

We denote the T -block cover number and the total block cover number of the lattice
Ln by Dn,T and Dn =

∑λn−1
T=1 Dn,T , respectively.

For the case Ln = B(n), exact formulas and estimations of the numbers Dn,T , Dn are
obtained in [6, p. 269]. The following statement extends these results.

Statement 2. The following relations hold:

(10) Dn,T =
(

λn − 1
T

) n∑
k=0

B
(T )
n,k w(k, k), Dn =

n∑
k=0

w(k, k)
λn−1∑
T=1

(
λn − 1

T

)
B

(T )
n,k ,

(11)
(

λn − 1
T

)
− B

(T )
n,1

(
λn − 1

T

)
≤ Dn,T ≤

(
λn − 1

T

)
,

(12) 2λn−1 − 1 −
λn−1∑
T=1

(
λn − 1

T

)
B

(T )
n,1 ≤ Dn,T ≤ 2λn−1 − 1.

As this takes place, the following equation holds for any l ∈ 0, n, T ∈ 1, λn − 1:

(13) B
(T )
n,l =

(
λn − 1

T

)−1 ∑
Y ∈Ln:

r(Y )=n−l

(
λn(Y ) − 1

T

)
, l ∈ 0, n, T ∈ 1, λn − 1.
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Proof. The first equality in (10) is immediate from (4) and the equality

Dn,T =
(

λn − 1
T

)
p
(T )
n,0 ;

the second equality in (10) follows from the first one. Inequalities (11) follow from (6)
and the first equation in (10); inequalities (12) are obtained by the summation of (11)
over T ∈ 1, λn − 1. Finally, the proof of (13) is similar to the proof of Theorem 1 [1]
applying the Moebius inversion formula.

3. Asymptotic behavior of the block number distribution
in a random equiprobable cover of the lattice Ln

Let ζn denote the random variable equal to the block number in a random equiprobable
cover of the lattice Ln. Let’s prove the following theorem generalizing a result from [7].

Theorem 1. Suppose that

(14) lim
n→∞λ(n−1)(λn)−1 < 1,

where λ(n−1) is defined by (9). Then

(15) Dn = 2λn−1(1 + o(1)), n → ∞,

(16) P{ζn = T } =
Dn,T

Dn
=

1√
π
2 (λn − 1)

exp
{
− (xn,T )2

2

}
(1 + o(1)),

provided n and T tend to infinity in such a way that

(17) xn,T
def=

T − 1
2 (λn − 1)

1
2

√
λn − 1

= o(λ
1
6
n ).

Under condition (14), the remainder term on the right-hand side of (16) tends uni-
formly to zero for all T such that xn,T lies in any fixed finite interval.

Proof. First we show that, under assumption (14),

(18) 2−(λn−1)
∑

Y ∈Ln:
r(Y )=n−1

(2λn(Y )−1 − 1) = o(1), n → ∞.

Applying the second equality from (1), we obtain

λn = #Ln =
n∑

k=0

W (n, k) > W (n, n − 1).

Whence and from (14), we have

2−(λn−1)
∑

Y ∈Ln:
r(Y )=n−1

(2λn(Y )−1 − 1) <
∑

Y ∈Ln:
r(Y )=n−1

2λn(Y ) ≤ 2λ(n−1)−λnW (n, n − 1) <

(19) < λn2λ(n−1)−λn = 2−λn(1−λ(n−1)
λn

− log λn
λn

) = o(1), n → ∞.

So equality (18) is proved.
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Now, taking into account (12) and (13), we obtain

2λn−1 − 1 −
λn−1∑
T=1

(
λn − 1

T

)
B

(T )
n,1 = 2λn−1 −

∑
Y ∈Ln:

r(Y )=n−1

(2λn(Y )−1 − 1) ≤ Dn ≤ 2λn−1 − 1.

So, applying (18), we arrive at (15).
To prove equality (16), we set

α(n, T ) =
1√

π
2 (λn − 1)

exp
{
− (xn,T )2

2

}
.

Then ∣∣∣∣Dn,T

Dn
α(n, T )−1 − 1

∣∣∣∣ ≤

(20) ≤
∣∣∣∣Dn,T

Dn
α(n, T )−1 − 1

Dn

(
λn − 1

T

)
α(n, T )−1

∣∣∣∣ +
∣∣∣∣ 1
Dn

(
λn − 1

T

)
α(n, T )−1 − 1

∣∣∣∣ .
From (11) and (13), we obtain that the augend on the right-hand side of (20) is not

greater than

α(n, T )−1 1
Dn

∑
Y ∈Ln:

r(Y )=n−1

(
λn(Y ) − 1

T

)
< α(n, T )−1 1

Dn
λn2λ(n−1)

=

α(n, T )−1λn2λ(n−1)−(λn−1)(1 + o(1)), n → ∞
[see relations (19) and (15)]. Further, applying (17) and (19), we obtain

α(n, T )−1λn2λ(n−1)−(λn−1) = O

(
exp

{
− (xn,T )2

2

}
(λn)

3
2 2λ(n−1)−λn

)
= o(1), n, T → ∞.

Due to these relations, the augend on the right-hand side of (20) tends to zero as
n, T → ∞, and this convergence is uniform for all T , for which xn,T lies in any fixed
finite interval.

To estimate the addend on the right-hand side of (20), we employ equality (15) and
the Moivre – Laplace local theorem. Thus, we obtain that∣∣∣∣ 1

Dn

(
λn − 1

T

)
α(n, T )−1 − 1

∣∣∣∣ = o(1), n, T → ∞,

where o(1) tends to zero uniformly for all T , for which xn,T lies in any fixed finite interval.
So equality (16) is completely proved, and so is the theorem.

Corollary. Under condition (14), the sequence of random variables {ζn : n = 0, 1, . . . }
is asymptotically normal with parameters 1

2 (λn − 1), 1
2

√
λn − 1:

P

{
ζn − 1

2 (λn − 1)
1
2

√
λn − 1

≤ x

}
→ 1√

2π

x∫
−∞

e−
t2
2 dt, n → ∞.

Notice that condition (14) is fulfilled if Ln is one of the lattices B(n), L(n, q), �(n+1)
from Section 1. For B(n), Theorem 1 and its Corollary were earlier obtained by Sachkov
[7]. It is evident that, in this case, the limit on the left-hand side of (14) equals 1/2.
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If Ln = L(n, q), n = 0, 1, . . . , then λn = Gn, λ(n−1) = Gn−1, where Gn =
∑n

k=0

[
n
k

]
q

is the total subspace number of the vector space V (n, q) (the Galois number) [6]. In this
case, inequality (14) follows from the asymptotic formula [8]

(21) Gn − 1 = θn(2)(q)q
n2
4 (1 + O(q−

n
2 )), n → ∞,

where n(2) denotes the residue n modulo 2,

(22) θ0(q) =
1

(q−1)∞

∞∑
n=−∞

q−n2
, θ1(q) =

1
(q−1)∞

∞∑
n=−∞

q−(n− 1
2 )2 ,

(q−1)∞ =
∞∏

m=1

(1 − q−m).

In the case of Ln = �(n + 1), n = 0, 1, . . . , (14) follows from the asymptotic formula
for Bell numbers (see, for example, [6, p. 297]).

4. Probability distribution asymptotic behavior of
the cover index of a finite homogeneous lattice

Let Ξ = X1, X2, . . . be a sequence of independent random elements of the lattice Ln.

Definition 2. The cover index of the lattice Ln by elements of the sequence Ξ is the
least θ = θ(n, Ξ) ∈ N such that

(23) X1 ∨ . . . ∨ Xθ = 1n.

This definition extends the concept of the n-set cover index by its independent random
subsets (see [9]).

Taking into account the equality {θ(n, Ξ) ≤ T } = {rn,T = 0}, where rn,T = n −
r(X1∨ . . .∨XT ) is the co-rank of the join of T first elements of the sequence Ξ, we can to
apply the lattice moments method [2] for obtaining the limit distribution of the random
sequence θ(n, Ξ).

For any natural n, T and l ∈ 0, n, we set

(24) B
(T )
n,l =

∑
Y ∈Ln:

r(Y )=n−l

P{X1 ≤ Y } . . .P{XT ≤ Y }.

Theorem 2. Let n and T = T (n) be such that, for any l = 0, 1, . . . ,

(25) B
(T )
n,l → Bl < ∞, n → ∞.

Then, if the series

(26) B(z) def=
∞∑
l=0

Blχ(z) =
∞∑

l=0

Bl

(
l∑

k=0

w(l, l − k)zk

)

is uniformly convergent in a neighborhood of zero, then

(27) lim
n→∞P{θ(n, Ξ) ≤ T } =

∞∑
l=0

w(l, l)Bl.

Proof. It follows from Theorem 2 in [1] that numbers (24) are equal to the lattice moments
of the random variable rn,T . Thus, expression (27) follows directly from equalities (25)
and {θ(n, Ξ) ≤ T } = {rn,T = 0} and the statement of Theorem 2 in [2].
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Theorem 2 yields the expression for the limit distribution law (as n → ∞) of the
subspace lattice cover index of the n-dimensional vector space over a field with q elements.

Theorem 3. Let Ξ be a sequence of independent and equiprobable random subspaces in
the vector space V (n, q). Then

(28) lim
n→∞:

n≡i( mod 2)

P{θ(n, Ξ) ≤ 2} =
1
2

(
1 + Ci

(−q−1/2)∞
+

1 − Ci

(q−1/2)∞

)
,

where

(29) i ∈ {0, 1}, C0 = 4q−1/2, C1 = 1/4q1/2, (x)∞ =
∞∏

m=0

(1 − xq−m).

In addition,

(30) lim
n→∞P{θ(n, Ξ) ≤ 3} = 1.

Proof. From (24), we get

(31) B
(T )
n,l =

[n

l

]
q

(
Gn−l

Gn

)T

, n, T ∈ {1, 2, . . .}, l ∈ 0, n.

Hence, applying (21), it is easy to obtain that, for T = 3,

B
(3)
0

def= lim
n→∞B

(3)
n,0 = 1, B

(3)
l = lim

n→∞B
(3)
n,l = 0, l = 1, 2, . . . .

Note that series (26) corresponding to values Bl = B
(3)
l , l = 0, 1, . . . is uniformly con-

vergent over the complex plane. Hence, we obtain (30) from (27).
For T = 2, applying (31) and (21), we get

B
(2)
n,l =

q−l2/2

(q−1)l

(
θ(n−l)(2)

θn(2)

)2

(1 + o(1)), n → ∞, l = 0, 1, . . . ,

Hence, taking into account the equality θ1(q) = 2q−1/4θ0(q) emerging from the Jacobi
identity (see, for example, [10]), we obtain

B0,l
def= lim

n→∞:
n≡0( mod 2)

B
(2)
n,l =

q−l2/2

(q−1)l
, if l ≡ 0( mod 2),

(32) B0,l = 4q−1/2 q−l2/2

(q−1)l
, if l ≡ 1( mod 2),

B1,l
def= lim

n→∞:
n≡1( mod 2)

B
(2)
n,l =

q−l2/2

(q−1)l
, if l ≡ 0( mod 2),

(33) B1,l = 1/4q1/2 q−l2/2

(q−1)l
, if l ≡ 0( mod 2);

As far as series (26) corresponding to each sequence {Bl = Bi,l : l = 0, 1, . . .}, i ∈
{0, 1}, is uniformly convergent over the whole complex plane, we obtain, by applying
(27), the following equalities:

(34) lim
n→∞:

n≡i( mod 2)

P{θ(n, Ξ) ≤ 2} =
∞∑
l=0

w(l, l)Bi,l =
∞∑
l=0

(−1)lq(
l
2 )Bi,l, i ∈ {0, 1}.
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Substituting (32), (33), respectively, in (34) and applying the equalities

∑
k≥0:

k≡0( mod 2)

(−1)k q−k/2

(q−1)k
=

1
2

(
1

(−q−1/2)∞
+

1
(q−1/2)∞

)
,

∑
k≥0:

k≡1( mod 2)

(−1)k q−k/2

(q−1)k
=

1
2

(
1

(−q−1/2)∞
− 1

(q−1/2)∞

)

following from the identity
∑∞

k=0
tk

(q−1)k
= 1

(t)∞
, |t| < 1 (see [10]), we obtain equality

(28) after simple transformations.
So, the theorem is proved.
The author would like to thank the anonymous referee for useful censorious remarks.
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