Ю.Н. СПИЧАК 1 , И.Ю. КОСТИВ 2 , Ю.В. САДОВЫЙ 2 , В.Ф. ГОЛОВЧАК 3 , Р.В. КРАВЕН 3

 ^{1}OOO «НПП «Антрацит-Плюс Лтд.», г. Антрацит

ТЕХНОЛОГИЯ ОХРАНЫ ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ ОТ ВЛИЯНИЯ ГОРНО-ДОБЫЧНЫХ РАБОТ

Для предупреждения развития и активизации опасных геологических процессов авторы разработали технологию охраны окружающей природной среды от влияния горно-добыточных работ. Приведены общие положения этой технологии, примеры её практического применения в Украине, за рубежем, и предложения по ее использованию в Предкарпатье и в Карпатах.

Введение

Анализ сегодняшнего состояния окружающей природной среды в Прикарпатье и Карпатах позволяет сделать вывод о развитии и активизации опасных геологических процессов в районах отработки месторождений калийных солей (г. Калуш, г. Стебник), серы (г. Яворив), каменной соли (г. Солотвино). Нарушение гидрогеологического равновесия при производстве горно-добычных работ на этих месторождениях и в прилегающих населенных пунктах способствует активизации процессов карстообразования, проседанию земной поверхности в границах отрабатываемых рудников, шахт и появлению глубоких провальных воронок [1].

Кроме механических нарушений геологической среды, в результате неконтролируемого растворения солей происходит загрязнение гидросферы, изменение гидрогеодинамических и геохимических условий на участках вышеуказанных месторождений [2].

С целью предотвращения развития опасных геологических процессов авторами разработана технология охраны окружающей среды от влияния горно-добычных работ. Ниже приведены основные положения этой технологии, примеры ее практического применения в Украине, за границей, и рекомендации по ее использованию в Прикарпатье и Карпатах.

Природоохранная технология. Технология охраны окружающей природной среды направлена на предотвращение развития, активизации опасных геологических процессов, и ликвидацию их последствий, включая следующие виды:

Защита литосферы:

□ от карстообразования за счет ведения подготовительных и очистных работ с предварительной изоляцией источников водопритоков в рудники, шахты и карьеры;

□ от проседания земной поверхности в шахтерских городах и поселках над действующими и закрытыми рудниками и шахтами путем гарантированного заполнения подземных пустот и отработанных выработок безусадочными твердеющими растворами на основе отходов обогащения;

□ от образовавшихся провальных воронок над калийными рудниками за счет укрепления и водоизоляции обрушенных пород под дном каждой провальной воронки, ее заполнения до дневной поверхности отходами обогатительного производства и их последующим тампонажем;

² Государственный научно-исследовательский институт галургии, г. Калуш

 $^{^{3}}$ ГП «НВП «Екозахист та енергозбереження», г. Моршин

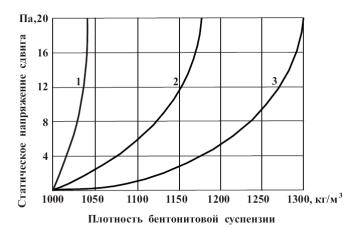
□ от загрязнения промышленными, бытовыми, военными отходами путем
герметизации основания полигонов подстилающими противофильтрационными слоями;
□ от подтопления территорий в зонах закрытия шахт и рудников за счет
водоизоляции отработанных наклонных выработок, имеющих выход на дневную
поверхность, и вмещающих их проницаемых пород противофильтрационными
перегородками;
от оползней грунтов на карьерных, породных и горных склонах путем их
укрепления через пробуренные наклонные скважины;
Защита гидросферы:
□ от истощения подземных и грунтовых вод за счет строительства и
эксплуатации рудников, шахт, карьеров с изоляцией вмещающих их водоносных пород
вязкопластичными бентонито-цементными растворами, вместо использования
водопонижения и водоотлива;
□ от загрязнения поверхностных вод и водоемов кислыми и щелочными
шахтными, рудничными и карьерными водами путем локализации их притоков
бентонито-цементными растворами;
от загрязнения грунтовых и подземных вод промышленными, бытовыми,
химическими отходами и нефтепродуктами за счет герметизации шламохранилищ,
полигонов отходов и свалок противофильтрационными барьерами с проектными
размерами, глубиной и формой.
Основные составляющие этой технологии:
• геологическое и гидрогеологическое обоснование применения оптимальной
природоохранной технологической схемы для каждого конкретного случая;
• научно-обоснованная методика получения достоверных данных о
фильтрационных свойствах и параметрах трещиноватости и закарстованности природных
массивов по результатам гидродинамических исследований в контрольно-разведочных и
инъекционных скважинах;
• применение экологически чистых водоизолирующих растворов и

- укрепляющих составов на основе бентонитовых глин;
- научно-обоснованная методика проектирования производства природоохранных работ В различных гидрогеологических, геохимических сейсмических условиях;
- оптимальные технологические схемы защиты литосферы и гидросферы от загрязнения и истощения;
 - контроль оценки качества выполнения природоохранных работ.

Водоизолирующие растворы и укрепляющие составы на основе бентонитовых глин. Бентонитовые глины относятся к группе монтмориллонитов, имеющих стабильную кристаллическую решетку. Реакции замещения, обмена и гидратации происходят на поверхности и в середине кристаллической решетки между ее пакетами. Способность к реакции изоморфного замещения, гидратации и катионного обмена большая: 135 мг-экв на 100 г сухой натриевой бентонитовой глины, 100 мг-экв у кальциевой бентонитовой глины, 90 мг-экв у запесоченной бентонитовой глины.

Важный показатель водно-физических свойств бентонитовых глин – их высокая водоудерживающая способность, обусловленная большой емкостью комплекса. Граничная водоудерживающая способность натриевых бентонитовых глин составляет 844%, кальциевых 305%, запесоченных 250%. Эта характеристика определяет верхнюю границу удержания воды, при которой бентонитовая суспензия сохраняет свою структуру за счет осмотического связывания воды. При уменьшении содержания воды прочность структуры увеличивается.

Реологические и структурно-механические свойства водоизолирующих растворов и укрепляющих составов на основе бентонитовых глин характеризуются динамическим напряжением сдвига, структурной вязкостью, пластической прочностью структуры и величиной статического напряжения сдвига, при котором эти растворы и составы начинают течь. В соответствии с нормативными требованиями рекомендуется применять водоизолирующие растворы и укрепляющие составы, в которых исходная бентонитовая суспензия имеет начальное статическое напряжение сдвига 15-20 Па. Динамическое напряжение сдвига растворов должно быть 100-150 Па, структурная вязкость 40-60 с, конечное статическое напряжение сдвига 500-600 Па, конечная вязко-пластическая прочность структуры должна быть не менее 500-1000 КПа [3].


Процесс структурообразования растворов и составов на основе бентонитовых глин характеризуется тремя этапами:

1й этап — начальный рост прочности структуры, не препятствующий прокачке растворов по инъекционному трубопроводу и трещинам;

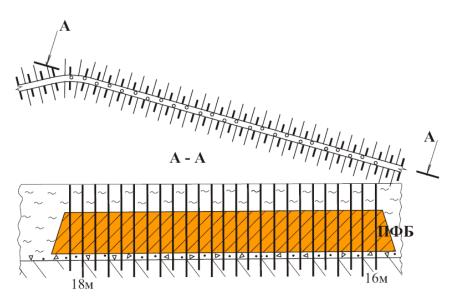
2й этап – резкое повышение прочности структуры после прекращения ее нагнетания;

3й этап – достижение заданной конечной прочности структуры.

На рис. 1 приведены экспериментально полученные авторами зависимости статического напряжения сдвига бентонитовых суспензий от их плотности для натриевых Дашуковских глин (Черкасская область), кальциевых Константиновских глин (Донецкая область), и Закарпатских запесоченных бентонитовых глин.

Рис. 1. Зависимость статистического напряжения сдвига от плотности суспензий различных бентонитовых глин

1 - Дашуковский Na – бентонитонит; 2 - Константиновский Ca – бентонит; 3 - Закарпатский запесоченный бентонит.


На рис. 1 показано, что наиболее оптимальными являются водоизолирующие растворы, приготавливаемые на основе Дашуковских натриевых бентонитов.

Ниже приведены примеры практического применения вышеуказанной технологии в различных гидрогеологических, геохимических и сейсмических условиях.

Практическое применение природоохранной технологии. Природоохранная технология внедрена силами ООО «НПП «Антрацит-Плюс Лтд.» и другими подрядными организациями по проектам, разработанным авторами этой технологии, на шахтах в Донбассе, туннелях Украинских железных дорог, при сооружении перегонных тоннелей Донецкого метрополитена, в Чернобыльской зоне отчуждения на хранилище объекта «Вектор»; в США на свинцово-цинковом руднике Майк Хорс в штате Монтана, медном руднике Кеннекотт в штате Юта; в Тайване при ликвидации аварийных прорывов

подземных вод в сооружаемые туннели: автодорожный Пин Лин длиной 12,9 км, железнодорожный Ху Коу длиной 4,2 км, а также в вентиляционные стволы глубиной от 438 м до 501 м в условиях ежедневной сейсмической активности, дождей и тайфунов.

На шахте Комсомольская в Донбассе через основание шламохранилища № 1 объемом 1,8 млн м 3 началась фильтрация жидкой фазы шламов, сопровождаемая размывом дамбы. Для предупреждения прорыва шламов и загрязнения ими земель и поверхностных вод, авторы предложили выполнить водоизоляцию и укрепление основания и тела дамбы этого шламохранилища через расчетное количество вертикальных инъекционных скважин. Согласно разработанного проекта на участке фильтрации шламов в 2 этапа был создан подземный противофильтрационный барьер (рис. 2).

Рис. 2. Схема создания противофильтрационного барьера на проницаемом участке дамбы шламохранилища

На первом этапе с гребня дамбы шламохранилища пробурили 13 вертикальных инъекционных скважин глубиной 18 м, через которые произвели нагнетание 210 м^3 бентонито-цементного раствора в подстилающие трещинноватые глинистые сланцы. Проектное расстояние между инъекционными скважинами было 5 м.

На втором этапе между скважинами первого этапа пробурили дополнительный ряд инъекционных скважин глубиной $16\,$ м, через которые выполнили контрольное нагнетание $110\,$ м 3 бентонито-цементного раствора. Основные параметры производства вышеуказанных работ приведены в табл. 1.

Таблица 1. Параметры сооружения подземного противофильтрационного барьера на

проницаемом участке ламбы шламохранилиша

Этапы	Количество	Глубина	Общий	Общий	Давление
работ	инъекционных	инъекционных	объем	объем	нагнетания
	скважин	скважин, м	бурения, м	нагнетания	раствора в
				раствора, м ³	скважину, кг/см ²
1й	13	18	234	210	5-10
2й	12	16	192	110	10-15
Всего:	25		426	320	

В результате выполнения природоохранных работ были ликвидированы течи из шламохранилища № 1 шахты Комсомольская, стабилизирован насыпной грунт дамбы, водоизолировано и укреплено ее основание. Это предотвратило дальнейшую фильтрацию шламов и загрязнение прилегающих к шламохранилищу земель и водоемов.

На цинково-свинцовом руднике Майк Хорс в штате Монтана, США, в результате его затопления в конце 19-го века рудничные воды окислились за прошедшие годы до рН=5,5. Вытекая через старый портал этого рудника, кислые воды загрязняли прилегающую гидрографическую сеть в горной местности.

Для предотвращения дальнейшего загрязнения водной среды кислыми рудничными водами, авторы предложили изолировать причину загрязнения — водоносный сброс, после пересечения которого штольней, на глубине 90 м от горной поверхности, этот рудник был затоплен водами выше протекающей речки Майк Хорс Крик.

Согласно разработанного авторами проекта, изоляцию водоносного сброса выполнили в 2 этапа через 2 ряда наклонных инъекционных скважин длиной 50 м и 45 м, пробуренных под руслом речки Майк Хорс Крик (рис. 3).

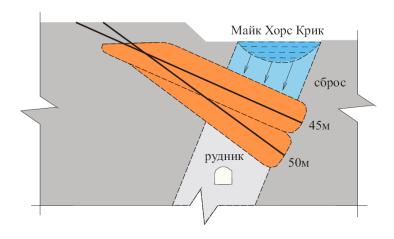
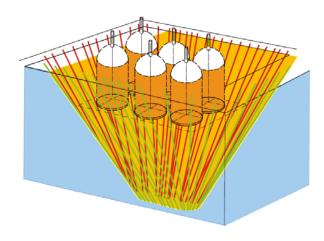


Рис. 3. Схема сооружения противофильтрационного барьера под руслом речки Майк Хорс Крик

В табл. 2 приведены параметры выполнения природоохранных буровых и инъекционных работ на этом объекте. Для приготовления водоизолирующего бентонито-цементного раствора применяли бентонитовую порошковую глину из соседнего штата Вайоминг.

Таблица 2. Параметры изоляции притоков кислых вод из затопленного свинцовоцинкового рудника Майк Хорс Майн


Этапы	Количество	Угол	Длина	Объем	Общий	Давление
работ	инъекционных	бурения	инъекционных	бурения	объем	нагнетания
	скважин	скважин,	скважин, м	скважин,	нагнетания	раствора в
		град.		M	раствора,	скважину,
					M^3	кг/см²
1й	7	35	50	350	810	25-30
2й	6	45	45	270	385	35-40
Всего:	13			620	1195	

Около участка выполнения вышеуказанных природоохранных работ заранее пробурили 5 вертикальных гидронаблюдательных скважин глубиной по 100 м для мониторинга статического уровня подземных вод. До начала выполнения работ статический уровень в гидронаблюдательных скважинах был на отметке 90 м, что

соответствовало глубине расположения затопленных выработок рудника Майк Хорс Майн.

При проектном объеме нагнетания 1200 м³, всего в 13 скважин инъектировали 1195 м³ бентонито-цементного раствора, после чего статический уровень подземных вод во всех гидронаблюдательных скважинах поднялся до отметки 6 м, то есть до дна речки Майк Хорс Крик. В результате выполненных природоохранных работ притоки кислых рудничных вод из портала цинково-свинцового рудника прекратились. Все вышеперечисленные работы были выполнены корпорацией «Моррисон Кнудсен», США, по проекту и под руководством авторов по инициативе Департамента энергетики и Департамента охраны окружающей среды США.

На меднодобывающем карьере Кеннекотт в штате Юта, США, из 6 железобетонных подземных емкостей объемом по 178 м³ каждая, началась фильтрация вредных отходов. Для предотвращения загрязнения окружающей среды опасными отходами авторы разработали проект создания вокруг и под вышеуказанными емкостями с отходами бентонито-цементного противофильтрационного барьера-капсулы через расчетное количество наклонных скважин, пробуренных с поверхности земли (рис. 4).

Рис. 4. Схема сооружения противофильтрационного барьера-капсулы под подземными емкостями с отходами

В табл. 3 приведены параметры производства вышеуказанных работ.

Таблица 3. Параметры сооружения противофильтрационного барьера-капсулы под подземными емкостями с отходами

Длина	Количество	Глубина	Общий	Объем	Общий	Давление
противо-	инъекцион-	инъекцио	объем	нагнетания	объем	нагнетания
фильтра-	ных	н-ных	бурения	раствора в	расхода	раствора в
ционного	скважин	скважин,	скважин,	скважину,	раствора,	скважину,
барьера, м		M	M	\mathbf{M}^3	\mathbf{M}^3	$\kappa \Gamma/cm^2$
240	48	25	1200	35-40	1716	15-20

Все буровые, изыскательские и инъекционные работы на вышеуказанном объекте выполнила корпорация «Моррисон-Кнудсен», США, под руководством авторов согласно разработанной ими природоохранной технологии. После завершения производства работ по созданию под емкостями с отходами противофильтрационного барьера-капсулы, фильтрация вредных отходов из них прекратилась.

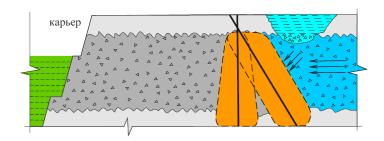
На полигоне объекта «Вектор» в Чернобыльской зоне отчуждения ООО «НПП «Антрацит-Плюс Лтд.» выполнило укладку подстилающего сорбционного слоя с

расчетной толщиной 0,3 м на экспериментальном участке хранилища твердых радиоактивных отходов ТРО-1. Учитывая наличие вблизи объекта «Вектор» Чистогаловского месторождения глин, авторы предложили использовать в качестве гидроизолирующего материала глино-цементно-зольный раствор, приготавливаемый на основе этих глин.

До начала укладки гидроизолирующего раствора основание будущего хранилища разбивали на расчетное количество участков шириной 5 м по длине хранилища. Затем вокруг первого участка устанавливали сборно-разборную металлическую опалубку высотой 0,3 м и по всей площади огражденного участка равномерно укладывали проектный объем глино-цементного раствора с расчетной толщиной 0,3 м для создания подстилающего противофильтрационного слоя (рис. 5).

Рис. 5. Укладка гидроизолирующего раствора под будущим хранилищем TPO-1 на объекте «Вектор»

В такой же последовательности выполняли сооружение подстилающего противофильтрационного слоя и на других участках хранилища ТРО-1 объекта «Вектор».


Рекомендации по применению природоохранной технологии. Учитывая развитие и активизацию опасных геологических процессов в Прикарпатье и Карпатах, целесообразно рекомендовать первоочередное применение природоохранной технологии на месторождениях калийной соли в городах Калуш и Стебник, серы в городе Яворив, каменной соли в городе Солотвино, на которых практически приостановлены горнодобычные работы.

Сегодня наиболее критическая ситуация сложилась на Домбровском карьере, единственном в Европе, где раньше добывали калийную соль открытым способом, и на хвостохранилище № 2 в городе Калуш. Домбровский калийный карьер в последнее время из-за активизации процессов образования карста и провалов земной поверхности «съедает» каждый месяц до десятка метров из 200 метров, которые отделяют его от реки Сивка, притока Днестра.

Для прекращения фильтрации вод реки Сивка в Домбровский калийный карьер авторы разработали проект его комплексной защиты, предусматривающий выполнение природоохранных работ в 3 очереди:

первая очередь — сооружение двойного подземного противофильтрационного барьера на берегу реки Сивка в зоне водоносного закарстованного подземного канала между рекой и северным бортом карьера. Размеры и направление этого канала выявлены в результате проведения геофизических исследований. На рис. 6 приведена технологическая схема сооружения противофильтрационного бентонито-цементного

барьера длиной 500м вдоль берега реки Сивка в зоне закарстованного водоносного канала и оперяющих его трещиноватых пород через ряд вертикальных скважин глубиной 30 м - 40 м, и контрольный ряд наклонных скважин с такой же глубиной.

Рис. 6. Схема сооружения двойного протифильтрационного барьера для ликвидации речных притоков в Домбровский калийный карьер

вторая очередь — заполнение кольцевой дренажной траншеи карьера глинистыми грунтами с последующей их гидроизоляцией бентонито-магнезиальным раствором, затворяемым на концентрированных рассолах;

третья очередь – создание по контуру карьера гидрозавесы через сеть пробуренных скважин, путем нагнетания через них концентрированных рассолов в водоносный горизонт и прилегающие карстовые каналы для оттеснения пресных вод и покрытия соленосных пород [4].

Работы первой очереди разработанного проекта планируется выполнить в 2010 году.

На насыпном хвостохранилище № 2 сульфато-магниевой обогатительной фабрики государственного предприятия «Калийный завод» в г.Калуш через тело и основание дамбы хвостохранилища фильтруется жидкая фаза рассолов с содержанием соли 400 г/л, размывающая дамбу высотой 20 м. Площадь хвостохранилища 48 га, общий объем находящихся в нем рассолов 9,7 млн м^3 .

В соответствии с разработанным авторами проектом, водоизоляцию и укрепление фильтрующих участков тела и основания дамбы хвостохранилища № 2 планируется выполнить в 2010 году через пробуренное с гребня дамбы проектное количество вертикальных скважин с заданной глубиной путем нагнетания в проницаемые грунты и породы расчетных объемов бентонито-магнезиального раствора, затворяемого на рассолах этого хвостохранилища.

Авторы также разработали проекты ликвидации провальных затопленных воронок в городе Калуш. Эти проекты предусматривают закрепление и водоизоляцию обрушенных пород под дном провальных воронок укрепляющим и водоизолирующим раствором, нагнетаемым через обсаженные перфорированными трубами наклонные скважины, пробуренные вокруг и под провалами (рис. 7).

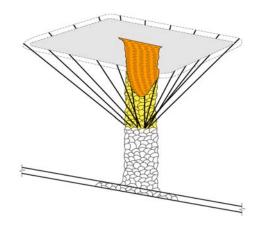


Рис. 7. Схема ликвидации провальной воронки над калийным рудником

После укрепления и водоизоляции обрушенных пород под провальной воронкой, ее проектируется заполнить до земной поверхности отработанной породой или отходами обогатительного производства, при этом необходимо одновременно укрепить твердеющими и водоизолирующими растворами нагнетаемыми через них.

Рекомендуемую природоохранную технологию также предлагается применять на Стебниковском и Солотвинском месторождениях солей, а также на Язивском месторождении серы.

- 1. Юрим М.Ф., Сибірний А.В., М'якуш І.І., Петрова М.А., Степова К.В. Моніторинг сучасних небезпечних геологічних процесів Прикарпаття і Карпат // Четверта науково-практична конференція «Моніторинг навколишнього природного середовища», Коктебель, 2009. С. 11 12.
- 2. Лущик А.В., Швирло М.І., Яковлєв Є.О., Павлюк В.І. Стан геологічного середовища в межах родовищ сірки та солі в Передкарпатті і Закарпатті. Моніторинг. Напрямки інженерно-екологічного довкілля // Четверта науково-практична конференція «Моніторинг навколишнього природного середовища», Коктебель, 2009. − С. 9 − 10.
- 3. Тампонаж обводненных горных пород: спр. пос. / [Э.Я.Кипко, Ю.Н.Спичак и др.] М.: Недра, 1989. 318 с.
- 4. Підготовка матеріалів до вихідних даних з консервації Домбровського кар'єру. Звіт про науково-дослідну роботу. Калуш: ДНДІ «Галургія», 2008. 151 с.

Ю.М. Спичак, І.Ю. Костів, Ю.В. Садовий В.Ф. Головчак, Р.В. Кравець ТЕХНОЛОГІЯ ОХОРОНИ НАВКОЛИШНЬОГО ПРИРОДНОГО СЕРЕДОВИЩА ВІД ВПЛИВУ ГІРНИЧО-ВИДОБУВНИХ РОБІТ

Для попередження розвитку і активізації небезпечних геологічних процесів автори розробили технологію охорони навколишнього середовища від впливу гірничо-видобувних робіт. Наведені загальні положення цієї технології, приклади її практичного застосування в Україні, за кордоном, і пропозиції її застосування в Передкарпатті і в Карпатах.

Y.N. Spychak, I.Y.Kostiv, Y.V.Sadoviy, V.F. Golovchak, R.V. Kravets ENVIRONMENTAL PROTECTION TECHNOLOGY FOR MINING

In order to prevent the growth and activations of the dangerous geological processes authors have developed technology a environmental protection for mining. This paper presents general principals of the environmental protection technology, case histories of its application in Ukraine and abroad, propositions of use this technology in Carpathians.