Кластер кобальта Со₃(µ₃-4-СС(О)–С₆H₄NHC₆H₅)(СО)₉ в катализе обрыва цепей окисления полипропилена

Г.А. Ковтун, В.А. Плужников, С.А. Циганков, Г.Ф. Пустарнакова

Институт биоорганической химии и нефтехимии НАН Украины, Украина, 02094 Киев, ул. Мурманская,1; факс: (044) 573-25-52

Обнаружен катализ обрыва цепей окисления твердого полипропилена кластером кобальта $Co_3(\mu_3-4-CC(O)-C_6H_4NHC_6H_5)(CO)_9$ при 120 °C. Обоснован механизм катализа, который реализуется в чередующихся реакциях пероксильных и алкильных радикалов с >NH и >N-группами лиганда: ~CH₂C(OO)(CH₃)CH₂~+ Co₃(μ_3 -4-CC(O)-C₆H₄NHC₆H₅)(CO)₉→ → ~CH₂C(OOH)(CH₃)CH₂~+ Co₃(μ_3 -4-CC(O)-C₆H₄N·C₆H₅)(CO)₉→ ~CH₂C(CH₃)CH₂~+ Co₃(μ_3 -4-CC(O)-C₆H₄N·C₆H₅)(CO)₉→ → ~CH₂C(CH₃)CH₂~+ Co₃(μ_3 -4-CC(O)-C₆H₄N·C₆H₅)(CO)₉→

Химия кластерных соединений металлов – новое направление современной химии, интенсивно развивающееся на стыке координационной химии, катализа, химии высокомолекулярных соединений, физики наноразмерных систем, молекулярной биологии, других областей науки [1–3].

В работах [3–7] описаны первые примеры катализа стадий обрыва цепей в процессах жидкофазного окисления органических соединений кластерами переходных металлов (безлигандных, молекулярных) с различными составом и строением металлоостова. Продолжая эти исследования, нами впервые обнаружен катализ стадии обрыва цепей окисления твердого изотактического полипропилена (ППИ) кластером кобальта $Co_3(\mu_3$ -4-CC(O)– $C_6H_4NHC_6H_5$)(CO)₉ (I), ведущий к длительному торможению радикально-цепного процесса окисления этого полимера.

Кластер (I) синтезировали согласно данным работ [8, 9]. Элементный анализ (С, Н, N, Со) и ИК-спектры растворов полученного соединения в CCl₄ соответствовали формуле (I). Так, валентные колебания $v(C=O) = 1585 \pm 2$ (1586 см⁻¹ [9]). Структурные особенности кластерных соединений общей формулы $Co_3(\mu_3-CR)(CO)_9$ (R = H, алкил, арил и др.) (рис. 1) изложены в обзоре [10]. Над тремя атомами кобальта равностороннего треугольника Со₃(СО)₉ расположен *sp*³-гибридизованный атом углерода. Три атома кобальта связаны с ним простыми Со-С-связями, направленными под углом 60° к плоскости треугольника. Тетраэдрическое окружение атома углерода несколько искажено, поскольку углы Со-С-Со составляют в среднем 80°. Все атомы электронно, а также координационно насыщены, кластерная группировка Со₃(µ₃-С*R*)(СО)₉ диамагнитна [10].

В качестве субстрата окисления использовали твердый ППИ ($M = 2,6 \cdot 10^3$, степень кристалличности –0,65, зольность – 0,1 %). Носителями цепей окисления ППИ являются алкильные Р (~CH₂C'(CH₃)CH₂~) и перок-

сильные радикалы РОО (~CH₂C(OO)(CH₃)CH₂~) [11]. Скорость окисления образцов ППИ измеряли волюмометрически по поглощению кислорода (методика [11, 12]). В качестве термического инициатора цепей окисления (120 °C) использовали пероксид изопропилбензола [11]. Подготовка образцов ППИ для исследований описана в работе [13]. К 1,0-1,8 г полимера приливали расчетное количество бензольного раствора инициатора и кластера кобальта (20-25 °C). Полученный таким образом образец ППИ перемешивали в агатовой ступке для лучшего распределения реагентов и затем сушили при комнатной температуре (давление 0,01 МПа). Время, необходимое для полного удаления бензола из ППИ, оценивали по изменению спектра ЭПР стабильного нитрокисильного радикала (2,2,6,6тетраметилпиперидин-1-оксила) согласно данным работы [14]. Для наших опытов оно составляло ≈ 1,5 ч.

Рис. 1. Структурная формула кластеров кобальта общей формулы Со₃(µ₃-*CR*)(СО)₉ [10]

Кластер кобальта(I) при его начальных концентрациях 10^{-3} – 10^{-4} моль/кг ингибирует авто- (рис. 2) и инициированное окисление ППИ (рис. 3).

Рис. 2. Кинетические кривые поглощения кислорода при автоокислении ППИ в отсутствии (*1*) и в присутствии 3,9·10⁴ моль/кг кластера кобальта (*2*); $P_{O_2} = 0,1$ МПа, 120 °C

Рис. 3. Кинетические кривые поглощения кислорода при инициированном окислении ППИ в отсутствии (*1*) и в присутствии 7,5·10⁻³ моль/кг кластера кобальта (*2*); $W_i = 8,2 \cdot 10^{-7}$ моль/(кг·с), $Po_2 = 0,1$ МПа, 120 °C

При парциальном давлении кислорода $P_{O2} = 0,01$ МПа наблюдаемый брутто-стехиометрический коэффициент обрыва цепей окисления полимера $f = = \tau W/[(I]]_0 = 36 \pm 6$, где τ – теоретический период индукции однократного обрыва цепей окисления ППИ кластером, рассчитанный при f = 2 [9]); $W_i = 8,0\cdot10^{-7}$ (моль/(кг·с)) – скорость инициирования цепей пероксидом изопропилбензола (начальная концентрация инициатора – $4,9 \cdot 10^{-2}$ моль/кг, 120 °C) [11]. Следовательно, исследуемый кластер кобальта(I) каталитически (многократно) участвует в обрыве цепей окисления. Характерно, что с уменьшением парциального давления кислорода (*Po*₂ < 0,12 МПа) параметр *f* возрастает (таблица).

Брутто-стехиометрические коэффициенты реакций обрыва цепей окисления твердого ППИ кластером кобальта $Co_3(\mu_3-4-CC(O)-C_6H_4NHC_6H_5)(CO)_9$ при различных парциальных давлениях кислорода ($W_i = 8,0.10^{-7}$ моль/(кг-с), 120 °C)

<i>P</i> ₀₂ , МПа	0,01	0,02	0,04	0,06	0,10	0,12
f	36 ± 8	27 ± 5	12 ± 3	$7,1 \pm 0,9$	$4,\!4\pm\!0,\!8$	$3,6 \pm 0,6$

Основным реакционным центром в молекуле кластера(I) является NH-группа лиганда µ₃-4-CC(O)– C₆H₄NHC₆H₅:

$$POO' + \mu_3 - 4 - CC(O) - C_6 H_4 NHC_6 H_5 \rightarrow$$

$$\rightarrow POOH + \mu_3 - 4 - CC(O) - C_6 H_4 N \cdot C_6 H_5.$$
(1)

Подтверждением именно такого направления реакции (1) является обнаружение методом ЭПР короткоживущих N-центрированных радикалов (окисление проводили в термостатированном реакторе-ампуле, помещенном в резонатор прибора EX-2542 при 50 °C; инициатор – азо-бис-изобутиронитрил [12]), а также накопление пероксидов (метод иодометрии [11, 12]). Использование у-излучения изотопом 60Со – источник свободных радикалов в системе {(I) - O₂ - матрица адамантана (-30 °C)} - позволило наблюдать изотропные спектры ЭПР N-центрированных радикалов (предположительно аминильных) и оценить характерную для них константу сверхтонкого взаимодействия (СТВ) $a_N \approx 14,5$ э, а также фактор $g \approx 2,003$. В спектрах ЭПР не наблюдается сверхтонкого взаимодействия с ядром кобальта, которое могло бы свидетельствовать о дополнительной делокализации неспаренного πэлектрона N-центрированного радикала по этому ядру. Использование матрицы адамантана обусловлено тем, что в ней затруднены поступательная диффузия и гибель свободных радикалов, но возможно их быстрое вращение - одно из главных условий экспериментального получения изотропных спектров ЭПР.

Согласно выводам работ [11, 15], аминильные радикалы, образующиеся при ингибированном окислении карбоцепных полимеров свободными ароматическими аминами, рекомбинируют как с пероксильными, так и с алкильными радикалами, давая в обрыве цепей неактивные молекулярные продукты, например

 $POO'(P) + C_6H_5N'C_6H_5 \rightarrow p-POO(p-P)-C_6H_5=NC_6H_5.$ (2)

В соответствии с реакциями (1) и (2) стехиометрический коэффициент f должен быть равным двум. Нами экспериментально получено f >> 2 (таблица).

Этот необычный факт можно объяснить следующим. Со снижением парциального давления кислорода в окисляемом твердом ППИ доля алкильных радикалов Р всегда возрастает, так как ([P]/ [POO]) ~ (1/P₀₂) [11]. При таких условиях становится возможной регенерация исходного кластера кобальта по реакции кросс-диспропорционирования:

 $\sim CH_2C(CH_3)CH_2 \sim + \mu_3 - 4 - CC(O) - C_6H_4N \cdot C_6H_5 \rightarrow \\ \rightarrow \sim CH = C(CH_3)CH_2 \sim + \mu_3 - 4 - CC(O) - C_6H_4NHC_6H_5.$ (3)

Экспериментальным подтверждением протекания реакции типа (3) является образование дифениламина (метод фотоколориметрии [12]) и изобутилена (метод газожидкостной хроматографии [12]) в модельной системе {(C₆H₅)₂N⁻ – (CH₃)₃C⁻ – абсолютный бензол – 50 °C)}:

 $(C_6H_5)_2N + (CH_3)_3C \rightarrow (C_6H_5)_2NH + (CH_3)_2CH = CH_2.$ (4)

В этих опытах источником радикалов (C_6H_5)₂N нами использовано термическое расщепление тетрафенилгидразина (методика [16]), а радикалов (CH₃)₃C – фотохимическое расщепление азо-*бис-трет*-бутана [12]. Так, при скорости инициирования *трет*бутилалкильных радикалов 5,0·10⁻⁷ моль/(л·с) за 58 мин опыта получено 1,5·10⁻³ моль/л дифениламина и ~1,1·10⁻³ моль/л изо-бутилена.

Следовательно, из чередующихся стадий (1) и (3) складывается каталитический цикл обрыва цепей окисления твердого полимера исследуемым кластером кобальта (f >>2), а реакции типа (2) ведут к необратимому расходованию этого своеобразного катализатора (его дезактивация).

В отличие от кластера кобальта(I) аналог его свободного лиганда 4-CH₃C(O)–C₆H₄NHC₆H₅ (II) однократно (стехиометрически) обрывает цепи окисления ППИ. Так, при скорости инициирования $W_i = 8,0\cdot10^{-7}$ моль/(кг·с) для исследуемого свободного амина(II) величины $f = 1,9 \pm 0,4$ и $1,6 \pm 0,5$ при парциальных давления кислорода 0,02 и 0,1 МПа соответственно (120 °C).

Таким образом, изложенные выше результаты дают новые факты существования перспективной области исследования кластеров металлов, активно развиваемого направления современной химии – в качестве ингибиторов окисления каталитического (многократного) действия в актах обрыва цепей окисления карбоцепных полимеров. Работа выполнена при финансовой поддержке Фонда фундаментальных исследований Украины (грант 03.07/002).

Литература

1. Губин С.П., Химия кластеров, Москва, Наука, 1987.

2 Моисеев И.И., Успехи химии, 1999, **59**(12), 1931– 1959.

3. Ковтун Г.А., *Катализ и нефтехимия*, 2001, (8), 10–17.

4. Ковтун Г.А., Каменева Т.М., Варгафтик М.Н., Моисеев И.И., *Там же*, 2001, (7), 16–17.

5. Ковтун Г.А., Пустарнакова Г.Ф., Плотникова Н.И., *Там же*, 2001, (7), 18–20.

6. Ковтун Г,А., Каменева Т.М., Варгафтик М.Н., Моисеев И.И., Доп. НАН України, 2001, (8), 153–157.

7. Ковтун Г.А., Пустарнакова Г.Ф., *Катализ и нефтехимия*, 2001, (8), 23–25.

8. Seyferth D., Hallgren J.E., Hung P.L.K., J. Organometal. Chem., 1973, **50**, 265–271.

9. Seyferth D., Hallgeren J.E., Spohn R.J. et al., *Ibid*, 1974, **65**, 99–107.

10. Seyferth D., Adv. Organometal. Chem., 1976, 14, 97–144.

11. Денисов Е.Т., Окисления и деструкция карбоцепных полимеров, Москва, Химия, 1990.

12. Ковтун Г.А., Моисеев И.И., *Металлокомплекс*ные ингибиторы окисления, Киев, Наук. думка, 1993.

13. Гервиц Л.Л., Золотова Н.В., Денисов Е.Т., *Высо-комолекуляр. соединения, Сер. А*, 1976, **17** (5), 2112–2114.

14. Шилов Ю.Б., Денисов Е.Т., *Кинетика и катализ*, 2001, **42** (2), 265-270.

15. Ковтун Г.А., Плужников В.А., *Химия ингибиторов окисления органических соединений*, Киев, Наук. думка, 1995.

16. Харитонов В.В., Денисов Е.Т., *Изв. АН СССР*, *Сер. хим.*, 1967, (12), 2764–2766.

Поступила в редакцию 8 ноября 2001 г.

Кластер кобальту Со₃(µ₃-4-СС(О)–С₆H₄NHC₆H₅)(СО)₉ у каталізі обриву ланцюгів окиснення поліпропілену

Г.О. Ковтун, В.О. Плужніков, С.А Циганков, Г.Ф. Пустарнакова

Інститут біоорганічної хімії та нафтохімії НАН України, Україна, 02094 Київ, вул. Мурманська, 1; факс: (044)573-25-52 Виявлено каталіз обриву ланцюгів окиснення поліпропілену кластером кобальту Co₃(µ₃-4-CC(O)–C₆H₄NHC₆H₅)(CO)₉ при 120 °C. Обгрунтовано механізм каталізу, який реалізується в реакціях пероксильних та алкільних радикалів з NH- та N -групами ліганду, які чергуються: ~CH₂C(OO)(CH₃)CH₂~ + Co₃(µ₃-4-CC(O)–C₆H₄NHC₆H₅)(CO)₉ → ~CH₂C(OOH)(CH₃)CH₂~ + Co₃(µ₃-4-CC(O)–C₆H₄N·C₆H₅)(CO)₉ → ~CH₂C(CH₃)CH₂~ + Co₃(µ₃-4-CC(O)–C₆H₄N·C₆H₅)(CO)₉ → ~CH₂C(CH₃)CH₂~ + Co₃(µ₃-4-CC(O)–C₆H₄N·C₆H₅)(CO)₉ →

Cluster of cobaltous Co₃(µ₃-4-CC(O)– C₆H₄NHC₆H₅)(CO)₉ in catalysis oxidation break of chain of polypropylene

G.A. Kovtun, V.A. Pluzgnikov, S.A. Cigankov, G.F. Pustarnakova

Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1, Murmanskaya Str., Kyiv, 02094, Ukraine; Fax.: (044) 573-25-52

The catalysis chain break of oxidation for polypropylene by clusters of cobaltous $Co_3(\mu_3-4-CC(O)-C_6H_4NHC_6H_5)(CO)_9$ has been found out at 120 °C. The mechanism of catalysis realized in alternating reactions perxyl and alkyl of radicals with >N and N -group of the ligand has been substantiated: $\sim CH_2C(OO)(CH_3)CH_2 + Co_3(\mu_3-4-CC(O)-C_6H_4NHC_6H_5)(CO)_9 \rightarrow$ $\rightarrow \sim CH_2C(OOH)(CH_3)CH_2 + Co_3(\mu_3-4-CC(O)-C_6H_4N.C_6H_5)(CO)_9 \rightarrow$ $\sim CH_2C(CH_3)CH_2 + Co_3(\mu_3-4-CC(O)-C_6H_4N.C_6H_5)(CO)_9 \rightarrow$ $\rightarrow \sim CH_2C(CH_3)CH_2 + Co_3(\mu_3-4-CC(O)-C_6H_4N.C_6H_5)(CO)_9 \rightarrow$

УВАГА! БІОЛОГІЧНО ЧИСТІ МАСТИЛА!

На основі рослинних олій розроблено екологічно сприятливі базові олії та ефективні фундаментальні присадки, компаундуванням яких з відомими присадками спеціального призначення створені перспективні композиції моторних, індустріальних, трансмісійних і холодильних олій з покращеними властивостями. Випробування дослідних зразків рідкого мастила на двотактних двигунах (газонокосарки, бензопили, моторні човни, мотоцикли тощо) показали, що будучи майже у 10 раз дешевими, за технічними і експлуатаційними якостями вони не поступаються імпортним аналогам.

З метою прискорення виходу на ринок і впровадження розробок у народне господарство Інститут зацікавлений у співпраці з організаціями різних форм власності. На взаємовигідних умовах передбачається організація виробництва екологічно чистих рідких палив і мастил.

- Крім того, відділ проблем рідких палив і мастил ІБОНХ НАН України готовий надати висококваліфіковану допомогу в:
- розробці технології і освоєнні виробництва нових сортів мастил з наперед визначеними властивостями;
- організації виробництва вдосконаленого концентрату охолоджуючих рідин типу «Тосол» за ТУ і регламентами власної розробки;
- підборі аналогів зарубіжних паливно-мастильних матеріалів для імпортної техніки;
- реалізації простих технологічних схем одержання якісних мастильних матеріалів шляхом підбору і додавання присадок;
- вивченні ринку паливно-мастильних матеріалів.

Телефон 559-60-59