A. N. ALEKSEYCHUK

RANDOM COVERS OF FINITE HOMOGENEOUS LATTICES

Abstract

We develop and extend some results for the scheme of independent random elements distributed on a finite lattice. In particular, we introduce the concept of the cover of a homogeneous lattice L_{n} of rank n and derive the exact equations and estimations for the number of covers with a given number of blocks and for the total covers number of the lattice L_{n}. A theorem about the asymptotic normality of the blocks number in a random equiprobable cover of the lattice L_{n} is proved. The concept of the cover index of the lattice L_{n}, that extend the notion of the cover index of a finite set by its independent random subsets, is introduced. Applying the lattice moments method, the limit distribution as $n \rightarrow \infty$ for the cover index of a subspace lattice of the n-dimensional vector space over a finite field is determined.

1. Basic notions and preliminary results

In this paper, we use notions and results from [1, 2]. We refer also to [3, 4] for the terminology and detailed exposition of finite lattices theory.

Let $L=\left\{L_{n}: n=0,1, \ldots\right\}$ be a sequence of finite lattices. Denote the Moebius function, the maximal and minimal elements of the lattice L_{n} by $\mu_{n}, 1_{n}$, and 0_{n} respectively. We assume that the sequence L satisfies the following homogeneity conditions (see [4]):
(a) L_{n} is a graduate lattice with rank function r, where $r\left(1_{n}\right)=n$ for any $n=0,1, \ldots$;
(b) for any $X \in L_{n}$ such that $r(X)=n-k, k \in \overline{0, n}$, the interval $\left[X, 1_{n}\right]$ is isomorphic to the lattice L_{k}.

Let

$$
\begin{equation*}
w(n, k)=\sum_{a \in L_{n}: r(a)=k} \mu_{n}\left(0_{n}, a\right), W(n, k)=\sum_{a \in L_{n}: r(a)=k} 1, \tag{1}
\end{equation*}
$$

where $k \in \overline{0, n}, n=0,1, \ldots ; w(n, k)=W(n, k)=0$ otherwise. The numbers $w(n, k)$ and $W(n, k)$ are called the k-th level numbers of the lattice L_{n} of the first kind and of the second kind respectively $[3,4]$.

By $\chi_{n}(z)$, we denote the characteristic polynomial of the lattice L_{n},

$$
\begin{equation*}
\chi_{n}(z)=\sum_{k=0}^{n} w(n, n-k) z^{k}, n=0,1, \ldots \tag{2}
\end{equation*}
$$

In what follows, we assume that there exists a sequence of real numbers $a_{i} \geq 1$ ($i=$ $1,2, \ldots$) such that

$$
\begin{equation*}
\chi_{n}(z)=\prod_{i=1}^{n}\left(z-a_{i}\right), n=1,2, \ldots, \chi_{0}(z) \equiv 1 \tag{3}
\end{equation*}
$$

[^0]Note that condition (3) holds for the characteristic polynomial of any finite supersolvable geometric lattice (see $[4,5]$).

We consider the following most important examples of homogeneous lattices which satisfy condition (3). Other examples can be found in $[3,4,5]$.

1. $L_{n}=B(n)$, where $B(n)$ is the set of all subsets of $N_{n}=\{1,2, \ldots, n\}$. The rank function, level numbers, and characteristic polynomial of the lattice $B(n)$ are equal, respectively, to $r(X)=\# X$ (where $\# X$ denotes the cardinality of a set $X \in B(n)$),

$$
w(n, k)=(-1)^{k}\binom{n}{k}, W(n, k)=\binom{n}{k}, \chi_{n}(z)=(z-1)^{n}, k \in \overline{0, n}, n=0,1, \ldots
$$

2. $L_{n}=L(n, q)$ is a subspace lattice of the n-dimensional vector space $V(n, q)$ over a field with q elements. In this case, the rank $r(X)$ of a subspace $X \in L_{n}$ is equal to the dimension of X,

$$
w(n, k)=(-1)^{k} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}, W(n, k)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}, \chi_{n}(z)=\prod_{i=1}^{n}\left(z-q^{i-1}\right)
$$

where

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{-1}\right)_{n}}{\left(q^{-1}\right)_{k}\left(q^{-1}\right)_{n-k}} q^{k(n-k)}
$$

is the Gauss coefficient (the number of k-dimensional subspaces of the vector space $V(n, q), k \in \overline{0, n}),\left(q^{-1}\right)_{n}=\left(1-q^{-1}\right)\left(1-q^{-2}\right) \ldots\left(1-q^{-n}\right), n=0,1, \ldots$.
3. $L_{n}=\Re(n+1)$ is the lattice of all partitions of the set $N_{n+1}=\{1,2, \ldots, n+1\}$. The rank of a partition $\pi \in \Re(n+1)$ is equal to $r(\pi)=n+1-b(\pi)$, where $b(\pi)$ is the number of blocks in π. The level numbers and the characteristic polynomial of the lattice $\Re(n+1)$ are, respectively, equal to

$$
w(n, k)=s(n+1, n+1-k), W(n, k)=S(n+1, n+1-k), \chi_{n}(z)=\prod_{i=1}^{n}(z-i)
$$

where $k \in \overline{0, n}, n=0,1, \ldots, s(\cdot, \cdot)$ and $S(\cdot, \cdot)$ are Stirling numbers of the first kind and of the second kind, respectively.

Let's consider a sequence of random variables ξ_{0}, ξ_{1}, \ldots, where ξ_{n} takes values in the set $\{0,1, \ldots, n\}, n=0,1, \ldots$ Let $p_{n, k}=\mathbf{P}\left\{\xi_{n}=k\right\}, B_{n, k}=\mathbf{E} W\left(\xi_{n}, \xi_{n}-k\right), k \in$ $\overline{0, n}, n=0,1, \ldots$. We call $B_{n, k}$ the k-th lattice moment of the random variable ξ_{n} [2].

The following statement was proved in [2].
Statement 1. Let L be a sequence of finite homogeneous lattices with the level numbers (1) and the characteristic polynomials (2) that satisfies condition (3). Then

1. We have the following mutually inverse relations:

$$
\begin{equation*}
B_{n, l}=\sum_{k=l}^{n} p_{n, k} W(k, k-l), p_{n, l}=\sum_{k=l}^{n} B_{n, k} w(k, k-l), l \in \overline{0, n}, n=0,1, \ldots \tag{4}
\end{equation*}
$$

2. For the generating function of the random variable ξ_{n}, the following equalities hold:

$$
\begin{aligned}
& p_{n}(z)=\sum_{l=0}^{n} p_{n, l} z^{l}=\sum_{k=0}^{n} B_{n, k} \chi_{k}(z), n=0,1, \ldots, \\
& \sum_{k=0}^{2 \nu+1} B_{n, k} \chi_{k}(z) \leq p_{n}(z) \leq \sum_{k=0}^{2 \nu} B_{n, k} \chi_{k}(z), z \in[0,1],
\end{aligned}
$$

where $\nu=0,1, \ldots$.
Assuming that $z=0$ in (5), we obtain the following inequalities:

$$
\sum_{k=0}^{2 \nu+1} B_{n, k} w(k, k) \leq p_{n, 0} \leq \sum_{k=0}^{2 \nu} B_{n, k} w(k, k), \nu=0,1, \ldots,
$$

and, for $\nu=0$,

$$
\begin{equation*}
1-B_{n, 1} \leq p_{n, 0} \leq 1 \tag{6}
\end{equation*}
$$

2. Random covers of the lattice L_{n}

By $\Lambda_{n, T}$, we denote the collection of all sets $X=\left\{X_{1}, \ldots, X_{T}\right\}$ such that $X_{1} \ldots X_{T}$ are different non-zero elements of the lattice L_{n}. Let's assign the equiprobable distribution to the $\Lambda_{n, T}$, assuming that

$$
\begin{equation*}
p(X)=\binom{\lambda_{n}-1}{T}^{-1}, X=\left\{X_{1}, \ldots, X_{T}\right\} \in \Lambda_{n, T} \tag{7}
\end{equation*}
$$

where $\lambda_{n}=\# L_{n}$. Put

$$
\begin{equation*}
\lambda_{n}(Y)=\#\left[0_{n}, Y\right], Y \in L_{n} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\lambda^{(n-1)}=\max \left\{\lambda_{n}(Y): Y \in L_{n}, r(Y)=n-1\right\}, n=0,1, \ldots \tag{9}
\end{equation*}
$$

Definition 1. A set $X=\left\{X_{1}, \ldots, X_{T}\right\} \in \Lambda_{n, T}$ will be called a T-block cover of the lattice L_{n} (and its elements be called blocks of the cover X), if $X_{1} \vee \ldots \vee X_{T}=1_{n}$.

By $r_{n, T}=n-r\left(X_{1} \vee \ldots \vee X_{T}\right)$, we denote the random variable equal to the co-rank of the join of X_{1}, \ldots, X_{T}, where $X=\left\{X_{1}, \ldots, X_{T}\right\}$ is a random element distributed according to (7). Let's denote

$$
p_{n, l}^{(T)}=\mathbf{P}\left\{r_{n, T}=l\right\}, B_{n, l}^{(T)}=\mathbf{E} W\left(r_{n, T}, r_{n, T}-l\right), l \in \overline{0, n}, n=0,1, \ldots
$$

We denote the T-block cover number and the total block cover number of the lattice L_{n} by $D_{n, T}$ and $D_{n}=\sum_{T=1}^{\lambda_{n}-1} D_{n, T}$, respectively.

For the case $L_{n}=B(n)$, exact formulas and estimations of the numbers $D_{n, T}, D_{n}$ are obtained in [6, p. 269]. The following statement extends these results.

Statement 2. The following relations hold:

$$
\begin{align*}
D_{n, T}= & \binom{\lambda_{n}-1}{T} \sum_{k=0}^{n} B_{n, k}^{(T)} w(k, k), D_{n}=\sum_{k=0}^{n} w(k, k) \sum_{T=1}^{\lambda_{n}-1}\binom{\lambda_{n}-1}{T} B_{n, k}^{(T)} \tag{10}\\
& \binom{\lambda_{n}-1}{T}-B_{n, 1}^{(T)}\binom{\lambda_{n}-1}{T} \leq D_{n, T} \leq\binom{\lambda_{n}-1}{T} \\
& 2^{\lambda_{n}-1}-1-\sum_{T=1}^{\lambda_{n}-1}\binom{\lambda_{n}-1}{T} B_{n, 1}^{(T)} \leq D_{n, T} \leq 2^{\lambda_{n}-1}-1
\end{align*}
$$

As this takes place, the following equation holds for any $l \in \overline{0, n}, T \in \overline{1, \lambda_{n}-1}$:

$$
\begin{equation*}
B_{n, l}^{(T)}=\binom{\lambda_{n}-1}{T}^{-1} \sum_{\substack{Y \in L_{n}: \\ r(Y)=n-l}}\binom{\lambda_{n}(Y)-1}{T}, l \in \overline{0, n}, T \in \overline{1, \lambda_{n}-1} \tag{13}
\end{equation*}
$$

Proof. The first equality in (10) is immediate from (4) and the equality

$$
D_{n, T}=\binom{\lambda_{n}-1}{T} p_{n, 0}^{(T)}
$$

the second equality in (10) follows from the first one. Inequalities (11) follow from (6) and the first equation in (10); inequalities (12) are obtained by the summation of (11) over $T \in \overline{1, \lambda_{n}-1}$. Finally, the proof of (13) is similar to the proof of Theorem 1 [1] applying the Moebius inversion formula.

3. Asymptotic behavior of the block number distribution IN A RANDOM EQUIPROBABLE COVER OF THE LATTICE L_{n}

Let ζ_{n} denote the random variable equal to the block number in a random equiprobable cover of the lattice L_{n}. Let's prove the following theorem generalizing a result from [7].

Theorem 1. Suppose that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \lambda^{(n-1)}\left(\lambda_{n}\right)^{-1}<1 \tag{14}
\end{equation*}
$$

where $\lambda^{(n-1)}$ is defined by (9). Then

$$
\begin{equation*}
D_{n}=2^{\lambda_{n}-1}(1+o(1)), n \rightarrow \infty, \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{P}\left\{\zeta_{n}=T\right\}=\frac{D_{n, T}}{D_{n}}=\frac{1}{\sqrt{\frac{\pi}{2}\left(\lambda_{n}-1\right)}} \exp \left\{-\frac{\left(x_{n, T}\right)^{2}}{2}\right\}(1+o(1)) \tag{16}
\end{equation*}
$$

provided n and T tend to infinity in such a way that

$$
\begin{equation*}
x_{n, T} \stackrel{\text { def }}{=} \frac{T-\frac{1}{2}\left(\lambda_{n}-1\right)}{\frac{1}{2} \sqrt{\lambda_{n}-1}}=o\left(\lambda_{n}^{\frac{1}{6}}\right) . \tag{17}
\end{equation*}
$$

Under condition (14), the remainder term on the right-hand side of (16) tends uniformly to zero for all T such that $x_{n, T}$ lies in any fixed finite interval.

Proof. First we show that, under assumption (14),

$$
\begin{equation*}
2^{-\left(\lambda_{n}-1\right)} \sum_{\substack{Y \in L_{n}: \\ r(Y)=n-1}}\left(2^{\lambda_{n}(Y)-1}-1\right)=o(1), n \rightarrow \infty . \tag{18}
\end{equation*}
$$

Applying the second equality from (1), we obtain

$$
\lambda_{n}=\# L_{n}=\sum_{k=0}^{n} W(n, k)>W(n, n-1)
$$

Whence and from (14), we have

$$
\begin{align*}
2^{-\left(\lambda_{n}-1\right)} & \sum_{\substack{Y \in L_{n}: \\
(Y)=n=1}}\left(2^{\lambda_{n}(Y)-1}-1\right)<\sum_{\substack{Y \in L_{n}: \\
r(Y)=n-1}} 2^{\lambda_{n}(Y)} \leq 2^{\lambda^{(n-1)}-\lambda_{n}} W(n, n-1)< \\
& <\lambda_{n} 2^{\lambda^{(n-1)}-\lambda_{n}}=2^{-\lambda_{n}\left(1-\frac{\lambda^{(n-1)}}{\lambda_{n}}-\frac{\log \lambda_{n}}{\lambda_{n}}\right)}=o(1), n \rightarrow \infty . \tag{19}
\end{align*}
$$

So equality (18) is proved.

Now, taking into account (12) and (13), we obtain

$$
2^{\lambda_{n}-1}-1-\sum_{T=1}^{\lambda_{n}-1}\binom{\lambda_{n}-1}{T} B_{n, 1}^{(T)}=2^{\lambda_{n}-1}-\sum_{\substack{Y \in L_{n}: \\ r(Y)=n-1}}\left(2^{\lambda_{n}(Y)-1}-1\right) \leq D_{n} \leq 2^{\lambda_{n}-1}-1
$$

So, applying (18), we arrive at (15).
To prove equality (16), we set

$$
\alpha(n, T)=\frac{1}{\sqrt{\frac{\pi}{2}\left(\lambda_{n}-1\right)}} \exp \left\{-\frac{\left(x_{n, T}\right)^{2}}{2}\right\}
$$

Then

$$
\begin{gather*}
\left|\frac{D_{n, T}}{D_{n}} \alpha(n, T)^{-1}-1\right| \leq \\
\leq\left|\frac{D_{n, T}}{D_{n}} \alpha(n, T)^{-1}-\frac{1}{D_{n}}\binom{\lambda_{n}-1}{T} \alpha(n, T)^{-1}\right|+\left|\frac{1}{D_{n}}\binom{\lambda_{n}-1}{T} \alpha(n, T)^{-1}-1\right| . \tag{20}
\end{gather*}
$$

From (11) and (13), we obtain that the augend on the right-hand side of (20) is not greater than

$$
\begin{gathered}
\alpha(n, T)^{-1} \frac{1}{D_{n}} \sum_{\substack{Y \in L_{n}: \\
r(Y)=n-1}}\binom{\lambda_{n}(Y)-1}{T}<\alpha(n, T)^{-1} \frac{1}{D_{n}} \lambda_{n} 2^{\lambda^{(n-1)}}= \\
\alpha(n, T)^{-1} \lambda_{n} 2^{\lambda^{(n-1)}-\left(\lambda_{n}-1\right)}(1+o(1)), n \rightarrow \infty
\end{gathered}
$$

[see relations (19) and (15)]. Further, applying (17) and (19), we obtain
$\alpha(n, T)^{-1} \lambda_{n} 2^{\lambda^{(n-1)}-\left(\lambda_{n}-1\right)}=O\left(\exp \left\{-\frac{\left(x_{n, T}\right)^{2}}{2}\right\}\left(\lambda_{n}\right)^{\frac{3}{2}} 2^{\lambda^{(n-1)}-\lambda_{n}}\right)=o(1), n, T \rightarrow \infty$.
Due to these relations, the augend on the right-hand side of (20) tends to zero as $n, T \rightarrow \infty$, and this convergence is uniform for all T, for which $x_{n, T}$ lies in any fixed finite interval.

To estimate the addend on the right-hand side of (20), we employ equality (15) and the Moivre - Laplace local theorem. Thus, we obtain that

$$
\left|\frac{1}{D_{n}}\binom{\lambda_{n}-1}{T} \alpha(n, T)^{-1}-1\right|=o(1), n, T \rightarrow \infty
$$

where $o(1)$ tends to zero uniformly for all T, for which $x_{n, T}$ lies in any fixed finite interval.
So equality (16) is completely proved, and so is the theorem.
Corollary. Under condition (14), the sequence of random variables $\left\{\zeta_{n}: n=0,1, \ldots\right\}$ is asymptotically normal with parameters $\frac{1}{2}\left(\lambda_{n}-1\right), \frac{1}{2} \sqrt{\lambda_{n}-1}$:

$$
\mathbf{P}\left\{\frac{\zeta_{n}-\frac{1}{2}\left(\lambda_{n}-1\right)}{\frac{1}{2} \sqrt{\lambda_{n}-1}} \leq x\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t, n \rightarrow \infty
$$

Notice that condition (14) is fulfilled if L_{n} is one of the lattices $B(n), L(n, q), \Re(n+1)$ from Section 1. For $B(n)$, Theorem 1 and its Corollary were earlier obtained by Sachkov [7]. It is evident that, in this case, the limit on the left-hand side of (14) equals $1 / 2$.

If $L_{n}=L(n, q), n=0,1, \ldots$, then $\lambda_{n}=G_{n}, \lambda^{(n-1)}=G_{n-1}$, where $G_{n}=\sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the total subspace number of the vector space $V(n, q)$ (the Galois number) [6]. In this case, inequality (14) follows from the asymptotic formula [8]

$$
\begin{equation*}
G_{n}-1=\theta_{n(2)}(q) q^{\frac{n^{2}}{4}}\left(1+O\left(q^{-\frac{n}{2}}\right)\right), n \rightarrow \infty \tag{21}
\end{equation*}
$$

where $n(2)$ denotes the residue n modulo 2 ,

$$
\begin{gather*}
\theta_{0}(q)=\frac{1}{\left(q^{-1}\right)_{\infty}} \sum_{n=-\infty}^{\infty} q^{-n^{2}}, \theta_{1}(q)=\frac{1}{\left(q^{-1}\right)_{\infty}} \sum_{n=-\infty}^{\infty} q^{-\left(n-\frac{1}{2}\right)^{2}}, \tag{22}\\
\left(q^{-1}\right)_{\infty}=\prod_{m=1}^{\infty}\left(1-q^{-m}\right)
\end{gather*}
$$

In the case of $L_{n}=\Re(n+1), n=0,1, \ldots,(14)$ follows from the asymptotic formula for Bell numbers (see, for example, [6, p. 297]).

4. Probability distribution asymptotic behavior of THE COVER INDEX OF A FINITE HOMOGENEOUS LATTICE

Let $\Xi=X_{1}, X_{2}, \ldots$ be a sequence of independent random elements of the lattice L_{n}.
Definition 2. The cover index of the lattice L_{n} by elements of the sequence Ξ is the least $\theta=\theta(n, \Xi) \in N$ such that

$$
\begin{equation*}
X_{1} \vee \ldots \vee X_{\theta}=1_{n} \tag{23}
\end{equation*}
$$

This definition extends the concept of the n-set cover index by its independent random subsets (see [9]).

Taking into account the equality $\{\theta(n, \Xi) \leq T\}=\left\{r_{n, T}=0\right\}$, where $r_{n, T}=n-$ $r\left(X_{1} \vee \ldots \vee X_{T}\right)$ is the co-rank of the join of T first elements of the sequence Ξ, we can to apply the lattice moments method [2] for obtaining the limit distribution of the random sequence $\theta(n, \Xi)$.

For any natural n, T and $l \in \overline{0, n}$, we set

$$
\begin{equation*}
B_{n, l}^{(T)}=\sum_{\substack{Y \in L_{n}: \\ r(Y)=n-l}} \mathbf{P}\left\{X_{1} \leq Y\right\} \ldots \mathbf{P}\left\{X_{T} \leq Y\right\} \tag{24}
\end{equation*}
$$

Theorem 2. Let n and $T=T(n)$ be such that, for any $l=0,1, \ldots$,

$$
\begin{equation*}
B_{n, l}^{(T)} \rightarrow B_{l}<\infty, n \rightarrow \infty \tag{25}
\end{equation*}
$$

Then, if the series

$$
\begin{equation*}
B(z) \stackrel{\text { def }}{=} \sum_{l=0}^{\infty} B_{l} \chi(z)=\sum_{l=0}^{\infty} B_{l}\left(\sum_{k=0}^{l} w(l, l-k) z^{k}\right) \tag{26}
\end{equation*}
$$

is uniformly convergent in a neighborhood of zero, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{P}\{\theta(n, \Xi) \leq T\}=\sum_{l=0}^{\infty} w(l, l) B_{l} . \tag{27}
\end{equation*}
$$

Proof. It follows from Theorem 2 in [1] that numbers (24) are equal to the lattice moments of the random variable $r_{n, T}$. Thus, expression (27) follows directly from equalities (25) and $\{\theta(n, \Xi) \leq T\}=\left\{r_{n, T}=0\right\}$ and the statement of Theorem 2 in [2].

Theorem 2 yields the expression for the limit distribution law (as $n \rightarrow \infty$) of the subspace lattice cover index of the n-dimensional vector space over a field with q elements.

Theorem 3. Let Ξ be a sequence of independent and equiprobable random subspaces in the vector space $V(n, q)$. Then

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ n \equiv i(\bmod 2)}} \mathbf{P}\{\theta(n, \Xi) \leq 2\}=\frac{1}{2}\left(\frac{1+C_{i}}{\left(-q^{-1 / 2}\right)_{\infty}}+\frac{1-C_{i}}{\left(q^{-1 / 2}\right)_{\infty}}\right), \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
i \in\{0,1\}, C_{0}=4 q^{-1 / 2}, C_{1}=1 / 4 q^{1 / 2},(x)_{\infty}=\prod_{m=0}^{\infty}\left(1-x q^{-m}\right) \tag{29}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{P}\{\theta(n, \Xi) \leq 3\}=1 \tag{30}
\end{equation*}
$$

Proof. From (24), we get

$$
B_{n, l}^{(T)}=\left[\begin{array}{c}
n \tag{31}\\
l
\end{array}\right]_{q}\left(\frac{G_{n-l}}{G_{n}}\right)^{T}, n, T \in\{1,2, \ldots\}, l \in \overline{0, n}
$$

Hence, applying (21), it is easy to obtain that, for $T=3$,

$$
B_{0}^{(3)} \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} B_{n, 0}^{(3)}=1, B_{l}^{(3)}=\lim _{n \rightarrow \infty} B_{n, l}^{(3)}=0, l=1,2, \ldots
$$

Note that series (26) corresponding to values $B_{l}=B_{l}^{(3)}, l=0,1, \ldots$ is uniformly convergent over the complex plane. Hence, we obtain (30) from (27).

For $T=2$, applying (31) and (21), we get

$$
B_{n, l}^{(2)}=\frac{q^{-l^{2} / 2}}{\left(q^{-1}\right)_{l}}\left(\frac{\theta_{(n-l)(2)}}{\theta_{n(2)}}\right)^{2}(1+o(1)), n \rightarrow \infty, l=0,1, \ldots
$$

Hence, taking into account the equality $\theta_{1}(q)=2 q^{-1 / 4} \theta_{0}(q)$ emerging from the Jacobi identity (see, for example, [10]), we obtain

$$
B_{0, l} \stackrel{\text { def }}{=} \lim _{\substack{n \rightarrow \infty \\ n \equiv 0(\bmod 2)}} B_{n, l}^{(2)}=\frac{q^{-l^{2} / 2}}{\left(q^{-1}\right)_{l}}, \text { if } l \equiv 0(\bmod 2)
$$

As far as series (26) corresponding to each sequence $\left\{B_{l}=B_{i, l}: l=0,1, \ldots\right\}, i \in$ $\{0,1\}$, is uniformly convergent over the whole complex plane, we obtain, by applying (27), the following equalities:

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ n \equiv i(\bmod 2)}} \mathbf{P}\{\theta(n, \Xi) \leq 2\}=\sum_{l=0}^{\infty} w(l, l) B_{i, l}=\sum_{l=0}^{\infty}(-1)^{l} q^{\left(\frac{l}{2}\right)} B_{i, l}, i \in\{0,1\} . \tag{34}
\end{equation*}
$$

Substituting (32), (33), respectively, in (34) and applying the equalities

$$
\begin{aligned}
\sum_{\substack{k \geq 0 ; \\
k \equiv 0(\underset{c}{\bmod } 2)}}(-1)^{k} \frac{q^{-k / 2}}{\left(q^{-1}\right)_{k}}=\frac{1}{2}\left(\frac{1}{\left(-q^{-1 / 2}\right)_{\infty}}+\frac{1}{\left(q^{-1 / 2}\right)_{\infty}}\right), \\
\sum_{\substack{k \geq 0 \\
k \equiv 1\left(\begin{array}{c}
\bmod \\
\bmod
\end{array}\right.}}(-1)^{k} \frac{q^{-k / 2}}{\left(q^{-1}\right)_{k}}=\frac{1}{2}\left(\frac{1}{\left(-q^{-1 / 2}\right)_{\infty}}-\frac{1}{\left(q^{-1 / 2}\right)_{\infty}}\right)
\end{aligned}
$$

following from the identity $\sum_{k=0}^{\infty} \frac{t^{k}}{\left(q^{-1}\right)_{k}}=\frac{1}{(t)_{\infty}},|t|<1$ (see [10]), we obtain equality (28) after simple transformations.

So, the theorem is proved.
The author would like to thank the anonymous referee for useful censorious remarks.

Bibliography

1. A. N. Alekseychuk, Probabilistic scheme of independent random elements distributed on finite lattice. I. Precise probability distribution of random elements union functional, Kibern. Sistem. Anal. (2004), no. 5, 3-15. (in Russian)
2. A. N. Alekseychuk, Probabilistic scheme of independent random elements distributed on finite lattice. II. The lattice moments method, Kibern. Sistem. Anal. (2004), no. 6, P. 44-65. (in Russian)
3. M. Aigner, Combinatorial Theory, Springer, Berlin, 1979.
4. R. P. Stanley, Enumerative Combinatorics, vol.1,, Pacific Grove, Wadsworth and Brooks, CA, 1986.
5. R. P. Stanley, Super-solvable lattices, Alg. Univ. (1972), no. 2, P. 197-217.
6. V. N. Sachkov, An Introduction to Combinatorial Methods of Discrete Mathematics, Nauka, Moscow, 1982. (in Russian)
7. V. N. Sachkov, Random minimal covers of sets, Discr. Matem. 4 (1992), no. 3, 64-74. (in Russian)
8. V. V. Masol, The asymptotic of distributions for certain characteristics of random spaces over a finite field, Teorija Jmovirnostey ta Matematychna Statystyka 67 (2002), 97-103. (in Ukrainian)
9. V. N. Sachkov, Random minimal covers and systems of functional equations, Intellect. Sistemy 2 (1997), MGU and Academy of Technology Sci., Moscow. (in Russian)
10. G. E. Andrews, The Theory of Partitions. Encyclopedia of Mathematics and its Appl., (G.-C. Rota, ed.), vol. 2, 1979.

National Technical University of Ukraine (KPI), 37, Peremogy Ave., Kyiv 03056, UkRAINE

E-mail: alex-crypto@mail.ru.

[^0]: 2000 AMS Mathematics Subject Classification. Primary 60D05.
 Key words and phrases. Finite homogeneous lattice, random cover, cover index, lattice moments.

