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STOCHASTIC OPTIMAL CONTROL PROBLEM WITH DELAY

A stochastic optimal control problem with variable delay on phase and on control is
considered. The maximum principle for a nonlinear stochastic control system with
controlled diffussion coefficient is proved.

INTRODUCTON

The stochastic differential equations with delay find much exhibits at the description
of real systems, which are subjected, in one or another degree, to the influence of a
random noise. Many problems in theories of the automatic control, in self-oscillating
system, and so on are described by such equations. Therefore, the problems of optimal
control for systems described by stochastic differential equations with delay are actual
at present [1,2]. Earlier, the problems of stochastic optimal control with variable delay
on phase [3,4] and with delay on control [5] were considered. This work is devoted to the
problem of stochastic optimal control with variable delay both on phase and on control at
the restriction on a right endpoint constraint. Our aim is to obtain a necessary condition
for optimal control, when the diffusion coefficient contains the control variable.

STATEMENT OF THE CONTROL PROBLEM

Let (2, F, P) be a probability space with filtration{ F**, ¢ € [to,t1]}. Let w; be an n-
dimensional Wiener process. We assume that F' = 5(ws,tg < s < t). L% (to,t1) is the
space of all square integrable processes adapted to the family F*. R™*" is the space of
linear transformations from R™ to R™.

Consider the following stochastic optimal control problem with variable delay both on
phase and on control:

(1) dxy = g(Tt, To—n(t), Uty Ue—n(t)> D)t + [ (T4, Te_p(ey, ue, t)dwy t € (o, t1],
(2) Ty = @(t), te [to — h(to),to), T, = Xo,
(3) uy = Q(t),t € [to — h(to), to,)
(4) up € Ug = {u(-,) € Ly(to, t1; R™)|u(t,) € U C R™,a.c.},
where ®(t), and Q(t) are given non-random functions, h(t) > 0 is a continuously
dh(t
differentiable non-random function such that L < 1.

The problem consists in the minimization of the cost functional

(5) J(u) = E{p(xtl) + / ! l(xt,ut,t)dt}

to
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which is defined on the decisions of system (1)-(4), generated by all admissible controls
under the condition

(6) Eq(z:,) € G C R".

Our assumptions are:
L l(z,u,t), g(z,y,u,v,t), f(z,y,u,t) are continuous in the total arguments and

l(z,u,t) : R" x R™ x [to,t1] — R",

g(z,y,u,v,t) : R x R" x R™ x R™ X [to,t1] — R",
f($>yvu,t) "R x R x R™ % [t07t1] N Rnxn.

IT. When (¢, u) are fixed, the functions [, g, and f are continuously differentiable with
respect to (x,y), and their derivatives are continuous in (z,y, u, v).

(L4 |2l + ly)) ™" (g, v, w0, O] + 1 f (9, w, O] + |92 (@, y, w0, 6) |+ | fo(@, g, u, )+

+ gy (@, y,u, )] + | fy (2, y,u,)]) < N,
(1+ |ac|)71 (Jl(z, u, t)|) + (lx(2,u,t)) < N.

II1. Functions p : R — R;q : R* — RF are continuously differentiable with respect
to x:

p(@)| + pe ()| < N (1 +|z]); lg(@)] + lgu(x)| < N (14 [z]).

NECESSARY CONDITIONS OF OPTIMALITY

Below, we will consider the stochastic control problem (1)-(5) without constraint (6).
Let us present a definition that will be used later on.

Definition 1. [6]. A(x, X) is a star-shaped neighborhood of the point « with respect to
the set X, if

(7) Mz, X)={y:yeX,z+e(ly—z) € X, Ve <eg,e >0}

In what follows, we obtain the necessary condition of optimality that is called the maxi-
mum principle.

Theorem 1. Let I-III hold, and let (z?,u?) be a solution of problem (1)-(5). Assume
that there exist the stochastic processes (P, B;) € L (to, t1; R™) x L%(to, t1; R™™™) which
are a solution of the following adjoint equation:

8
e [ .90 00.09.0) + (622,200,009 o ()] + B,
to <t <ti—h(t),
dipy = —Hy (e, 20,92, uf 02, 8)dt + Bedwe, t1 — h(ty) <t < ty,
Yt = —pa(af),).
Then we have Yu; € A(u®) a.c.:

H(W,fﬂgaygaueaveﬁ) —H(wg,xg,yg,ug,vg,GH
+ [H (2, 02,40, uz, vz, 2) = H(z, 02,90, ul, 02, 2)] |ozs(o)s'(0) <
<0, a.ed € [ty,t1 — h(t1)),
H (Yo, 29,99, ug, vo,0) — H(Yo, 9, y5, uy, vy,0) <0, ae. 0 €[ty —h(t1),t1).

9)
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Here, t = s(7) is a solution of the equation T =t — h(t); Ys = Ty_p)Ve = Ur—p(t);
H(q/)tv Tty Yt, Ut, Ut, t) = 1/):9(%57 Yt, Ut, Utt) + ﬂ:f(xtv Y, Ut, t) - Z(Itv Ut, t)a
(10)
A(u®) = {U €U : faf,a)_puy,u,,t) € Mf(2, 27,0’ 1), f(af, 2 p0), U, t))};
Proof. Let u; = u? + Auy be some admissible control and Ty = x? + Az, be the corre-
sponding trajectory of system (1)-(4). It is clear that

(11)
dAxt = d(:ft _I?) = [g('fh:ft h(t)» ﬂtvr‘_}bt) g(I?, ? h(t)? utvvt7 )]dt+

+[f(1_7t7'ft h(t);ﬂtnt) f(d??, Ty h(t)’ utv )]dwt - {Aug (xtv Ty h(t)7u?7vtovt)+
+Avg(xt7 t h(t)vut7vt7 ) +gm(xt7 t h(t)7ut7vt7 )Axt+
+ gy(xt ) xt—h(t)’ ut » Ut 7t)Axt—h(t) }dt + {fﬂ?(xt ) xt_h(t)v ut 5 t)AIt+

(@, 2 ud VAT ey + Aaf (@), 2] 0, uf, t)}dwt e, L€ (to, ]
A.’,Et = O,t S [to - h(t0)7t0]7

where

1
T]tl = {/ [g;(x? +NAxt7:ft—h(t) 7fat7r‘_}t7t) - gm(I?,l'? h(t)> U?,’Ut, ):| Axtd,u"_
0

1
+/ [g;j(xi),I?_h(tﬁuﬁxt_h(t),ﬂt,ﬁt,t) — Gy (x?,x? h(t);U?;Uta )}Afﬂt h(t) d,u}dt—k
0
1
+{/ [fa(@? + pxy, Ty >t t) — fo (2, @70, 0, )}Aﬂ?tdlﬁ
0

1
+/ {f;(xtoaxtofh(t)'i_/‘Axtfh(t)a'atat) - fy (2, 2_ h(t)aut7 )} Az pry du}dwt
0
According to the It formula, we have:

d(6f Aay) = o} - Ay + 7dA, + {57 Aaf (20,20, 0, ul 1)+

+ﬂ;§kfm (:17?7 x?_h(t)v U?, t)A:Et + ﬂ;tkfy ($?7 x?—h(t)’ U?, t)AIt—h(t)+

(12)
w1 _ _
+¢ fo [fx(I?‘FHAIt,It—h(t);Ut, ) fm(xw ? h(t) utv )]Axtdﬂ+
+ﬁ;tkf01 [fy(xg7x?_h(t) +/1‘Axt7h(t)7’at7 ) fy(xux,? h(t) ut7 )]Axt h t)du}dt
Let
(13) G, = —pa(af,).

The increment of functional (5) along the admissible control 4; looks like

Agd (u°) = J () = J () —E{p(ftl)—P($?1)+/ 1 [[(@e, e, t) — Uy, )]dt}

to

Taking (11), (12), and (13) into account, we obtain the following formula for the
increment of the functional:

t1
AﬁJ(UO) = _E/ [w:Aﬁg(‘T?? x?—h(t)? u?? U?? t) + w:Aﬁg(xSﬁJ? x?—h(t)? u?? U?? t)+
to
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t1
+5fAﬂf(x?:x?—h(t):U?v t)— Agl(x],uy, t)]dt — / [d¢r+wrgz(xhxt—h(t)augav?vﬂ"‘

to
t1
+ﬂ:f1(x?7x?—h(t)vu?7t) —la (Iwut? )}A:Etdt / {w:gy(:p?:x?—h(t)?“??”?vt)""
to
(14) + B¢ fy(xt ) x? h(t)> uy, )} Az p(eydt + Neg ity 5
where .
Mo, t1 = E/ [p;(x?l + /’LAxtl) - p;(xtol )] Axt1dﬂ+
0
t1 1
+E {/ (052 + play, g, t) — (), g, )] Axtdu} dt+
t 0
t1 1 °
+E {/ [1/1: (giv (.’L'? + ,UA(Et, jtfh(t) ) ’U/?, Utoa t) — 0z (xgv jtfh(t) U?a () )):I A(Etdﬂl-’*
to 0

1
+/ [wr(gy(xgvx?—h(t)""/‘Axtfh(t)?ugvvgat) —9y (‘T??xt h(t)?utvvtv )]Awt ht)d:“dt}
0

1 1
+E/ {/ B [fo (@ + pAzy, By iy, ul, 6) = folal, Tenqy, uf, 1)) Azdp+
to 0

1
(15) +/0 Bt [fy(xgaxg—h(t) + AT b, ugs t) — fy(xgaxg—h(t)augvt)} A:ct,h(t)du} dt.

Let the random processes ¢y € L% (to,t1; R") and B¢ € L% (to, t1; R"*™) be a solution
of the adjoint equation (8). Assume that (9) is not fulfilled, i.e., for some 6 € [to, ¢1) and
ug € A(ud),

(16) H (weaxgaygaueaveve) -H (weaxgaygaugavg70) =a>0.

According to the definition of the set A(uj)), there are the sequence of numbers {e;},
g; — 0, &; > 0, and the sequence of vectors {ui}, ui € U, such that

(17) Au@f <I27 xg—h(@)? ug? 9) = EiAUe) f (I(G)v x(e)—h(e)v ug? 0)
Let’s consider the following needle-shaped variation:
ul —u,t €1[0,0 +a;),u; € L%(0,0 + o;; R™)
(18) Avas0u) =
0,t¢[0,0+ «;),

where «; is a sufﬁciently small positive number (i > 1), r = infg<i<gia, h (1)

By zi = 29 + A;2?, we denote the trajectories corresponding to variations (18). We
need the estimation of E|A xt| It is clear that, for Az = 0, Vt € [t,0) and for
Vt € [s(to),s (O)], Aiyf = Ay, () = 0.

Let V7 € [0,60 + ;). Then

Aifpg :/0 [Q(I?,x?_h(t),Ui,v?,t) g(I?,xt h(t) U’tv”t? t)ldi+
/ Ay f( (29,29 h(t) ,ud ) dwt—l—/ / G (@) + pAzd 29 h(t) Jul, v A dtdp+

+/ / fm(x?-i-,uAix?,x?_h(t),ui,t)Aix?dwtdu
0o Jo
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and
2

B|A2Y)? < E +

O+ )
A {g(xgv x?—h(t)? Uia Ut07 t) -9 (xgxto—h(t)v ut07 ’U?? t)} dt

O+
/
6

1
/ 9z (x? + MAix(t)7 x?—h(t) U U?? t)dﬂ'
0

2
Auéf(xto, xtofh(t), u?, t)’ di+

2
|Ai$?|2dt+

+E [
0

T 1
+E/ / fﬂT(I? =+ ,uAixtovxtofh(tﬁ U;, t)d,u
0 0

According to (17), we have

2

O+
E/ Ay f(@, @), ul, t)Pdt < Kefoy, K > 0.
(4

The numbers {e;} are fixed. Then, to account the choice of the numbers {«;}, we
have

E|A;x%|? < Ne2a,V7 € 0,0 + ay)
from the Gronwall inequality. For V7 € [0 + «;,0 + r], we have

E|A2Y < E|Aid, |

+E /
O+a;
v b
O+a;

E|A2)|* < Ne?a, for V1 €[0,0 + 7).
We now consider the segment [0 + r, 0 + 2r]. We divide it into the parts

1 2
2
| gl i a1 Dt e
0

1 2
2
/ fm(x? + uAix?,x?_h(t),u?,t)du |Aix?| dt < Nefozl-.
0

Thus,

0+r60+r+a) and [0+4+7r+a;0+2r)

and estimate the values E|A;z;|* for Vt € [0 + 7,0 + 2r]. For V7 € [0 + 7,0 + 1 + o], we
obtain

,
At = [ lataa ok t) = aadal ol Dl
—+r
T T 1 ) o
] Ayttt i du [ [ g (a4 pia aly vl t) Ausdudes
O+r O0+r JO
T 1
+/ / fgg(x?—|—,uAixg,xtofh(t),ui,t)Aixtdudwt—i—
O0+r JO

T 1
+/ / 9y (205 2y + AT 4, ut, v, 1) Asyrdpdt+
O+r JO

T 1
—|—/€ / fy(x?,x?_h(t) + ,LLAia:?_h(t),ui,t)Aiytd,udwt.
+r JO

Since
E|AY? < Nea,t € [0+ 7,0+ 2],
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we obtain that

2 4 ;g 2
E |Azx9-| S E ( / [g(xgvx?_h(t)auéavzvt) g(ﬂc?,x? raugvvtv )} dt +
O+r
T 2 T 1 ) ) 2
+/ Au;f(x?v x?—h(t)?“??ﬂ‘ dt—"/ / gz(iE? +.L‘Aixgvx?—h(tyuz?%vt)d,u +
O+r O+r 0

1 1
+/ / gy(xto, xtofh(t)'i'
0 0

o 2 1 , 2
—|—,uAi:17?7h(t),u;,vZ,t)du‘ —|—/0 ‘fy(xto,xtofh(t) —|—,uAix?,h(t),ué,t)du’ ] |Aiyt|2dt).

Whence E|A;x?? < NeZag,t € [0+7,0 +7r+ a;).
Having executed the similar transformations, we obtain

. 2 t
Folel + bl o0 | 3o+ [
O+r

E|Aiz?)? < Nefay, VtE[0+7+ i, 0+ 2r]
Thus, we obtain
B|A2Y? < Netay, Vtel[+r0+2r).
Hence, for Vt € [0, 6 4 2r], the relation
E|Aixt0|2 < Ne2ay

is fulfilled. Then, dividing each of the segments

[9+(j—1)T79+jr]»j:17m79+mT2751,

into the segments [+ (j — 1)r, 0 + (j — 1)r + ;) and [0 + (j — )7 + «;, 0 + jr], we can
prove the correctness of the following estimations:

E|Az?)* < Na?,t € [0+ (j— )r,0+ jr],j = T,m.

Thus, we have proved the correctness of the following estimation for almost all ¢t €
[to, tl] :

(19) E|Aix?|2 < Neta.

Since the random processes 1, §; are a solution of system (8), using the obtained
estimation (19) and taking formulas (15) and (14) into account, we have

6‘+O£7; . .
AuiJ(uO) = _E/O [1/):9 (ﬁvﬁ%(t)v%:”i:ﬁ - 1/):9 (x?,x?_h(t),u?,vg,t> +

+5; f(xt,xt h(t)s utv t) — B¢ f(xtaxt R(t)? U?at) - l(x?,ut, t)+ l(xtvuﬂ )} dt +o(a;) =
- _O‘i[w;ﬁg (xtoﬂ ngh(t)» ui? ’Ug, t) - w:g (x?, x?—h(t)? u?? Ut07 t) +
(20) +ﬂt f(xt ’ xt h(t)> ut: ) ﬂt f(xt ’ xt h(t)> U?, t) - Z(I?7 Ui, t) + l(zgv U?, t):| + O(ai)'
Now, at the expense of the selection of numbers a; according to (16), for sufficiently

large i, relation (20) yields A, J(u®) < 0, which disagrees with the optimality of uY. The
proof is completed.
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PROBLEM WITH ENDPOINT CONSTRAINT

Now we consider the stochastic optimal control problem with final state constraint.
We apply the Ekeland’s variational principle [7].

Theorem 2. Let I-III hold, and let (x?,u?) be a solution of problem (1)-(6). Assume that
there exist nonzero (Ao, A1) € R**1 such that Ao > 0, A1 is a normal to the set G at the
point Eq(x ), and\§ + I\ > =1, and the stochastic processes (i, B;) € L2 (to, t1; R"™) x
L2 (to, t1; R™™), which are a solution of the following adjoint equation:

Ay = — | Hy (s, 2, yf uf, v 1) + Hy("/}zax27y27u27vg7z)|z:s(t)5/(t)} dt+
(21) +ﬂtdwt,t0 <t<t; — h(tl),
dwt — _Hﬁ(wtaxgaytoaugavto7t)dt + ﬁtdwhtl - h(tl) S t < tl?
¢t1 = _AOpm(xgl) - >\1Qz(xgl)'
Then we have Yu; € A(u°) a.s.:
H(wewxg?yg?uG?veae) _H(l/JG?xg?yg?Ug?Ugae)‘f'
+[H(wz7$27927umvzaz) - H(w27$27y27u271}27z)] |z:s(0)5/(0) S 07

a.e. 0 € [to,tl — h(tl)),
H(q/)evxgvygvué‘vvé‘va) - H(¢6»I2»yg»ug7vg79) < 07 a.e 0 € [tl - h(tl)v tl) .

(22)

Here,

(23) H(wtvxtvytvutvvtvt) = wrg(xtvytvutvvtt) +ﬂ:f(xt7ytvutvt) - l(xtvutvt)'

Proof. For any natural j, we introduce the functional

#@O=SNEM%J+E1IKManmEﬂ%J)=

24 = min
( ) (c,y)ef)\/

where £ = {(c, y):e<JVye G}. Here, J° is the minimal value of the functional in
problem (1)-(6). Let V be the space of controls with the metric

2
—ly — Bq(z,) |,

1 f
c—=—Ep(zy,) —E | Ua,ug, t)dt
J

to

d(u,v) = (1@ P){(t,w) € [to, t1] x Q: vy # w}.
We use the following results which can be proved by the scheme in [3].
Lemma 1. Let us assume that conditions I-1II are fulfilled. If d(ugn)7ut) — 0,n — o0,

2
then limn_,oo{sup E‘xﬁ") B xt‘ } =0.

Due to continuity of the functional J; : V' — R", according to the Ekeland’s variational
principle, we have that Ju] : d(u],u?) < /&5 and, for Yu € V,

J() < Jj(u) + JEd( u), g5 = =
J
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This inequality means that (x{ , ui) is a solution of the following problem:

Ii(u) = —|—\/_Eft ut,ut )dt — min,

dxy = g(xt7xt,h(t),ut7vt, t)dt + f(xt, T4_p), us, t)dwy,
(25) zy = O(t),t € [=h(to), to], h(t) =0,

ur = Q(t),t € [=h(to), to],

ui € Uy.

Let (z7,u}) be a solution of (25), and let there exist the random processes Yl e
L2 (to,t1; R™), B e L2 2 (to,t1; R™*™), and non-zero (X}, \]) € RF*! such that

d’l/)g = [ (wtvxtvytvutvvtv >+H (wzvxzvxivuivvgvz) |Z:s(t) 5/(t)}dt+

(26) B dwy, to <t <t — h(t1)
dwi = _H (wtﬂxt?ytautavt? )dt+ﬁjdwt7tl - h(tl) S t < tl
Wl = = Xope(ai,) — Mo (,),

_cj—|—%+Ep (x%) +Eﬁill(x{,ui,t)dt —y; + Eq <Ii1>
0 J 0
7] 7]

(27) ()‘%7 )‘{) =

Then, according to the previously proved Theorem 1 for Yu; € A (uj ), we get

H(w07$g7yg7u97v976) - (¢07$27yg7UZ7U§79)+
+ [H(wz,xg,yg,uz,vz,z) (wzv Z,yz,uz,v;,z)] |Z:T(9)5l(9) <0,
a.e.f € [t07t1 — h(tl))

H(wewxg?yg?uG?vG?e) (¢07$97y97ug7%79) < 0 a.e. 9 S [tl - h(tl)atl) .
Since |(M, M) = 1, we can consider

()\67)‘{) - ()‘07)\1)7j — OQ.

(28)

It is known that S; is a convex function differentiable in terms of Gato at the point
(Ep(x],) + Ef:o1 I(x],u],t)dt, Eq(x],)). Then, for all (c,y) € £, we obtain
. 1 . t o . ) 1
<)\%,c— i Ep(z])—-E t l(x{,u{,t)dt—i—) + ()\Jl,y - Eq(x{1)> <= i

9

Going to the limit in the last inequality, we obtain that Ay > 0, and A; is a normal to
the set G' at the point Eq(ay,).

Since 1f, = —Ajp(ai,) — Ajq(ai,), we get ¢, — —Xop(af,) — Mg(af,) ie. ¥, — ¢y,
in L% (to, t1; R"), j — oc.
Lemma 2. Let the random processes 1/)5, ﬂ,{ be a solution of system (26), and let 1y, By
be a solution of system (21). Then

t1 ) t1 ) .
E/ 1 —wt|2dt+E/ 3 — B2dt — 0, if d(ud,us) — 0, j — 0o,
to to

Due to Lemma 2 and assumptions I, II, it follows that we can go to the limit in (26)
and (27). We got (21) and (22), respectively. Theorem 2 is proved.

Corollary 1. If f (z,y,U,t) is convex, we can deduce that (22) is true for Vu € U. In
other words, we obtain the maximum principle in the global form in this case.
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Corollary 2. If the shift coefficient does not depend on the delay on control, g =
g (z,y,u,t), we obtain the result given in [3].
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