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The Hodgkin’s lymphoma (HL) is a most striking 
example of tight tumor-host relationships. The hall-
mark of HL are mononuclear Hodgkin’s cells and mul-
tinuclear Reed-Sternberg (HRS) cells, which usually 
account for only about 1% of cells in the tumor tissue. 
This disease was first described in 1832 by Thomas 
Hodgkin that was the first report on lymphoma. HL is 
one of most frequent lymphoma (account for about 
30% of all lymphomas) and is extensively studied for 
more than 150 years [1]. Nevertheless, only in the last 
decade studies of individual HRS cells using molecu-
lar biology methods and microdissection, as well as 
studies of antigen expression and signal transduction 
pathways, revealed the nature of these tumor cells and 
have provided the major insights in the pathogenesis 
of Hodgkin’s lymphoma.

Patients with HL in general have a favorable progno-
sis, and about 80% are cured with chemo- and radio-
therapy. Treatment schemes for HL have considerable 
risks of short- and long-term toxicity, which may also 

lead to secondary malignancies. Effective therapeutic 
approaches are still needed for refractory or relapsed 
patients, as most carry a high morbidity rate. Thus, 
novel therapies with improved safety and/or efficacy 
profiles are still needed to be developed for the group 
of patients with a poor prognosis. Currently, new thera-
peutic approaches, which were developed based on 
the biology and molecular profile of HRS cells, are on 
different stages of clinical trials[2].

HL include two disease entities: nodular lympho-
cyte predominant Hodgkin’s lymphoma (NLPHL) that 
account for only 5% of cases and classical Hodgkin’s 
lymphoma (cHL), which is further subdivided into 
nodular sclerosis (60–70%), mixed cellularity (20–
25%), lymphocyte rich (5%) and lymphocyte depleted 
(< 5%) [1]. Neoplastic lymphocytic and/or histiocytic 
Reed -Sternberg cells in NLPHL have a monoclonal B 
cell nature. They express multiple B cell lineage mark-
ers, such as CD20, CD79a, Ig, and also markers of 
germinal center cells — transcription factor Bcl- 6 and 
activation induced cytidine deaminase (AID). More-
over, these cells have rearranged and somatically 
mutated Ig V genes, sometimes with ongoing somatic 
hypermutation [3, 4]. Most likely these cells originate 
from antigen-selected germinal center cells on the 
intermediate developmental stage between germinal 
center and memory B cells [4].

ORIGIN OF HRS CELLS

Historically different hypothesis, which tried to 
explain the origin of HRS cells in cHL, were based on 
descriptive morphological methods and expression of 
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surface markers [5]. The ideas about HRS cells origin 
from endothelial cells, monocytes, megakariocytes, 
myeloid cells, plasma cells and activated lymphocytes 
were debated for decades [6]. Experimental evidences 
suggested that multinuclear Reed-Sternberg cells with 
limited clonal growth capacity arise from mononuclear 
Hodgkin’s cells by endomitosis [7, 8].

Now it is proven that the majority of HRS cells in 
classical HL are derived from germinal centre B cells 
that have acquired Ig variable chain disadvantageous 
gene mutations and escaped from apoptosis [9]. 
These lymphoma cells have lost the expression of 
key B-cell specific genes and acquired expression 
of multiple genes that are typical for other types of 
hematopoietic cells [10–12]. B cell neoplasias usually 
retain general phenotypic features of the normal B cells 
they derive from; however, HRS cells are exception of 
the rule, since they show a global loss of B cell phe-
notype. In majority of cHL cases HRS cells have lost 
their capacity to express a functional B cell receptor 
(sIg), but these cells express B-lineage maintenance 
transcription factor PAX5 and carry rearranged and so-
matically mutated IgV genes [10, 13]. In these cells the 
expression of B-cell specific surface receptors CD19, 
CD20 and CD79a are lost or downregulated, however 
they may express markers of other hematopoietic cell 
lineages, like CD3 and CD4, CD15, granzyme B and 
myeloid and dendritic cell markers [14]. While normal 
germinal center B cells, which have lost their Ig recep-
tors or have destructive somatic mutations that affect 
Ig function immediately undergo apoptosis, malignant 
HRS cells survive. This implies that HRS cells are de-
rived from crippled pre-apoptotic germinal center B 
cells that escape from apoptosis [15].

TRANSCRIPTION FACTORS NETWORK 

IN HRS CELLS

The germinal center or post-germinal center B cell 
origin of HRS cells does not exclude the possibility 
of transforming events on the earlier stages of B cell 
differentiation. This view is supported by deregulated 
transcription factors network in HRS cells that contrib-
ute to the reprogramming of HRS cells. HRS cells often 
express transcription factor GATA2, which is required 
for the proliferation and survival of haematopoietic 
stem cells (HSC) and mast cell development [16]. High 
level of T cell transcription factor Notch 1 expression 
in HRS cells probably is activated by its ligand Jagged 
1, which is produced by cells in HL microenvironment. 
Despite that HRS cells downregulate the inhibitor of 
Notch 1 — Deltex 1. Notch 1 promote T cell differ-
entiation and inhibit B cell development by reducing 
expression of key B-lineage commitment transcription 
factors E12 and E47 (encoded by E2A) and EBF1 and 
at the same time inducing transcription of ABF1 (in-
hibitor of E12 and E47). Moreover, by binding to B- li-
neage maintenance transcription factor PAX5, Notch 
1 may affect its function [10, 17, 18]. Notch 1 also 
upregulates expression level of another T-cell specific 
transcription factor GATA3 in HRS cells [19]. On the 

other hand downregulation of B-lineage commitment 
transcription factor EBF1, which also repress expres-
sion of myeloid and T cell genes, may contribute to 
deregulated expression of myeloid and T cell markers 
in HRS cells [10, 17]. A number of transcription factors 
(i.e. BOB1, OCT2, PU.1), which activate expression of 
B cell specific genes, are not expressed in HRS cells 
[10, 17, 20, 21]. At the same time these cells express 
the transcriptional repressor PAX5 essential for the 
maintaining of B cell commitment, however many of 
its target genes are downregulated [11, 22].

HRS cells are characterized by high level of nuclear 
factor kB (NF-κB) activation via both canonical and 
alternative pathways that is a transient hallmark of 
germinal center B cells [23–25]. As a result, expres-
sion of transcription factor IRF4, which is one of NF-κB 
downstream targets, is also upregulated in HRS [26]. 
During B cell differentiation IRF4 expression is elevat-
ed on the terminal stages of B cell differentiation — in 
plasmablasts and plasma cells [25]. STAT transcription 
factors (STAT3, STAT5A, STAT5B and STAT6) are also 
activated in HRS cells mainly due to autocrine and/or 
paracrine signaling events via interleukin receptors 
and receptor tyrosine kinases [27–29].

All these issues raise the question whether HRS 
cells are reprogrammed on the stage of pre-apoptotic 
germinal centre B cells, or transforming events hap-
pened on the earlier stages of differentiation?

GENETIC AND EPIGENETIC ALTERATIONS 

IN HRS CELLS

The simultaneous down-regulation of many B-
cell–specific genes in cHL could be also achieved by 
genetic lesions, and by epigenetic silencing. Moreover, 
these mechanisms also contribute to deregulation of 
B-cell transcription factor network.

Genetic instability is a characteristic feature of the 
malignant HRS cells [30]. HRS cells frequently harbor 
recurrent but not specific numerical and structural 
aberrations as detected by classical cytogenetics and 
fluorescence in situ hybridization analysis. Numerical 
chromosomal aberrations were found in 100% of ana-
lyzed cases of CD30+ HRS cells. Chromosome num-
bers were always in the hyperploid range for HRS cells 
[31]. Results from molecular genetic studies using 
comparative genomic hybridization and allelotyping 
indicate typical genetic patterns in HL with gains and 
losses of distinct chromosomal regions [30]. Tumor 
cells of cHL shared common chromosomal imbal-
ances: chromosomal gains most frequently involved 
chromosomes 2p, 8p, 8q, 9p, 9q, 12q, 16p, 17p, 17q 
19p, and 20q, whereas losses primarily affected chro-
mosomes Xp, 6q, 13q [32–34].

Molecular analysis of microdissected HRS cells 
provided further insight into the copy number imbal-
ances affecting small chromosomal regions. Since 
escape from apoptosis is the main strategy of HRS 
cells, it could be expected activating aberrations for 
anti-apoptotic/survival genes and inhibiting alterations 
of pro-apoptotic genes. Indeed, more often alterations 
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are linked to NF-κB, Jak-STAT, p53 and CD95 path-
ways. For example, gains and amplifications of REL, a 
member of NF-κB family, is the most frequent genetic 
alteration in cHL (near 50% cases). In addition, point 
mutations and deletions were found for inhibitors of 
NF-κB signaling pathways NFKBIA, NFKBI, TNFAIP3 
[23, 24, 35, 36]. All these contribute to activation of 
NF-κB signaling pathways. Similarly, frequent genomic 
gains of STAT6 and JAK2, as well as point mutations or 
deletions in SOCS1, aimed at activation of Jak-STAT 
pathway [30, 37].

Several gained small chromosomal regions also 
included genes constitutively expressed in HRS cells 
like NOTCH1 (9q34) and JUNB (19p13), encoding 
transcription factors that negatively regulate B cell 
program and regulate proliferation, respectively [34].

Most recent study of microdissected HRS cells 
(53 cases) from cHL identified new and recurrent 
changes defining regions of chromosomal gain or loss 
harboring potential oncogenes and tumor suppres-
sor genes involved in the pathogenesis of HL: CD40, 
MAP3K14, and TNFRSF14. Copy number alterations 
were found in more than 20% cHL cases. It was also 
demonstrated that gains of 16p, inducing the over-
expression of the multidrug resistance gene ABCC1, 
may contribute to the drug-resistance phenotype 
identified in the cell line KM-H2 derived from a patient 
with relapsed cHL [36].

Epigenetic regulation also is actively involved in 
formation of HRS cell phenotype. Two main processes 
are involved in epigenetic gene silencing: DNA me-
thylation and histone modification [38]. In cHL DNA 
methylation is involved in silencing the tumor sup-
pressor genes p16INK4a, p15INK4b [39], RASSF1A 
(RAS-associated domain family 1) [40] and p18INK4c 
[41]. It was shown that silencing of the B-cell–specific 
genes (PU.1, BOB.1/OBF.1, CD19, SYK, and CD79B) 
correlated with promoter methylation of cHL cell lines 
and in HRS cells of cHL primary cases. Consequently, 
it was assumed that down-regulation of a few master 
transcription factors in cHL results in silencing of 
numerous target genes [42]. Inhibition of immuno-
globulin transcription in HRS cells may at least in part 
be explained by epigenetic silencing [43]. At the same 
time, DNA demethylation alone or in conjunction with 
histone acetylation is not able to reconstitute the B-
cell gene expression program in cultured HRS cells. 
Instead, combined DNA demethylation and histone 
acetylation of B-cell lines could induce an almost 
complete extinction of their B-cell-expression pro-
gram and a tremendous upregulation of numerous 
Hodgkin-characteristic genes [44], suggesting one 
of the central role of epigenetics in the development 
of HRS phenotype.

HL MICROENVIRONMENT

HRS phenotype also depends on tumor micro-
environment. HRS cells attract various types of im-
mune system cells into lymphoma tissue resulting in 
typical inflammatory microenvironment. The stromal 

background of HL include non-malignant T and B 
lymphocytes, plasma cells, histiocytes/macrophages, 
granulocytes, eosinophils, mast cells, interdigitating 
reticulum cells and fibroblast cells in collagen bands 
[45]. Fibrosis is a common feature of cHL especially 
for nodular sclerosis variant [45]. For the recruitment 
of different cell types into tumor tissue HRS cells are 
using a broad array of cytokines and chemokines and 
also their cell surface receptors. Secondary symptoms 
in the HL patient, such as fever, weight loss, and night 
sweats, are consistent with a pathological pattern of 
cytokine/chemokine secretion. HRS cells, as well as 
their cellular environment, contribute to this process 
[46]. It is shown that HRS cells can express and secrete 
a variety of cytokines, including interleukin-1 (IL-1), 
IL-2 — IL-10, IL-13, IL-15, IL-21, granulocyte-mac-
rophage colony-stimulating factor (GMCF), lympho-
toxin-alpha (LF-α), transforming growth factor-beta 
(TGFβ), members of CC subfamily of chemokines: CC 
chemokine ligand 5 (CCL5/RANTES), CCL17/TARC, 
CCL20, CCL22; and also a number of tumor necrosis 
factor (TNF) family cytokines (TNFα, BAFF, APRIL, 
RANKL, NGF) [2, 29, 45, 46]. Expression of 140 genes 
of chemokines, cytokines and their receptors was 
analyzed by laser capture microdissection followed 
by cDNA microarray technique, and the expression 
of 17 genes was  > 2.5-fold higher and six genes was 
< 0.4-fold lower in HRS cells than in germinal centre 
(GC) cells in more than half of HL cases [47]. At the 
same time, cells of HL microenvironment also secrete 
cytokines that influence HRS cells biology. Accord-
ing to their functional role, cytokines in HL may be 
grouped in (1) attracting cells into microenvironment, 
(2) suppressing immune cells and (3) autocrine and/
or paracrine regulators of HRS survival.

The characteristic morphological features of HL are 
rosettes that form CD40L expressing T cells around 
HRS cells [48]. These CD4+ T cells with considerable 
fraction of Treg cells may be attracted to HRS cells by 
CCL5, CCL17, CCL22, CCL28 and macrophage inflam-
matory protein 3a [14, 29]. Eosinophils are probably 
recruited to the HRS cells by GMCF, IL-5, CCL28, and 
CCL5, which also attract mast cells, and neutrophils — 
by IL-8 [46]. Moreover, activated by tumor cells micro-
environment cells also secrete cytokines that attract 
additional cells in the tumor. In turn, HRS cells are also 
dependent of microenvironment, especially on growth 
and survival signals from other cells that are mediated 
via receptors by cell surface and soluble ligands.

Several immune suppression strategies are used by 
HRS cells in HL. Secretion of soluble factors such as 
TGFβ, IL-10, galectin 1 and prostaglandin E2 (PGE2), 
have been shown to inhibit the activation of cytotoxic 
T lymphocytes and antigen-presenting cells [49–51]. 
HRS cells modulate their cellular microenvironment by 
shifting the TH response from an anti-cellular TH1 re-
sponse to a humoral TH2 response. HL patients have 
defective cellular immunity as they are susceptible to 
bacterial, fungal, and viral infections, and in vitro stud-
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ies show inhibited T-cell proliferation and low level of 
TH1 cytokines [52].

Cell-to-cell interactions might also lead to immune 
inhibition. For example, HRS cells express CD95 li-
gand, which induces apoptosis of activated TH1 and 
CD8+ T cells [52, 53]. There are several evidences that 
programmed cell death protein 1 (PD-1) interactions 
with ligands might lead to immune inhibition of tumor 
infiltrating T cells. PD-1, a member of the CD28 fam-
ily within Ig superfamily negatively regulates T-cell 
antigen receptor signaling. To date, two PD-1 ligands 
that belongs to B7 family have been identified: B7-H1 
(PD-L1, CD274) and B7-DC (PD-L1, CD273) [54]. The 
PD-1-PD-L pathway delivers inhibitory signals that 
regulate the balance among T-cell activation and toler-
ance, and directly contributes to T-cell exhaustion and 
suppressive tumor microenvironment [54]. Either one 
or both of these ligands are expressed on HRS cells 
in situ and on HL cell lines [55, 56]. In the presence of 
TGFβ, PD-L1 may promote the de novo generation of 
TRegs and enhance their immunosupressive activity on 
HL-infiltrating cytotoxic T cells [14, 54]. That is why by 
ligation of PD-1 on T lymphocytes HRS cells may inhibit 
effector functions of tumor-infiltrating lymphocytes 
and contribute to permissive microenvironment.

HRS cells express also other receptors and ligands, 
which they are using to maintain tumor environment. 
Among them are co-stimulatory members of B7 fam-
ily — CD80 and CD86, which by binding to CD28 ac-
tivate CD4+ TH lymphocytes [57, 58].

Also HRS cells express CD15, which serves as 
a diagnostic marker of HL. CD15 molecules are a 
group of fucosylated carbohydrate structures that 
are expressed on a protein or lipid backbone [59]. 
CD15 functions as a ligand for E-selectins on endo-
thelial cells and promotes cell adhesion. Addition of 
sialic acid enhances the affinity of CD15 to selectins 
[60]. Due to this fact expression of nonsialylated 
CD15 molecules on HRS cells are likely to have posi-
tive prognostic value for patients with HL, while pres-
ence of sialylated CD15 may correlate with a poor 
outcome [60, 61]. Triggering of CD15 by antibodies 
and selectins can induce the activation of HL-derived 
cell lines with the involvement of c-Cbl and c-Jun 
[61]. CD15─selectins interactions play important 
role in the development and maintenance of tumor 
microenvironment and together with receptor-ligand 
pair CD54─LFA-3 could promote tumor cell migration.

CELL SURFACE RECEPTORS 

IN REGULATION OF HRS CELL SURVIVAL 

PROGRAM

Despite the loss of BCR — the master-regulator of 
B cell fate, HRS cell express a number of receptors that 
may regulate tumor cell survival. The rescue of HRS 
cells from apoptosis is a key event in HL pathogenesis. 
And the strategy of tumor cells is to block apoptotic 
pathways with constitutive activation of pro-survival 
pathways. Tumor necrosis factor (TNF) family recep-
tors could have dual functions in cells — stimulating 

apoptosis or vice versa — inducing cell proliferation 
and protecting cells from apoptosis-inducing stimuli. 
The outcome of receptor stimulation depends on the 
pattern of intracellular signaling molecules expression 
by cells or the capability of cells to upregulate expres-
sion of such molecules in response to stimulation. 
HRS cells express at least six receptors that belong 
to TNF receptor family: CD95, CD40, CD30, receptor 
activator of NF-κB (RANK), transmembrane activator 
and calcium modulator and cyclophylin ligand inter-
actor (TACI), and B-cell maturation antigen (BCMA). 
It is important to note that all these receptors, except 
CD95, were shown to contribute to NF-κB activation 
in HRS cells.

CD95 is a marker of activated T and B lymphocytes, 
however is also broadly expressed outside of hemato-
poietic system [62, 63]. Moreover, almost all human 
tumors express CD95, and it was reported to act as a 
tumor promoter in lung, thyroid and ovarian cancer 
[64]. CD95 expression was detected in 90.5% of the 
cHL cases, and the expression was observed in a 50–
100% of the HRS cells, exhibiting strong cytoplasmic 
and membrane staining [65, 66]. CD95L is expressed 
by T cells in HL microenvironment. Apoptosis-trigger-
ing function is well described for CD95 receptor [67], 
but HRS cells are using specific mechanisms to avoid 
CD95-mediated apoptosis. CD95 machinery appears 
to be up-regulated on HRS cells [53]. At the same time, 
structural alterations of the CD95 in HRS cells are rare 
[30, 68] despite the reports on CD95 death domain 
(DD) somatic mutations in primary cHL cases [69]. 
However, not only mutations in CD95 would switch off 
apoptosis induction. Protection from CD95-induced 
apoptosis in HRS cells could be also provided by 
mutations in genes encoding crucial proteins in CD95-
mediated apoptotic signaling pathway.

HRS cells were shown to highly express activated 
caspase-3 and other components of the TNFR-asso-
ciated signal transduction machinery [70]. Caspases 
can be inhibited by a family of molecules, called in-
hibitors of apoptosis proteins (IAP). It was shown that 
several members of this family, such as XIAP, cIAP1, 
and cIAP2 are able to directly inhibit the effector 
caspase-3 [71]. Since cIAP2 was strongly expressed 
in HRS cells in majority of examined cHL cases, it 
could be important for silencing CD95-mediated pro-
apoptotic signals and for the survival of HRS cells by 
blocking caspase-3 [72].

Resistance of HRS tumor cells to death receptor 
stimulation could be as well explained by functional 
inhibition mediated by a strong, NF-κB-dependent 
up-regulation of c-FLIP proteins. It was shown that 
FLICE inhibitory protein c-FLIP was overexpressed in 
55 out of 59 studied cases of cHL [73]. FLIPs structur-
ally resemble caspases, but lack proteolytic activity, 
and were shown to function as antiapoptotic proteins. 
Specific down-regulation of c-FLIP proteins by small 
interfering RNA oligoribonucleotides (siRNAs) was suf-
ficient to render HRS cell lines sensitive to CD95 stimu-
lation [73, 74]. Thus, c-FLIP could play important role 
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in protection of HRS cells from CD95 death receptor 
stimuli, and may be also from pro-apoptotic stimuli via 
other TNFR family members.

It is important to point out that CD95 could medi-
ate a variety of nonapoptotic signaling events [64], 
and induce proliferation and differentiation of cells, 
as well as cytokine production [75, 76]. Moreover, 
CD95 signaling could activate NF-κB binding to its 
specific target genes, which was not abrogated by the 
deletion of a portion of death domain in CD95 recep-
tor [77]. CD95 is highly expressed and was shown to 
mediate nonapoptotic signals in such tissues as heart, 
pancreas, and colon [64]. However, these CD95 func-
tions were not examined in HL.

High level of NF-κB expression and activation could 
be achieved not only in consequence of genomic al-
terations of signaling components of NF-κB pathways, 
but also due to high expression of TNF receptors 
transmitting activation signals in HRS cells. In total of 
93.9% of the examined cHL cases almost all the HRS 
cells expressed pan-B cell antigen CD40 [65] that is 
also expressed on epithelial cells, cells of monocyte-
macrophage origin, dendritic cells and others. CD40L 
found on activated T cells and endothelial cells [48]. 
CD30 expression was demonstrated in almost 100% 
of the HRS cells. In non-pathological conditions, 
CD30 expression is generally limited to activated B and 
T lymphocytes and NK cells and generally lower levels 
of expression were reported for activated monocytes 
and eosinophils [2]. CD30L is broadly expressed by 
cells in HL microenvironment: T and B lymphocytes, 
neutrophils and eosinophils, and also mast cells [2]. 
RANK messenger RNA (mRNA) is ubiquitously ex-
pressed in human tissues, but RANK protein expres-
sion has been detected only in DCs, CD4+ and CD8+ T 
lymphocytes, and osteoclast hematopoietic precursor 
cells [78]. An average of 75% of HRS cells expressed 
RANK in all studied cases of cHL, and it was rarely and 
weakly expressed by the HL microenvironment cells. 
In HRS cells RANK could be activated in an autocrine 
fashion, as expression of the RANK ligand was re-
ported for HL cell lines [79]. TACI is a transmembrane 
receptor protein found predominantly on the surface 
of B cells, mainly within the GC, on memory cells 
and plasma cells [80, 81]. B-cell maturation antigen 
(BCMA) is preferentially expressed on plasma cells 
and subpopulation of mature B lymphocytes [80–82]. 
TACI and BCMA are expressed in 93% and 67% of 
cHL cases, respectively, and could be activated both 
in paracrine and autocrine fashion, since one of their 
ligands APRIL is secreted by neutrophils, and another 
ligand — BAFF — is expressed by HRS cells as well as 
by cells in HL microenvironment [80]. CD30, CD40, 
RANK, TACI and BCMA may associate with different 
sets of TNF receptor-associated factors (TRAF2, 
TRAF3, TRAF5 or TRAF6), which link to the classical 
and/or alternative NF-κB signaling pathways [82, 83]. 
Therefore, TNF family receptors on HRS and microen-
vironment cells contribute to activation of canonical 

and alternative NF-κB signaling pathways and survival 
program of HRS cells.

Activation of the phosphatidylinositol 3-kinase 
(PI3K) pathway has been linked with tumor cell growth, 
survival and resistance to therapy in several cancer 
types [84]. The main downstream PI3K effector, which 
control cell survival is Akt/PKB [85]. Ligation of CD30, 
CD40, or RANK could induce Akt phosphorylation/
activation in HRS cells [86]. Other TNF receptors also 
could contribute to Akt activation in these cells, as it 
was shown that TNFRs are linked to PI3K/Akt pathway 
[82]. The phosphorylated form of Akt (pAkt S473) was 
found to be aberrantly expressed in HL derived cell 
lines and in HRS cells in 64% of primary lymph node 
sections of HL [86]. Several downstream effectors of 
Akt signalling, including glycogen synthase kinase 
3 (GSK-3) α and β, mTOR substrates 4E-BP1 and 
p70 S6 kinase, were phosphorylated in primary HL 
cells [87]. The MEK/ERK pathway is also aberrantly 
active in HL, and is involved in regulation of HRS cell 
proliferation and survival shared between CD30, CD40, 
and RANK signaling pathways [88].

HRS cells express a number of receptor tyrosine 
kinases, like platelet-derived growth factor recep-
tor- α(PDGFRA), macrophage-stimulating protein re-
ceptor (MSPR), epithelial discoidin domaincontaining 
receptor 2 (DDR2), tyrosine kinase receptor A (TRKA) 
and TRKB, which may contribute to survival via activa-
tion of NF-kappa B and Jak-STAT pathways. All these 
receptors are also linked to activation of prosuvival 
gene expression programs via Akt and ERK pathways 
[89, 90].

Among receptors that could play role in regulation 
of HRS survival and/or tumor cell microenvironment 
maintenance is CD150/SLAM, which is expressed on 
B and T cells, activated macrophages and dendritic 
cells [91, 92]. CD150 is differentially expressed on 
CD4+ T cells: TH1 cells have higher level of CD150 on 
their surface in comparison with TH2 cells [93, 94]. 
Activation of T and B cells results in upregulation of 
CD150 expression [95–97].

CD150 expression is found on different stages 
of B cell differentiation starting on naïve B cells, and 
the highest level of CD150 expression is detected on 
terminal stages of B cell differentiation — on plasma-
blasts and plasma cells [98]. It could be expected that 
CD150 expression would be found on malignant cells 
at different B-cell leukemias and lymphomas. But in 
fact CD150 expression was found only on hairy cell 
leukemia tumor cells, diffuse large B cell lymphoma 
with activated phenotype and classical Hodgkin’s 
lymphoma [97, 99]. The expression of CD150 was 
shown both for HL cell lines and primary tumors in 
100% of studied HL cases [99, 100]. CD150 could be 
expressed both in soluble and full transmembrane 
isoforms in normal B cells and HL cell lines [101, 102], 
which makes it present both on cell surface and in 
tissue matrix, surrounding CD150-expressing cells. 
As CD150 was shown to be homophilic receptor, 
being a self-ligand, its expression in soluble isoform 
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(sCD150) could contribute to autocrine regulation of 
secreting cells. Both membrane-bound CD150 recep-
tor (mCD150) and sCD150 may bind CD150 on HRS 
cells and cells in tumor microenvironment. Upon self 
binding or ligation with antibodies, CD150 mediates 
signaling events due to the presence of two specific 
immunoreceptor tyrosine-based switch motifs (ITSM) 
in the cytoplasmic tail. The consequence of CD150 self 
binding depends on whether CD150 is either ligated 
or blocked. Thus, CD150 could target HRS cells as 
well as T cells (especially TReg and Tc), B cells, PC, and 
macrophages surrounding HRS.

What signaling pathways are linked to CD150 re-
ceptor in HRS cells and lymphocytes in microenvi-
ronment? CD150 mediates Akt kinase activation not 
only in normal naïve and activated human B cells and 
lymphoblastoid cell line MP-1 [103], but also in HL cell 
lines [99, 102, 104].

CD150 also could regulate ERK activity in HL cells 
[98, 102]. Moreover, CD150 was found to be linked to 
all three MAPKs signaling pathways in normal human 
B cells and HL cell lines — ERK1/2, p38MAPK and 
JNK1/2 [98]. In all studied cases of classical HL more 
than 75% of malignant HRS cells demonstrated high 
level of pJNK1/2. Signaling via CD150 could play im-
portant role in maintaining JNK activation in HRS cells 
as CD150 ligation was shown to induce prolonged JNK 
activation in all studied HL cell lines [98].

It is important to note that CD150 ligation could 
have different impact on signaling and cell fate of 
HRS cells and B cells in tumor microenvironment 
(Fig. 1). Prolonged stimulation of normal B cells via 
CD150 alone did not affect cell proliferation, but 
enhanced CD40 and IL-4 induced proliferation [97, 

101]. At the same time stimulation of HL cell lines by 
anti-CD150 mAb IPO-3 for 48 h resulted in inhibition 
of proliferation for all three studied cell lines (KM-H2, 
L428, L1236), and even in cell death of L1236 cells 
[98].

As to the CD150-mediated signals, Akt kinase tar-
get — GSK-3β — was phosphorylated upon CD150 li-
gation on lymphoblasoid cell line MP-1 and HL cell line 
L1236, but not in normal tonsillar B cells [104]. It was 
shown that CD150 ligation up-regulates phosphoryla-
tion/activation of ERK1/2 and p38 MAPKs in normal 
tonsillar B cells but down-regulates — in HL cell line 
L1236 [98]. The signaling events linked to CD150 re-
ceptor in HRS cells and normal B cells clarified up to 
date, are presented on Fig. 1. It is possible that using 
sCD150 (with low affinity binding) HRS cells protect 
themselves from signaling via CD150 receptor medi-
ated by membrane-bound CD150 on microenviron-
ment cells. So, high affinity anti-CD150 monoclonal 
antibodies could be of interest as potential therapeutic 
agent for HL treatment. Thus, CD150 can be regarded 
as one of the receptors that is involved in regulation 
of tumor cell maintenance in low-rate proliferating 
Hodgkin’s lymphoma and may be a promising target 
for development of new therapeutic approaches.

CONCLUSION

HL is an example of how tumor cells use the im-
mune system signaling machinery to create and 
maintain favorable for tumor cell survival microenviron-
ment (Fig.2). HRS cells secrete a number of cytokines 
and chemokines (Fig. 2, arrow 1) that attract T and B 
lymphocytes, neutorphils and eosinophils, macro-
phages and histiocytes, stromal and endothelial cells 
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HPK1
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pERK1/2
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Fig. 1. Ligation of CD150 receptor by monoclonal antibodies (IPO-3) induce multiple signaling events, and overall have different 
impact on the proliferation and survival of normal tonsillar B cells and malignant cells in HL
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