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PRINCIPAL COMPONENT ANALYSIS FOR STUDYING THE
WORLD SECURITY PROBLEM

T. POMERANTSEVA, A. BOLDAK

This research is a continuation of the work [1], in which the list of ten most essential
global threats to the future of mankind have been presented. The initial data on each
threat are taken from the respectable international organizations data bases. Then,
we defined the summarized impact of the examined ten global threats totality on dif-
ferent countries based on cluster analysis method with the purpose of selecting
groups of the countries with “close” performances of summarized threats. By using
the Minkovsky type metric the foresight of the future global conflicting has been
executed. To facilitate the analysis and make it easier we use the method of Princi-
pal Component Analysis (PCA) which allows reduce variables with many properties
to several hidden factors. The analysis shows that currently the most considerable
threats for most countries are the reduction of energy security, worsening of balance
between bio capacity and human demands and the incomes inequality between peo-
ple and countries.

INTRODUCTION

In the work [1] the impact of system world conflicts on sustainable development
is studied in the global context. On the basis of data analysis pertaining to the
global conflicts taking place from 705 B.C. till now the regularity of their flow is
determined. It is shown that the sequence of life cycles of system world conflicts
is subordinate to the law of Fibonacci series, and the intensity of these conflicts,
depending on a level of technological evolution of a society, builds up under the
hyperbolic law. By using the revealed regularities we attempt to foresee the up-
coming world conflict, called “the conflict of the XXI century” and analyze its na-
ture and principal performances: - durations, main phases of the flow and intensity.

The totality of main global threats generating the conflict of the XXI century
is given. These global threats are: ES — Energy Security; FB — Footprint and
Biocapacity Balance; GINI — Incomes Inequality; GD — Global Diseases; CM
— Child Mortality; CP — Corruption Perception; WA — Water Access; GW —
Global Warming; SF — State Fragility; ND — Natural Disasters. By the cluster
analysis method we define the impact of the above threats on different countries
and on twelve large groups of countries (civilizations according to Huntington)
combined by common culture features. Assumptions are made as to possible
scenarios in the course of the conflict of the XXI century and after its termination.

Since it is difficult to analyze the security of this or that country simultane-
ously in the space of ten global threats, to make the research more convenient and
demonstrative we use the Principal Component Analysis (PCA). This method
makes it possible to reduce analysis of many properties to some hidden factors
determining these properties. In this case the security of a country may be
presented in a simplified form not by all ten global threats, but some most
significant factors.
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APPLICATION OF THE PRINCIPAL COMPONENT METHOD FOR THE
ANALYSIS OF THE IMPACT OF GLOBAL THREATS TOTALITY ON
SUSTAINABLE DEVELOPMENT

The example of sustainable development global simulation [2] presents global
threats and degree of their impact on different countries. Let us format table 1 in

the form of the initial data matrix, X, N =106, m=10, in such a way that its
lines X;,i= 1,_N correspond to the analyzed countries, and the columns X J ,
j= 1I,m contain the values of threats (indicators) PX , , k= L_m, m=10. Then, for

each country there will be the corresponding vector X, =(x;,x7,...,x") of

threats values (the upper index corresponds to the threat’s ordinal number).

The purpose of the given study conducted with application of the principal
component method is finding out and interpreting latent common factors with si-
multaneous goal to minimize both their number and the degree of dependence
PX; on their specific residual random components. Suppose that each threat

PX; is a result of impact m' of hypothetical and one characteristic factor [3]:

PX,; = z:;q;F ite, izl,_m, where q'] — factor loadings; F i — factors to

be defined; e; — characteristic factor for the i-th initial feature representing inde-
pendent random value with zero mathematical expectation and finite variance.

The expression for PX; may be presented in matrix form:

X% =vQ" + E, where (1)
1. V' — matrix of factor scores; § — matrix of factor loadings; £ — ma-

trix of residuals.
Searching of principal components is reduced to finding the matrix decom-
position X% in the form (Lindsay 1. Smith, 2002): X % =TPT + E , where T —
matrix of scores with dimension N xm' (m’'<m). Each line of this matrix is a

projection of data vector X" on m’ of principal components. Number of lines —

N corresponds to the number of vectors of the initial data. Number of columns or
number of principal components vectors selected for projection is equal m'. P —
loadings matrix of dimension m'x m, where m' — number of lines (data space
dimension); m — number of columns (number of vectors of principal compo-
nents selected for projection); £ — matrix of residuals.

Matrix of scores assigns a set of vectors 7; = <zij ), i =1,_N, j=1,m", deter-

mining projectors of vectors X l-j ,i=1,N, j =1,m in the principal components

space (number of components is equal m'<m). Matrix of loadings assigns the
mapping of the initial space basis in principal components space. The principal

component method allows find such mapping R" —L SR™ that m'<m and
> 2. ¢ —>min forall possible 7 and P [3].

Defining principal components is connected with calculation of eigenvectors
of the covariance matrix [3, 4], defined as:
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where cov(PX;,PX ;)= — covariance of parameters

PX; and PX;.

For selection of sufficient number m’ <m of principal components a cumu-
lative variance is often used [5]:
i

i —

D[= 7i=1:m, (3)

m
where A e J=Lm — eigenvalues of covariance matrix C are used.

Preliminary analysis of principal components is given in Table 1.

Table 1. Analysis of principal components

Value | Eigenvalues| Total variance, %| Comulative Eigenvalues Comulative, %
1 5,065629 50,65629 5,065629 50,65629
2 1,331475 13,31475 6,397103 63,97103
3 1,065071 10,65071 7,462175 74,62175

We shall define the sufficient number of principal components by using the
“slide rocks” criterion suggested by [6]. “Slide rocks” is a geological term to
define rock debris accumulated in the lower part of a rocky slope. Using this anal-
ogy it is possible to show graphically (Fig. 1) the eigenvalues presented in table 1.
It is necessary to find such a place in the plot where a decrease of eigenvalues left
to right is maximally slow. It is supposed that to the right from this point only
“factorial slide rocks” are located. In accordance with this criterion only 2 or 3
factors may be left.

5,0656

5083 0,4811

0,0996 00754

1 2 3 7 8 9 10

4 5 6
Number of Eigenvalues

Fig. 1. Defining principal components by using “slide rocks” criterion

As seen from the above presented data it is sufficient to use three first prin-
cipal components (the eigenvalues corresponding to them are indicated in red) to
represent the data variability higher than 74 %.
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Definition of factor loadings. Now let us analyze principal components and
consider solving a problem with three factors. For this we consider correlations
between threats and factors (or “new” variables) which are calculated by the for-
mula [7]:

. .
> = XD - xh

Tl = m —— v — 5 (4)
k kN2 l I\2
U2 kxS - x)
where 7, — correlation coefficient of parameters X "and X%, x', x* —
N Nk
— X — _X;
average values of parameters X" and X*; X! =%; x* =%.

The correlation coefficient itself does not have informal interpretation. How-
ever, its square called the coefficient of determination shows to what extent varia-
tions of dependent characteristics may be explained by variations of an independ-
ent one. It is thought that correlation coefficients which by their module are more
that 0.7 indicate a strong connection (in this case coefficients of determination >
50%, i.e. one characterististics determines the other more than by half. Correlation
coefficients which by their module are less that 0.7, but more than 0.5 indicate
that connection is average (in this case the coefficients of determination are less
than 50%, but more than 25%). At last, correlation coefficients which by their
module are less than 0.5 indicate a weak connection (here the coefficients of de-
termination are less than 25 %). Table 2 shows the values of correlation coeffi-
cients between principal factors and initial threats. The coefficients corresponding
to strong connections are indicated in red.

From Table 2 it is seen that the first factor to greater extent correlates with
threats than the second and third factors. It should be expected, since, as it has
been mentioned above, factors are defined sequentially and contain less and less
total variance.

Table 2. Correlation coefficients between principal factors and initial threats

Variable Factor 1 Factor 2 Factor 3
ES 0,208964 0,817502 0,342974
FB -0,855800 0,412124 0,053021

GINI -0,355499 0,105301 -0,716591
CP -0,856876 0,248258 -0,003646
NA -0,809616 -0,315140 0,210144
GW 0,723432 -0,392527 -0,006533
CM —0,844045 -0,267343 -0,024123
ND -0,326707 -0,285766 0,615743
SF -0,899250 -0,086816 -0,005283
GD -0,788874 -0,080839 -0,084617

Expl. Var 5,065629 1,331475 1,065071

Prp. Totl 0,506563 0,133147 0,106507

Interpretation of factor structure. It is convenient to carry out interpreta-
tion of factors (principal components) by using a diagram where threats are
shown as vectors the coordinates of which correspond to factor loadings (Fig. 2).
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L

Fig. 2. Interpretation of threats in coordinates of principal components

In accordance with maximum factor loadings threats may be divided into
three categories (red, blue and green coulours). The first group of threats includes:
FB, CP, SF, GD, NA, CM, GW. As seen in fig. 2 these threats are in the plane of
the first and second factors. It means that for more detail analysis it is advisable to
show them in the projection on this plane (Fig. 3).
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Fig. 3. Projection of threats on the plane of the first and second factors

As seen from Fig. 3 the pairs of vectors SF-GD, FB-GW are practically
colinear, which indicates their high degree of dependence. It is interesting that we
study only two factors, then the pair of vectors CP-GINI may be considered as
colinear. It should be also noted that the vector ES is orthogonial to FB (GW).

36 ISSN 1681-6048 System Research & Information Technologies, 2009, Ne 4



Principal component analysis for studying the world security problem

It means that:

o Dbetween level of energy security (ES), balance of biological capacity of
the Earth and people’s needs (FB) and CO2 emissions(GW) the dependence is
inconsiderable;

e balance between biological capacity of the Earth and people’s needs(FB)
and CO2 emissions (GW) has negative correlation;

o level of state fragility (SF)) is closely connected with level of global dis-
eases vulnerability(GD);

e corruption perception index (CP) is closely connected with level inequal-
ity between people and countries (GINI) in the context determined by the first and
second factors.

The most significant global threats are defined by using factor loadings of
the initial list of threats. For this it is necessary to select such factors which have
maximum loading by absolute value on the first, second and third factors. This
choice ensured the definition of maximum impact of initial threats under condi-
tion of their maximum independence on the aggregated indicator (Minkovsky
norm) of these threats (Fig. 4).
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Fig. 4. Definition of most significant global threats

In accordance with the indicated approach such threats are SF, ES, GINI,
(Fig. 4) i.e. the most significant threats in descending order are state fragility,
global decrease of energy security and growing inequality between people
and countries.

Clustering of countries by the level of global threats and the correspond-
ing graphic interpretation is done in the plane of the first and second factors.
For this purpose we cluster countries by the degree of their remoteness from
threats (Minkovsky norm) using the clustering method of K-averages.

As seen from Fig. 5 the isolines which assign the Minlovsky norm approxi-
mation are practically orthogonal to the first factor axis. It gives the ground to
state that the first factor values mostly determine the countries’ remoteness from
global threats (Fig. 5).
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RESEARCHING THE DEPENDENCE OF COUNTRIES’ NATIONAL SECURITY
ON PARTICULAR THREATS BY USING MODIFIED METHOD OF
WEIGHTED LOCAL CORRELATION

Let us consider that the quantitative value of Minkovsky norm for this or that
country is an estimate of its national security level. We define the level of
Minkovsky norm dependence on initial threats by calculating the corresponding
correlation coefficients (Table 3).

Table 3. Correlation coefficients between Minkovsky norm and global threats

Varuable | ES FB |GINI| CP | NA | GW | CM | ND SF | GD

Minkovsky
norm

-0,16 | 0,80 | 0,31 | 0,82 | 0,83 |-0,54| 0,83 | 0,40 | 0,89 | 0,78

The calculated correlation coefficients show a high degree of dependence of
Minkovsky norm on initial threats, but at the same time do not answer the ques-
tion what risks the countries are running from the point of view of their approach-
ing various threats. The reason is the averaging of correlation coefficients on the
entire data sample.

For detailed analysis of global threats the countries may face, it is necessary
to localize the sample on which correlation is estimated. It is natural to assume
that this sample should include “alike” countries the degree of similarity of which
may be estimated as, for example, a Euclidean distance in the space of threats.
The second assumption is connected with the idea that the closer is a country to
the point in which the correlation is analyzed; the higher is the degree of the coun-
try’s indicators impact on the correlation coefficient.

In accordance with the above assumptions we define the weighted

mean [8] as:
zwixi

m(X, W) =—=— , (5)
2V
i
where X — data sample; W — weighted function.
If we define W , as function depending on distance, for example,

W(x,t)=e 00 (6)

in which: d(x,t) — distance between points x, e R", and 1 — distribution

parameter and substitute in (5), then we get the expression for calculating the
weighted localized mean in point ¢ for sample X :

Ze—ﬂd(t,x‘»)xi
m(X,t) = x, eX. (7

ze*M(taxi) > !
i

Similarly, we can define the weighted localized covariation:
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ze—id(t,x,-) (xi _ m(X,t))(yl - m(Y, t))

cov(X,Y,) =~ Ze%d(t’m 3
And we define the weighted localized correlation (WLC):
X,Y,t
corr (X,Y,t) = CoVX, V1) 9)

\/COV(X,X,t)COV(Y,Y,Z) '

The distribution parameter of weights 4 may be chosen in such a way that it
is possible to restrict the impact area of point’s located at large distances. For ex-
ample, we assume that points located at mean distance from the point where WLC
is calculated have the weight equal S (distribution scale). IL.e.

In(s)

e MM = then A(1) = :
m(d,)

(10)

where m(d,) — mean distance from the sample points to point ¢. Examples of

weights distribution for different values of mean distance and distribution scale
are given in Figs. 6, 7.
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Fig. 6. Weights distribution for mean distance equal 0,5

With distribution scale equal 1, WLC coincides with Pearson product-
moment correlation coefficient. As seen from (10), the weights distribution pa-
rameter is calculated for each point ¢, which is a sample point. And for each new

point the mean distance value is calculated m(d,) anew. Hence, the suggested

method of estimating threats local dependence is adaptive. The interpretation of
WLC values is presented in Table 4.
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Table 4. Interpretation of values of weighted localized correlation (WLC)

0,2
0,000000

Value | Behavior of global threats :
of WLC under study Interpretation
Hich deeree of neeative corre- With a decrease of a particular threat the general
g ces & o remoteness from the totality of global threats
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- | The growth of one threat is il ]
-0.5) . . The studied threat has low (as compared to oth-
connected with reduction of o
ers) contribution to the general remoteness from
the other
global threats
Mean degree of negative cor-
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3) | connected with reduction of considerably decreases at the mean degree
the other
[-0.3, [Low degree of correlation gt is p(;)ssible ;0 hspecellk aboutfan inconsiderfable
03] |(less than 9%) ependence of the degree of remoteness from
) the totality of global threats on the studied threat
Mean degree of positive corre-
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0 5 ’ | The growth of one threat is|eral remoteness from global threats increases at
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other
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Fig. 7. Weights characteristics for scale distribution equal 0,1

Figs. 8-10 present the plotted values of weighted localized correlation
(WLC) between Minkovsky norm and most significant threats, respectively: SF,
ES u GINI.
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As seen from Fig. 8 the level of state fragility (SF) for most countries has
considerable impact on their national security.

As to the impact of energy security on the level of national security (Fig. 9),
the following groups of countries may be identified [9]:

e A group of countries with high level of ES and high values of Minkovsky
norm (Canada, Sweden, Norway, Australia) for which energy security considera-
bly influences their national security.

e An adjacent group (Finland, New Zealand, Denmark, Switzerland, Neth-
erlands, Austria, Luxembourg, Japan), for which a mean level of dependence be-
tween energy security and Minkovsky norm is observed.

e A group of countries for which this dependence is weak.

e A group of countries with mean level of national security (Belarus, Israel,
Thailand, Mexico, Jamaica, Jordan, Malaysia, Tunisia, Panama, Bosnia and Her-
zegovina, Vietnam, Brazil, Ukraine, Columbia, Korea Republic), for which there
exist threats more serious than energy security.

e A group of countries with low level of national security (Kenya, Zim-
babwe, Cameroon, Cambodia, Zambia, Haiti, Turkmenistan, Nigeria), for which
both energy security and other threats are equally important.

e A group of most problem countries (Ethiopia, Mozambique), where the
level of energy security at least extent determines the level of national security.

As to the impact of population inequality on national security (fig.10) it is
possible to identify a group of countries (Canada, Sweden, Norway, Australia,
Finland, New Zealand, Denmark, Switzerland, Netherlands, Austria, Luxem-
bourg, Japan, Ireland, France, Germany, Portugal, Slovenia, Belgium), for which
a mean positive correlation between this threat and Minkovsky norm is observed.
For the rest of countries this correlation is insignificant.

CONCLUSIONS

1. Since it is very complicated to analyze security of this or that country si-
multaneously in the space of ten global threats the principal component analysis
(PCA) was used. This method allowed reducing ten global threats influencing the
general level of national security (in the sense of Minkovsky norm) to three
hidden factors determining this characteristic. The application of this approach
allowed considerably facilitate research of national security, reducing it to the
analysis in the space of three determining factors.

2. By using this method a comprehensive study of national security of
different countries was carried out in the space of three determining factors.
Factor loadings were defined by calculating coefficients of correlation between
principal factors and initial threats. Clustering of countries was made according to
the level of global threats, and three most significant threats were defined
influencing national security of most countries: state fragility (SF), energy
security (ES) and people’s inequality (Gini). Graphic interpretation of global
threats was done in the space of three principal components. The factor structure
of threats was studied, and the degrees of dependence between main groups were
defined.
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3. The method of weighted localized correlation was modified, which al-

lowed carry out research of the dependence of national security level (Minkovsky
norm) on particular global threats. By using this method the dependence between
Minkovsky norm and most significant threats were analyzed in detail, in
particular, state fragility (SF), energy security (ES) and people’s inequality (Gini).
Recommendations were made for different countries regarding strengthening their
national security.
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